Editorial: Highlights in Autophagy—From Basic Mechanisms to Human Disorder Treatments
Introduction
Acknowledgments
Conflicts of Interest
References
- Grosjean, I.; Romeo, B.; Domdom, M.A.; Belaid, A.; D’Andrea, G.; Guillot, N.; Gherardi, R.K.; Gal, J.; Milano, G.; Marquette, C.H.; et al. Autophagopathies: From autophagy gene polymorphisms to precision medicine for human diseases. Autophagy 2022, 18, 2519–2536. [Google Scholar] [CrossRef] [PubMed]
- Kocak, M.; Ezazi Erdi, S.; Jorba, G.; Maestro, I.; Farres, J.; Kirkin, V.; Martinez, A.; Pless, O. Targeting autophagy in disease: Established and new strategies. Autophagy 2022, 18, 473–495. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Wang, Y.; Shi, Y.; Zhang, Z.; Huang, C.; He, W.; Wang, C.; Shen, H.M. Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm 2022, 3, e150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Z. Broad and Complex Roles of NBR1-Mediated Selective Autophagy in Plant Stress Responses. Cells 2020, 9, 2652. [Google Scholar] [CrossRef] [PubMed]
- Hiebel, C.; Sturner, E.; Hoffmeister, M.; Tascher, G.; Schwarz, M.; Nagel, H.; Behrends, C.; Munch, C.; Behl, C. BAG3 Proteomic Signature under Proteostasis Stress. Cells 2020, 9, 2416. [Google Scholar] [CrossRef] [PubMed]
- Ke, P.Y. Mitophagy in the Pathogenesis of Liver Diseases. Cells 2020, 9, 831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Shepard, S.; Zhou, Z.; Maique, J.; Seli, O.; Moe, O.W.; Hu, M.C. High Dietary Phosphate Exacerbates and Acts Independently of Low Autophagy Activity in Pathological Cardiac Remodeling and Dysfunction. Cells 2021, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.D.; Bejarano, E.; Wang, X.D.; Greenberg, A.S. Integrated Action of Autophagy and Adipose Tissue Triglyceride Lipase Ameliorates Diet-Induced Hepatic Steatosis in Liver-Specific PLIN2 Knockout Mice. Cells 2021, 10, 1016. [Google Scholar] [CrossRef] [PubMed]
- Lypova, N.; Dougherty, S.M.; Lanceta, L.; Chesney, J.; Imbert-Fernandez, Y. PFKFB3 Inhibition Impairs Erlotinib-Induced Autophagy in NSCLCs. Cells 2021, 10, 1679. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tasset, I.; Cuervo, A.M.; Muller, S. In Vivo Remodeling of Altered Autophagy-Lysosomal Pathway by a Phosphopeptide in Lupus. Cells 2020, 9, 2328. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.-H.; Combaret, L. Editorial: Highlights in Autophagy—From Basic Mechanisms to Human Disorder Treatments. Cells 2023, 12, 188. https://doi.org/10.3390/cells12010188
Lin P-H, Combaret L. Editorial: Highlights in Autophagy—From Basic Mechanisms to Human Disorder Treatments. Cells. 2023; 12(1):188. https://doi.org/10.3390/cells12010188
Chicago/Turabian StyleLin, Pei-Hui, and Lydie Combaret. 2023. "Editorial: Highlights in Autophagy—From Basic Mechanisms to Human Disorder Treatments" Cells 12, no. 1: 188. https://doi.org/10.3390/cells12010188
APA StyleLin, P. -H., & Combaret, L. (2023). Editorial: Highlights in Autophagy—From Basic Mechanisms to Human Disorder Treatments. Cells, 12(1), 188. https://doi.org/10.3390/cells12010188