Exosomal miRNA Profiling in Vitreous Humor in Proliferative Diabetic Retinopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Acquisition of Vitreous Humor Samples
2.3. Isolation of Exosomal Ribonucleic Acid (RNA)
2.4. miRNA Expression Profiling
2.5. Data Quality Control
2.6. Data Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Number of Detected miRNAs
3.3. Heat Map and Unsupervised Clustering
3.4. Differentially Expressed miRNAs in PDR
3.5. Targets of Differentially Expressed miRNAs in PDR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.-H.; Ling, D.; Tu, L.; van Wijngaarden, P.; Dusting, G.J.; Liu, G.-S. Gene Therapy for Diabetic Retinopathy: Are We Ready to Make the Leap from Bench to Bedside? Pharmacol. Ther. 2017, 173, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, R.; Toto, L.; Cipollone, F.; Santovito, D.; Carpineto, P.; Mastropasqua, L. Role of MicroRNAs in the Modulation of Diabetic Retinopathy. Prog. Retin. Eye Res. 2014, 43, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Martins, B.; Amorim, M.; Reis, F.; Ambrósio, A.F.; Fernandes, R. Extracellular Vesicles and Microrna: Putative Role in Diagnosis and Treatment of Diabetic Retinopathy. Antioxidants 2020, 9, 705. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Sharples, R.A.; Scicluna, B.J.; Hill, A.F. Exosomes Provide a Protective and Enriched Source of MiRNA for Biomarker Profiling Compared to Intracellular and Cell-Free Blood. J. Extracell. Vesicles 2014, 3, 23743. [Google Scholar] [CrossRef] [PubMed]
- Groot, M.; Lee, H. Sorting Mechanisms for MicroRNAs into Extracellular Vesicles and Their Associated Diseases. Cells 2020, 9, 1044. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Lin, Y.C.D.; Cui, S.; Huang, Y.; Tang, Y.; Xu, J.; Bao, J.; Li, Y.; Wen, J.; Zuo, H.; et al. MiRTarBase Update 2022: An Informative Resource for Experimentally Validated MiRNA–Target Interactions. Nucleic Acids Res. 2022, 50, D222–D230. [Google Scholar] [CrossRef]
- Klaassen, I.; De Vries, E.W.; Vogels, I.M.C.; Van Kampen, A.H.C.; Bosscha, M.I.; Steel, D.H.W.; Van Noorden, C.J.F.; Lesnik-Oberstein, S.Y.; Schlingemann, R.O. Identification of Proteins Associated with Clinical and Pathological Features of Proliferative Diabetic Retinopathy in Vitreous and Fibrovascular Membranes. PLoS ONE 2017, 12, e0187304. [Google Scholar] [CrossRef] [Green Version]
- Iyer, S.S.R.; Lagrew, M.K.; Tillit, S.M.; Roohipourmoallai, R.; Korntner, S.; Joachim, C. Molecular Sciences The Vitreous Ecosystem in Diabetic Retinopathy: Insight into the Patho-Mechanisms of Disease. Int. J. Mol. Sci. 2021, 22, 7142. [Google Scholar] [CrossRef]
- Roy, D.; Modi, A.; Khokhar, M.; Sankanagoudar, S.; Yadav, D.; Sharma, S.; Purohit, P.; Sharma, P. MicroRNA 21 Emerging Role in Diabetic Complications: A Critical Update. Curr. Diabetes Rev. 2020, 17, 122–135. [Google Scholar] [CrossRef]
- Lou, H.D.; Wang, S.Y.; Guo, T.; Yang, Y. Role of MiR-21 in Rats with Proliferative Diabetic Retinopathy via TGF-β Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 9–16. [Google Scholar] [CrossRef]
- Qiu, F.; Tong, H.; Wang, Y.; Tao, J.; Wang, H.; Chen, L. Inhibition of MiR-21-5p Suppresses High Glucose-Induced Proliferation and Angiogenesis of Human Retinal Microvascular Endothelial Cells by the Regulation of AKT and ERK Pathways via Maspin. Biosci. Biotechnol. Biochem. 2018, 82, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.M.; Zhang, Z.Z.; Ma, X.; Fang, S.F.; Qin, X.H. Repression of MicroRNA-21 Inhibits Retinal Vascular Endothelial Cell Growth and Angiogenesis via PTEN Dependent-PI3K/Akt/VEGF Signaling Pathway in Diabetic Retinopathy. Exp. Eye Res. 2020, 190, 107886. [Google Scholar] [CrossRef]
- Jiang, Q.; Lyu, X.-M.M.; Yuan, Y.; Wang, L. Plasma MiR-21 Expression: An Indicator for the Severity of Type 2 Diabetes with Diabetic Retinopathy. Biosci. Rep. 2017, 37, BSR20160589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helal, H.G.; Rashed, M.H.; Abdullah, O.A.; Salem, T.I.; Daifalla, A. MicroRNAs (−146a, −21 and −34a) Are Diagnostic and Prognostic Biomarkers for Diabetic Retinopathy. Biomed. J. 2021, 44, S242–S251. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, A.; Beltramo, E.; Lopatina, T.; Gai, C.; Trento, M.; Porta, M. Molecular and Functional Characterization of Circulating Extracellular Vesicles from Diabetic Patients with and without Retinopathy and Healthy Subjects. Exp. Eye Res. 2018, 176, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Usui-Ouchi, A.; Ouchi, Y.; Kiyokawa, M.; Sakuma, T.; Ito, R.; Ebihara, N. Upregulation of Mir-21 Levels in the Vitreous Humor Is Associated with Development of Proliferative Vitreoretinal Disease. PLoS ONE 2016, 11, e0158043. [Google Scholar] [CrossRef] [Green Version]
- Mazzeo, A.; Lopatina, T.; Gai, C.; Trento, M.; Porta, M.; Beltramo, E. Functional Analysis of MiR-21-3p, MiR-30b-5p and MiR-150-5p Shuttled by Extracellular Vesicles from Diabetic Subjects Reveals Their Association with Diabetic Retinopathy. Exp. Eye Res. 2019, 184, 56–63. [Google Scholar] [CrossRef]
- Chen, Q.; Qiu, F.; Zhou, K.; Matlock, H.G.; Takahashi, Y.; Rajala, R.V.S.; Yang, Y.; Moran, E.; Ma, J.X. Pathogenic Role of MicroRNA-21 in Diabetic Retinopathy through Downregulation of PPARα. Diabetes 2017, 66, 1671–1682. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tan, J.; Wang, L.; Pei, G.; Cheng, H.; Zhang, Q.; Wang, S.; He, C.; Fu, C.; Wei, Q. MiR-125 Family in Cardiovascular and Cerebrovascular Diseases. Front. Cell Dev. Biol. 2021, 9, 799049. [Google Scholar] [CrossRef]
- Hwang, S.J.; Ahn, B.J.; Shin, M.W.; Song, Y.S.; Choi, Y.; Oh, G.T.; Kim, K.W.; Lee, H.J. MiR-125a-5p Attenuates Macrophage-Mediated Vascular Dysfunction by Targeting Ninjurin1. Cell Death Differ. 2022, 29, 1199–1210. [Google Scholar] [CrossRef]
- Shahriari, F.; Satarian, L.; Moradi, S.; Zarchi, A.S.; Günther, S.; Kamal, A.; Totonchi, M.; Mowla, S.-J.; Braun, T.; Baharvand, H. MicroRNA Profiling Reveals Important Functions of MiR-125b and Let-7a during Human Retinal Pigment Epithelial Cell Differentiation. Exp. Eye Res. 2020, 190, 107883. [Google Scholar] [CrossRef] [PubMed]
- Che, D.; Zhou, T.; Lan, Y.; Xie, J.; Gong, H.; Li, C.; Feng, J.; Hong, H.; Qi, W.; Ma, C.; et al. High Glucose-Induced Epithelial-Mesenchymal Transition Contributes to the Upregulation of Fibrogenic Factors in Retinal Pigment Epithelial Cells. Int. J. Mol. Med. 2016, 38, 1815–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Q.; Xie, J.; Li, Y.; Liu, Y.; Su, G. Enhanced ROBO4 Is Mediated by Up-Regulation of HIF-1α/SP1 or Reduction in MiR-125b-5p/MiR-146a-5p in Diabetic Retinopathy. J. Cell. Mol. Med. 2019, 23, 4723–4737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Han, S.; Kwon, C.S.; Lee, D. Biogenesis and Regulation of the Let-7 MiRNAs and Their Functional Implications. Protein Cell 2016, 7, 100–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, R.J.A.; Olson, E.N. Control of Glucose Homeostasis and Insulin Sensitivity by the Let-7 Family of MicroRNAs. Proc. Natl. Acad. Sci. USA 2011, 108, 21075–21080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Frost, R.J.A.; Anderson, C.; Zhao, F.; Ma, J.; Yu, B.; Wang, S. Let-7 Contributes to Diabetic Retinopathy but Represses Pathological Ocular Angiogenesis. Mol. Cell. Biol. 2017, 37, e00001-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, F.; Jiang, X.; Tong, T.; Chang, H.; Li, R.X. MiR-204 Inhibits Inflammation and Cell Apoptosis in Retinopathy Rats with Diabetic Retinopathy by Regulating Bcl-2 and SIRT1 Expressions. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6486–6493. [Google Scholar] [CrossRef]
- Wu, J.H.; Gao, Y.; Ren, A.J.; Zhao, S.H.; Zhong, M.; Peng, Y.J.; Shen, W.; Jing, M.; Liu, L. Altered MicroRNA Expression Profiles in Retinas with Diabetic Retinopathy. Ophthalmic Res. 2012, 47, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.-B.; Cheng, Y.-H.; Xu, Y.-Y. MiR-204-5p Promotes Diabetic Retinopathy Development via Downregulation of Microtubule-Associated Protein 1 Light Chain 3. Exp. Ther. Med. 2019, 17, 2945. [Google Scholar] [CrossRef] [Green Version]
- Moldovan, L.; Batte, K.E.; Trgovcich, J.; Wisler, J.; Marsh, C.B.; Piper, M. Methodological Challenges in Utilizing MiRNAs as Circulating Biomarkers. J. Cell. Mol. Med. 2014, 18, 371–390. [Google Scholar] [CrossRef]
- Friedrich, J.; Steel, D.H.W.; Schlingemann, R.O.; Koss, M.J.; Hammes, H.-P.; Krenning, G.; Klaassen, I. MicroRNA Expression Profile in the Vitreous of Proliferative Diabetic Retinopathy Patients and Differences from Patients Treated with Anti-VEGF Therapy. Transl. Vis. Sci. Technol. 2020, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhou, P.; Liu, Z.; Dai, F.; Pan, M.; An, G.; Han, J.; Du, L.; Jin, X. The Aflibercept-Induced MicroRNA Profile in the Vitreous of Proliferative Diabetic Retinopathy Patients Detected by Next-Generation Sequencing. Front. Pharmacol. 2021, 12, 781276. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Cheng, H.H.; Tewari, M. MicroRNA Profiling: Approaches and Considerations. Nat. Rev. Genet. 2012, 13, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, H.; Da Silva, A.M.; Calin, G.; Pantel, K. Data Normalization Strategies for MicroRNA Quantification. Clin. Chem. 2015, 61, 1333–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestdagh, P.; Hartmann, N.; Baeriswyl, L.; Andreasen, D.; Bernard, N.; Chen, C.; Cheo, D.; D’Andrade, P.; DeMayo, M.; Dennis, L.; et al. Evaluation of Quantitative MirnA Expression Platforms in the MicrornA Quality Control (MirQC) Study. Nat. Methods 2014, 11, 809–815. [Google Scholar] [CrossRef]
- Solis-Vivanco, A.; Santamaría-Olmedo, M.; Rodríguez-Juárez, D.; Valdés-Flores, M.; González-Castor, C.; Velázquez-Cruz, R.; Ramírez-Salazar, E.; García-Ulloa, A.C.; Hidalgo-Bravo, A. MiR-145, MiR-92a and MiR-375 Show Differential Expression in Serum from Patients with Diabetic Retinopathies. Diagnostics 2022, 12, 2275. [Google Scholar] [CrossRef]
- Smit-McBride, Z.; Nguyen, A.T.; Yu, A.K.; Modjtahedi, S.P.; Hunter, A.A.; Rashid, S.; Moisseiev, E.; Morse, L.S. Unique Molecular Signatures of MicroRNAs in Ocular Fluids and Plasma in Diabetic Retinopathy. PLoS ONE 2020, 15, e0235541. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, P.; Pan, M.; Liu, Z.; An, G.; Han, J.; Dai, F.; Du, L.; Jin, X. Relationship between Elevated MicroRNAs and Growth Factors Levels in the Vitreous of Patients with Proliferative Diabetic Retinopathy. J. Diabetes Complicat. 2021, 35, 108021. [Google Scholar] [CrossRef]
- Mammadzada, P.; Bayle, J.; Gudmundsson, J.; Kvanta, A.; André, H. Identification of Diagnostic and Prognostic MicroRNAs for Recurrent Vitreous Hemorrhage in Patients with Proliferative Diabetic Retinopathy. J. Clin. Med. 2019, 8, 2217. [Google Scholar] [CrossRef] [Green Version]
- Hirota, K.; Keino, H.; Inoue, M.; Ishida, H.; Hirakata, A. Comparisons of MicroRNA Expression Profiles in Vitreous Humor between Eyes with Macular Hole and Eyes with Proliferative Diabetic Retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 253, 335–342. [Google Scholar] [CrossRef]
- Yang, Y.; Yue, W.; Wang, N.; Wang, Z.; Li, B.; Zeng, J.; Yoshida, S.; Ding, C.; Zhou, Y. Altered Expressions of Transfer RNA-Derived Small RNAs and MicroRNAs in the Vitreous Humor of Proliferative Diabetic Retinopathy. Front. Endocrinol. 2022, 13, 913370. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, A.R.; Elsayed, E.T.; Moftah, R.F. MicroRNA-200b Expression in the Vitreous Humor of Patients with Proliferative Diabetic Retinopathy. Ophthalmic Res. 2017, 58, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.; Wang, M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Weber, S.R.; Lease, J.; Russo, M.; Siedlecki, C.A.; Xu, L.C.; Chen, H.; Wang, W.; Ford, M.; Simó, R.; et al. Liquid Biopsy of Vitreous Reveals an Abundant Vesicle Population Consistent with the Size and Morphology of Exosomes. Transl. Vis. Sci. Technol. 2018, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragusa, M.; Barbagallo, C.; Statello, L.; Caltabiano, R.; Russo, A.; Puzzo, L.; Avitabile, T.; Longo, A.; Toro, M.D.; Barbagallo, D.; et al. MiRNA Profiling in Vitreous Humor, Vitreal Exosomes and Serum from Uveal Melanoma Patients: Pathological and Diagnostic Implications. Cancer Biol. Ther. 2015, 16, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, K.; Pan, J.; Yang, S.; Yao, H.; Li, M.; Li, H.; Lei, H.; Jin, H.; Wang, F. Exosomes Mediate an Epithelial-Mesenchymal Transition Cascade in Retinal Pigment Epithelial Cells: Implications for Proliferative Vitreoretinopathy. J. Cell. Mol. Med. 2020, 24, 13324–13335. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, A.; Beltramo, E.; Iavello, A.; Carpanetto, A.; Porta, M. Molecular Mechanisms of Extracellular Vesicle-Induced Vessel Destabilization in Diabetic Retinopathy. Acta Diabetol. 2015, 52, 1113–1119. [Google Scholar] [CrossRef]
- Lakhter, A.J.; Pratt, R.E.; Moore, R.E.; Doucette, K.K.; Maier, B.F.; DiMeglio, L.A.; Sims, E.K. Beta Cell Extracellular Vesicle MiR-21-5p Cargo Is Increased in Response to Inflammatory Cytokines and Serves as a Biomarker of Type 1 Diabetes. Diabetologia 2018, 61, 1124. [Google Scholar] [CrossRef]
No | Age | Age | Sex | Diabetes Type | Insulin Use | Diabetes Duration |
---|---|---|---|---|---|---|
1 | PDR | 63 | F | 2 | yes | 10 |
2 | PDR | 65 | F | 2 | yes | 26 |
3 | PDR | 62 | M | 2 | yes | 14 |
4 | PDR | 76 | M | 2 | no | 21 |
5 | PDR | 65 | M | 2 | yes | 15 |
6 | PDR | 46 | F | 2 | no | 3 |
7 | PDR | 25 | M | 1 | yes | 20 |
8 | PDR | 63 | F | 2 | yes | 12 |
9 | PDR | 39 | M | 1 | yes | 1 |
10 | PDR | 26 | F | 1 | yes | 13 |
11 | MH | 53 | F | - | - | - |
12 | MH | 56 | F | - | - | - |
13 | MH | 63 | F | - | - | - |
14 | MH | 65 | M | - | - | - |
15 | MH | 78 | M | - | - | - |
16 | MH | 77 | M | - | - | - |
17 | MH | 72 | M | - | - | - |
18 | MH | 61 | F | - | - | - |
19 | MH | 78 | F | - | - | - |
20 | MH | 78 | M | - | - | - |
miRNA | PDR | Target | Regulated Processes |
---|---|---|---|
miR-125a-5p | ↓ | VEGFA | angiogenesis |
SMAD4 | TGF-β signaling | ||
EGFR CDKN1A LIN28 TP53 MMP-11 TNFα | cell growth and differentiation cell cycle RPE cells differentiation cell cycle, apoptosis ECM remodeling inflammation | ||
miR-125b-5p | ↓ | BMP1 | TGF-β signaling |
miR-204-5p | TGFβ1R, TGFβ2R | cell proliferation and differentiation | |
interleukin-1B | inflammation | ||
↓ | BCL2, BIRC2 | apoptosis | |
ezrin vimentin, E-cadherin | adhesion markers of EMT | ||
miR-21-5p | TGFβ1R, TGFβ2R | cell proliferation and differentiation | |
↑ | BCL2 PTEN TIMP3, RECK | apoptosis cell cycle ECM remodeling | |
miR-412-3p | ↓ | TGFβ1R | cell proliferation and differentiation |
let-7g-5p | ↑ | TGFβR1, IGF2BP1 myc, CDKN2A collagen I fibronectin | cell proliferation and differentiation cell cycle ECM remodeling adhesion, ECM remodeling |
Title 1 | Discovery Phase | Validation Phase | qPCR Normalization | VH | Anti-VEGF IVI | Differentially Expressed miRNAs after Validation | Overlap with Our Study |
---|---|---|---|---|---|---|---|
Solis-Vivanco (2022) [36] | Microarray (n = 39) | qPCR for 2 miRNAs (same cohort, n = 39) | U6 | no | no | none | - |
Yang (2022) [41] | NGS (n = 8) | qPCR for 8 miRNAs (same cohort, n = 8) | U6 | yes | no | miR-889-3p, 939-5p, 4775-3p, 411-5p, 369-3p, 181d-5p, 125a-5p upregulation; miR-1469 downregulation in PDR | - |
Guo 2021 [38] | NGS (n = 10) | qPCR for 3 miRNAs (n = 24) | miR-39-3p | no * | no | miR-3184-3p, -24-3p, -197-3p upregulation in PDR | let-7 family upregulation |
Guo 2021 [32] | NGS (n = 15) | qPCR for 3 miRNAs (n = 26) | miR-39-3p | no * | yes vs. no | miR-3184-3p, -24-3p, -197-3p upregulation in PDR | miR-125b-5p downregulation |
Friedrich 2020 [31] | qPCR profiling (n = 20) | qPCR for 9 miRNAs (n = 40) | none | - | yes vs. no | miR-20a-5p, -23b-3p, -142-3p, -185-5p, -326-5p, -362-5p upregulation in PDR | miR-142-3p upregulation |
Smit-McBride (2020) [37] | microarray (n = 33) | qPCR for 3 miRNAs (same cohort, n = 33) | miR-638, -3613 and -4487 | no | no | let-7b upregulation in PDR | let-7 family upregulation |
Mammadzada 2019 [39] | qPCR profiling—pooled analysis (n = 54) | qPCR for 10 miRNAs— single patient analysis (same cohort, n = 54) | miR-39-3p | yes | - | miR-19a, -27a upregulation in PDR | miR-19a upregulation |
Gomaa 2017 [42] | qPCR for a single miRNA (n = 59) | - | U6 | yes | - | miR-200 b upregulation in PDR | - |
Usui-Ouchi 2016 [16] | microarray (n = 6) | qPCR for 3 miRNAs (n = 27) | U6 | - | - | miR-21 upregulation in PDR and PVR | miR-21 upregulation |
Hirota 2014 [40] | qPCR profiling (n = 4) | - | global mean | - | no | miR-15a, -320a, -320b, -93, -29a, -423-5p upregulation in PDR | miR-15a upregulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kot, A.; Kaczmarek, R. Exosomal miRNA Profiling in Vitreous Humor in Proliferative Diabetic Retinopathy. Cells 2023, 12, 123. https://doi.org/10.3390/cells12010123
Kot A, Kaczmarek R. Exosomal miRNA Profiling in Vitreous Humor in Proliferative Diabetic Retinopathy. Cells. 2023; 12(1):123. https://doi.org/10.3390/cells12010123
Chicago/Turabian StyleKot, Agnieszka, and Radoslaw Kaczmarek. 2023. "Exosomal miRNA Profiling in Vitreous Humor in Proliferative Diabetic Retinopathy" Cells 12, no. 1: 123. https://doi.org/10.3390/cells12010123
APA StyleKot, A., & Kaczmarek, R. (2023). Exosomal miRNA Profiling in Vitreous Humor in Proliferative Diabetic Retinopathy. Cells, 12(1), 123. https://doi.org/10.3390/cells12010123