Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers
Abstract
:1. Introduction
2. HPV-Replicative Cycle Association with Cellular Pathways and Ion Channels
3. Ion Channels as Potential Clinical Tools in HPV-Associated Cancers
3.1. Potassium Ion Channels
3.1.1. Voltage-Gated Potassium Channels
3.1.2. Calcium-Activated Potassium Channels
3.1.3. Inwardly Rectifying Potassium Channels
3.1.4. Two-Pore Domain Potassium Channels
3.2. Sodium Ion Channels
3.2.1. Voltage-Activated Sodium Channels
3.2.2. Epithelial Sodium Channels
3.3. Chloride Ion Channels
3.3.1. Voltage-Dependent Chloride Channels
3.3.2. Calcium-Activated Chloride Channels
3.3.3. Volume-Regulated Chloride Channels (VRAC)
3.3.4. Chloride Intracellular Channels (CLICs)
3.4. Calcium Ion Channels
3.4.1. Voltage-Gated Calcium Channels
3.4.2. Calcium Channels Activated by Calcium Release
3.4.3. Stromal Interaction Molecule 1
3.4.4. Transient Receptor Potential Cation Channels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bzhalava, D.; Mühr, L.S.A.; Lagheden, C.; Ekström, J.; Forslund, O.; Dillner, J.; Hultin, E. Deep Sequencing Extends the Diversity of Human Papillomaviruses in Human Skin. Sci. Rep. 2014, 4, 5807. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.V. The Human Papillomavirus Replication Cycle, and Its Links to Cancer Progression: A Comprehensive Review. Clin. Sci. 2017, 131, 2201–2221. [Google Scholar] [CrossRef] [PubMed]
- Scott-Wittenborn, N.; Fakhry, C. Epidemiology of HPV Related Malignancies. Semin. Radiat. Oncol. 2021, 31, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Catalan Institute of Oncology; International Agency for Research on Cancer (IARC). HPV Information Centre. Available online: https://hpvcentre.net/references.php (accessed on 9 January 2023).
- Catalan Institute of Oncology (ICO); International Agency for Research on Cancer (IARC). Human Papillomavirus and Related Diseases Report World. Available online: www.hpvcentre.net (accessed on 10 January 2023).
- Mazarico, E.; Gonzalez-Bosquet, E. Prevalence of Infection by Different Genotypes of Human Papillomavirus in Women with Cervical Pathology. Gynecol. Oncol. 2012, 125, 181–185. [Google Scholar] [CrossRef]
- Torres-Ibarra, L.; Cuzick, J.; Lorincz, A.T.; Spiegelman, D.; Lazcano-Ponce, E.; Franco, E.L.; Moscicki, A.B.; Mahmud, S.M.; Wheeler, C.M.; Rivera-Paredez, B.; et al. Comparison of HPV-16 and HPV-18 Genotyping and Cytological Testing as Triage Testing within Human Papillomavirus-Based Screening in Mexico. JAMA Netw. Open 2019, 2, e1915781. [Google Scholar] [CrossRef]
- Schulte-Frohlinde, R.; Georges, D.; Clifford, G.M.; Baussano, I. Predicting Cohort-Specific Cervical Cancer Incidence from Population-Based Surveys of Human Papiloma Virus Prevalence: A Worldwide Study. Am. J. Epidemiol. 2022, 191, 402–412. [Google Scholar] [CrossRef]
- Carmen Alarcón-Romero, D.L.; Organista-Nava, J.; Gómez-Gómez, Y.; Ortiz-Ortiz, J.; Hernández-Sotelo, D.; del Moral-Hernández, O.; Mendoza-Catalán, M.A.; Antaño-Arias, R.; Leyva-Vázquez, M.A.; Sales-Linares, N.; et al. Prevalence and Distribution of Human Papillomavirus Genotypes (1997–2019) and Their Association with Cervical Cancer and Precursor Lesions in Women from Southern Mexico. Cancer Control. 2022, 29. [Google Scholar] [CrossRef]
- Li, M.; Du, X.; Lu, M.; Zhang, W.; Sun, Z.; Li, L.; Ye, M.; Fan, W.; Jiang, S.; Liu, A.; et al. Prevalence Characteristics of Single and Multiple HPV Infections in Women with Cervical Cancer and Precancerous Lesions in Beijing, China. J. Med. Virol. 2019, 91, 473–481. [Google Scholar] [CrossRef]
- Alemany, L.; Saunier, M.; Tinoco, L.; Quirós, B.; Alvarado-Cabrero, I.; Alejo, M.; Joura, E.A.; Maldonado, P.; Klaustermeier, J.; Salmerón, J.; et al. Large Contribution of Human Papillomavirus in Vaginal Neoplastic Lesions: A Worldwide Study in 597 Samples. Eur. J. Cancer 2014, 50, 2846–2854. [Google Scholar] [CrossRef]
- Lin, C.; Franceschi, S.; Clifford, G.M. Human Papillomavirus Types from Infection to Cancer in the Anus, According to Sex and HIV Status: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2018, 18, 198–206. [Google Scholar] [CrossRef]
- Kidd, L.C.; Chaing, S.; Chipollini, J.; Giuliano, A.R.; Spiess, P.E.; Sharma, P. Relationship between Human Papillomavirus and Penile Cancer-Implications for Prevention and Treatment. Transl. Androl. Urol. 2017, 6, 791–802. [Google Scholar] [CrossRef]
- Goldstone, S.E.; Enyinna, C.S.; Davis, T.W. Detection of Oncogenic Human Papillomavirus and Other Predictors of Anal High-Grade Dysplasia in Men Who Have Sex with Men with Abnormal Cytology. Dis. Colon. Rectum. 2009, 52, 31–39. [Google Scholar] [CrossRef]
- Urbute, A.; Rasmussen, C.L.; Belmonte, F.; Obermueller, T.; Prigge, E.S.; Arbyn, M.; Verdoodt, F.; Kjaer, S.K. Prognostic Significance of HPV DNA and P16INK4a in Anal Cancer: A Systematic Review and Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2020, 29, 703–710. [Google Scholar] [CrossRef]
- Goon, P.K.C.; Stanley, M.A.; Ebmeyer, J.; Steinsträsser, L.; Upile, T.; Jerjes, W.; Bernal-Sprekelsen, M.; Görner, M.; Sudhoff, H.H. HPV & Head and Neck Cancer: A Descriptive Update. Head Neck Oncol. 2009, 1, 36. [Google Scholar] [CrossRef]
- Tagliabue, M.; Mena, M.; Maffini, F.; Gheit, T.; Blasco, B.Q.; Holzinger, D.; Tous, S.; Scelsi, D.; Riva, D.; Grosso, E.; et al. Role of Human Papillomavirus Infection in Head and Neck Cancer in Italy: The HPV-AHEAD Study. Cancers 2020, 12, 3567. [Google Scholar] [CrossRef]
- Parfenov, M.; Pedamallu, C.S.; Gehlenborg, N.; Freeman, S.S.; Danilova, L.; Bristow, C.A.; Lee, S.; Hadjipanayis, A.G.; Ivanova, E.V.; Wilkerson, M.D.; et al. Characterization of HPV and Host Genome Interactions in Primary Head and Neck Cancers. Proc. Natl. Acad. Sci. USA 2014, 111, 15544–15549. [Google Scholar] [CrossRef]
- Hübbers, C.U.; Akgül, B. HPV and Cancer of the Oral Cavity. Virulence 2015, 6, 244–248. [Google Scholar] [CrossRef]
- Syrjänen, K.J. HPV Infections and Lung Cancer. J. Clin. Pathol. 2002, 55, 885–891. [Google Scholar] [CrossRef]
- Damin, D.C.; Ziegelmann, P.K.; Damin, A.P. Human Papillomavirus Infection and Colorectal Cancer Risk: A Meta-Analysis. Color. Dis. 2013, 15, e420–e428. [Google Scholar] [CrossRef]
- Daniela Iacobone, A.; Muresu, N.; Di Lorenzo, B.; Saderi, L.; Sechi, I.; Del Rio, A.; Piana, A.; Sotgiu, G. Prevalence of Human Papilloma Virus Infection in Bladder Cancer: A Systematic Review. Diagnostics 2022, 12, 1759. [Google Scholar] [CrossRef]
- Lawson, J.S.; Glenn, W.K.; Salyakina, D.; Clay, R.; Delprado, W.; Cheerala, B.; Tran, D.D.; Ngan, C.C.; Miyauchi, S.; Karim, M.; et al. Human Papilloma Virus Identification in Breast Cancer Patients with Previous Cervical Neoplasia. Front. Oncol. 2016, 5, 298. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.S.; Glenn, W.K.; Whitaker, N.J. Human Papilloma Viruses and Breast Cancer—Assessment of Causality. Front. Oncol. 2016, 6, 207. [Google Scholar] [CrossRef] [PubMed]
- Veijalainen, O.; Kares, S.; Kujala, P.; Tirkkonen, M.; Vuento, R.; Kholová, I.; Luukkaala, T.; Osuala, V.; Mäenpää, J. Human Papillomavirus Test with Cytology Triage in Organized Screening for Cervical Cancer. Acta Obs. Gynecol. Scand. 2016, 95, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Tota, J.E.; Bentley, J.; Blake, J.; Coutlée, F.; Duggan, M.A.; Ferenczy, A.; Franco, E.L.; Fung-Kee-Fung, M.; Gotlieb, W.; Mayrand, M.H.; et al. Approaches for Triaging Women Who Test Positive for Human Papillomavirus in Cervical Cancer Screening. Prev. Med. 2017, 98, 15–20. [Google Scholar] [CrossRef]
- Moody, C.A.; Laimins, L.A. Human Papillomavirus Oncoproteins: Pathways to Transformation. Nat. Rev. Cancer 2010, 10, 550–560. [Google Scholar] [CrossRef]
- Dixit, R.; Kemp, C.; Kulich, S.; Seethala, R.; Chiosea, S.; Ling, S.; Ha, P.K.; Duvvuri, U. TMEM16A/ANO1 Is Differentially Expressed in HPV-Negative versus HPV-Positive Head and Neck Squamous Cell Carcinoma through Promoter Methylation. Sci. Rep. 2015, 5, 16657. [Google Scholar] [CrossRef]
- Ramírez, A.; Vera, E.; Gamboa-Domínguez, A.; Lambert, P.; Gariglio, P.; Camacho, J. Calcium-Activated Potassium Channels as Potential Early Markers of Human Cervical Cancer. Oncol. Lett. 2018, 15, 7249–7254. [Google Scholar] [CrossRef]
- Ramírez, A.; Vázquez-Sánchez, A.Y.; Carrión-Robalino, N.; Camacho, J. Ion Channels and Oxidative Stress as a Potential Link for the Diagnosis or Treatment of Liver Diseases. Oxidative Med. Cell. Longev. 2016, 2016, 3928714. [Google Scholar] [CrossRef]
- Diaz, D.; Delgadillo, D.M.; Hernández-Gallegos, E.; Ramírez-Domínguez, M.E.; Hinojosa, L.M.; Ortiz, C.S.; Berumen, J.; Camacho, J.; Gomora, J.C. Functional Expression of Voltage-Gated Sodium Channels in Primary Cultures of Human Cervical Cancer. J. Cell. Physiol. 2007, 210, 469–478. [Google Scholar] [CrossRef]
- Barajas-Farias, L.; Bermpudez-Ocaña, D.; Díaz, L.; Larrea, F.; Farias, B.; Avila-Chávez, E.; Cadena, A.; Hinojosa, L.M.; Lara, G.; Villanueva, L.A.; et al. Ether á Go-Go Potassium Channels as Human Cervical Cancer Markers. Cancer Res. 2004, 64, 6996–7001. [Google Scholar] [CrossRef]
- Woodham, A.W.; da Silva, D.M.; Skeate, J.G.; Raff, A.B.; Ambroso, M.R.; Brand, H.E.; Isas, J.M.; Langen, R.; Kast, W.M. The S100A10 Subunit of the Annexin A2 Heterotetramer Facilitates L2-Mediated Human Papillomavirus Infection. PLoS ONE 2012, 7, e43519. [Google Scholar] [CrossRef]
- Erdemoglu, M.; Yilmaz, M.; Eroglu, R.; Kirat, S.; Altinordu, A.; Ozkara, A.; Can, B.; Kartal, E.; Akkus, F.; Avci, F.; et al. Current Approaches in Gynecology and Gyneco-Oncology; Yilmaz, M., Ed.; Iksad: Ankara, Turkey, 2022; pp. 223–236. [Google Scholar]
- Dziduszko, A.; Ozbun, M.A. Annexin A2 and S100A10 Regulate Human Papillomavirus Type 16 Entry and Intracellular Trafficking in Human Keratinocytes. J. Virol. 2013, 87, 7502–7515. [Google Scholar] [CrossRef]
- Taylor, J.R.; Fernandez, D.J.; Thornton, S.M.; Skeate, J.G.; Lühen, K.P.; Da Silva, D.M.; Langen, R.; Kast, W.M. Heterotetrameric Annexin A2/S100A10 (A2t) Is Essential for Oncogenic Human Papillomavirus Trafficking and Capsid Disassembly, and Protects Virions from Lysosomal Degradation. Sci. Rep. 2018, 8, 11642. [Google Scholar] [CrossRef]
- Tantyo, N.A.; Karyadi, A.S.; Rasman, S.Z.; Salim, M.R.G.; Devina, A.; Sumarpo, A. The Prognostic Value of S100A10 Expression in Cancer. Oncol. Lett. 2018, 17, 1417–1424. [Google Scholar] [CrossRef]
- Seo, J.S.; Svenningsson, P. Modulation of Ion Channels and Receptors by P11 (S100A10). Trends Pharmacol. Sci. 2020, 41, 487–497. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Kempster, E.; Waisman, D.M. The Annexin A2/S100a10 Complex: The Mutualistic Symbiosis of Two Distinct Proteins. Biomolecules 2021, 11, 1849. [Google Scholar] [CrossRef]
- Lei, J.; Deng, F.; Ding, H.; Fu, M.; Xu, T.; Ji, B.; Feng, L.; Li, M.; Qiu, J.; Gao, Q. Recent Developments on the Roles of Calcium Signals and Potential Therapy Targets in Cervical Cancer. Cells 2022, 11, 3003. [Google Scholar] [CrossRef]
- Stewart, J.M. TRPV6 as a Target for Cancer Therapy. J. Cancer 2020, 11, 374–387. [Google Scholar] [CrossRef]
- Amaral, M.D.; Quaresma, M.C.; Pankonien, I. What Role Does Cftr Play in Development, Differentiation, Regeneration and Cancer? Int. J. Mol. Sci. 2020, 21, 3133. [Google Scholar] [CrossRef]
- Lechner, M.; Liu, J.; Masterson, L.; Fenton, T.R. HPV-Associated Oropharyngeal Cancer: Epidemiology, Molecular Biology and Clinical Management. Nat. Rev. Clin. Oncol. 2022, 19, 306–327. [Google Scholar] [CrossRef]
- Hoppe-Seyler, K.; Bossler, F.; Braun, J.A.; Herrmann, A.L.; Hoppe-Seyler, F. The HPV E6/E7 Oncogenes: Key Factors for Viral Carcinogenesis and Therapeutic Targets. Trends Microbiol. 2017, 26, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Qi, Y.; Cui, X.; Huo, Q.; Zhu, L.; Zhang, A.; Tan, M.; Hong, Q.; Yang, Y.; Zhang, H.; et al. Characteristic of HPV Integration in the Genome and Transcriptome of Cervical Cancer Tissues. Biomed Res. Int. 2018, 2018, 6242137. [Google Scholar] [CrossRef] [PubMed]
- Hermida-Prado, F.; Menéndez, S.T.; Albornoz-Afanasiev, P.; Granda-Diaz, R.; Álvarez-Teijeiro, S.; Villaronga, M.Á.; Allonca, E.; Alonso-Durán, L.; León, X.; Alemany, L.; et al. Distinctive Expression and Amplification of Genes at 11q13 in Relation to HPV Status with Impact on Survival in Head and Neck Cancer Patients. J. Clin. Med. 2018, 7, 501. [Google Scholar] [CrossRef] [PubMed]
- Fry, E.A.; Inoue, K. Aberrant Expression of ETS1 and ETS2 Proteins in Cancer. Cancer Rep. Rev. 2018, 2, 15761. [Google Scholar] [CrossRef]
- Wolvetang, E.J.; Wilson, T.J.; Sanij, E.; Busciglio, J.; Hatzistavrou, T.; Seth, A.; Hertzog, P.J.; Kola, I. ETS2 Overexpression in Transgenic Models and in Down Sydrome Predisposes to Apoptosis via the P53 Pathway. Hum. Mol. Genet. 2003, 12, 247–255. [Google Scholar] [CrossRef]
- Hang, D.; Zhou, W.; Jia, M.; Wang, L.; Zhou, J.; Yin, Y.; Ma, H.; Hu, Z.; Li, N.; Shen, H. Genetic Variants within MicroRNA-Binding Site of RAD51B Are Associated with Risk of Cervical Cancer in Chinese Women. Cancer Med. 2016, 5, 2596–2601. [Google Scholar] [CrossRef]
- Hong, A.M.; Ferguson, P.; Dodds, T.; Jones, D.; Li, M.; Yang, J.; Scolyer, R.A. Significant Association of PD-L1 Expression with Human Papillomavirus Positivity and Its Prognostic Impact in Oropharyngeal Cancer. Oral. Oncol. 2019, 92, 33–39. [Google Scholar] [CrossRef]
- Finegersh, A.; Kulich, S.; Guo, T.; Favorov, A.V.; Fertig, E.J.; Danilova, L.V.; Gaykalova, D.A.; Califano, J.A.; Duvvuri, U. DNA Methylation Regulates TMEM16A/ANO1 Expression through Multiple CpG Islands in Head and Neck Squamous Cell Carcinoma. Sci. Rep. 2017, 7, 15173. [Google Scholar] [CrossRef]
- Martinez-Zapien, D.; Ruiz, F.X.; Poirson, J.; Mitschler, A.; Ramirez, J.; Forster, A.; Cousido-Siah, A.; Masson, M.; Vande Pol, S.; Podjarny, A.; et al. Structure of the E6/E6AP/P53 Complex Required for HPV-Mediated Degradation of P53. Nature 2016, 529, 541–545. [Google Scholar] [CrossRef]
- He, S.; Moutaoufik, M.T.; Islam, S.; Persad, A.; Wu, A.; Aly, K.A.; Fonge, H.; Babu, M.; Cayabyab, F.S. HERG Channel and Cancer: A Mechanistic Review of Carcinogenic Processes and Therapeutic Potential. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188355. [Google Scholar] [CrossRef]
- Tomita, T.; Huibregtse, J.M.; Matouschek, A. A Masked Initiation Region in Retinoblastoma Protein Regulates Its Proteasomal Degradation. Nat. Commun. 2020, 11, 2019. [Google Scholar] [CrossRef]
- De Guadalupe Chávez-López, M.; Zúñiga-García, V.; Castro-Magdonel, B.E.; Vera, E.; Garrido, E.; Sánchez-Ramos, J.; Ponce-Castañeda, M.V.; de Lourdes Cabrera-Muñoz, M.; Escobar, Y.; Ortiz, C.S.; et al. Eag1 Gene and Protein Expression in Human Retinoblastoma Tumors and Its Regulation by PRb in HeLa Cells. Genes 2020, 11, 119. [Google Scholar] [CrossRef]
- Sim, H.J.; Song, M.S.; Lee, S.Y. Kv3 Channels Contribute to Cancer Cell Migration via Vimentin Regulation. Biochem. Biophys. Res. Commun. 2021, 551, 140–147. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Zhang, Q.; Li, C. Silencing of KCNA1 Suppresses the Cervical Cancer Development via Mitochondria Damage. Channels 2019, 13, 321–330. [Google Scholar] [CrossRef]
- Chen, Y.F.; Chiu, W.T.; Chen, Y.T.; Lin, P.Y.; Huang, H.J.; Chou, C.Y.; Chang, H.; Tang, M.J.; Shen, M.R. Calcium Store Sensor Stromal-Interaction Molecule 1-Dependent Signaling Plays an Important Role in Cervical Cancer Growth, Migration, and Angiogenesis. Proc. Natl. Acad. Sci. USA 2011, 108, 15225–15230. [Google Scholar] [CrossRef]
- Scarth, J.A.; Wasson, C.W.; Patterson, M.R.; Evans, D.; Carden, H.; Whitehouse, A.; Mankouri, J.; Samson, A.; Morgan, E.L.; Macdonald, A. Exploitation of ATP-Sensitive Potassium Ion (KATP) Channels by HPV Promotes Cervical Cancer Cell Proliferation by Contributing to MAPK/AP-1 Signalling. Cold Spring Harb. Lab. 2022. [Google Scholar] [CrossRef]
- Westrich, J.A.; Warren, C.J.; Pyeon, D. Evasion of Host Immune Defenses by Human Papillomavirus. Virus Res. 2017, 231, 21–33. [Google Scholar] [CrossRef]
- Huang, J.; Liu, J.; Qiu, L. Transient Receptor Potential Vanilloid 1 Promotes EGFR Ubiquitination and Modulates EGFR/MAPK Signalling in Pancreatic Cancer Cells. Cell Biochem. Funct. 2020, 38, 401–408. [Google Scholar] [CrossRef]
- Zhai, K.; Liskova, A.; Kubatka, P.; Büsselberg, D. Calcium Entry through Trpv1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int. J. Mol. Sci. 2020, 21, 4177. [Google Scholar] [CrossRef]
- Prevarskaya, N.; Skryma, R.; Shuba, Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol. Rev. 2018, 98, 559–621. [Google Scholar] [CrossRef]
- Szymonowicz, K.A.; Chen, J. Biological and Clinical Aspects of HPV-Related Cancers. Cancer Biol. Med. 2020, 17, 864–878. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.-M.; Xu, Q.-P.; Li, X.; Xiao, R.-D.; Cai, L.; He, F. The Association between Human Papillomavirus Infection and Lung Cancer: A System Review and Meta-Analysis. Oncotarget 2017, 8, 96419–96432. Available online: www.impactjournals.com/oncotarget (accessed on 10 January 2023). [CrossRef] [PubMed]
- Clavel, J. Progress in the Epidemiological Understanding of Gene-Environment Interactions in Major Diseases: Cancer. Comptes Rendus Biol. 2007, 330, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Q.; Purhonen, P.; Hebert, H. Structure of Potassium Channels. Cell. Mol. Life Sci. 2015, 72, 3677–3693. [Google Scholar] [CrossRef]
- Huang, X.; Jan, L.Y. Targeting Potassium Channels in Cancer. J. Cell Biol. 2014, 206, 151–162. [Google Scholar] [CrossRef]
- González, C.; Baez-Nieto, D.; Valencia, I.; Oyarzún, I.; Rojas, P.; Naranjo, D.; Latorre, R. K+ Channels: Function-Structural Overview. Compr. Physiol. 2012, 2, 2087–2149. [Google Scholar] [CrossRef]
- Barros, F.; Pardo, L.A.; Domínguez, P.; Sierra, L.M.; de la Peña, P. New Structures and Gating of Voltage-Dependent Potassium (Kv) Channels and Their Relatives: A Multi-Domain and Dynamic Question. Int. J. Mol. Sci. 2019, 20, 248. [Google Scholar] [CrossRef]
- Pardo, L.A.; Contreras-Jurado, C.; Zientkowska, M.; Alves, F.; Stühmer, W. Role of Voltage-Gated Potassium Channels in Cancer. J. Membr. Biol. 2005, 205, 115–124. [Google Scholar] [CrossRef]
- Restrepo, I.; Sánchez, C.; Camacho, J. Human EAG1 Potassium Channels in the Epithelial-to-Mesenchymal Transition in Lung Cancer Cells. Anticancer. Res. 2011, 31, 1265–1270. [Google Scholar]
- García-Quiroz, J.; Camacho, J. Astemizole: And Old Anti-Histamine as a New Promising Anti-Cancer Drug. Anticancer. Agents Med. Chem. 2011, 11, 307–314. [Google Scholar] [CrossRef]
- De Guadalupe Chávez-López, M.; Hernández-Gallegos, E.; Vázquez-Sánchez, A.Y.; Gariglio, P.; Camacho, J. Antiproliferative and Proapoptotic Effects of Astemizole on Cervical Cancer Cells. Int. J. Gynecol. Cancer 2014, 24, 824–828. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.; Guo, Y.; Shui, L.; Li, S.; Bai, Y.; Liu, Y.; Zeng, M.; Xia, J. HERG1 Promotes Esophageal Squamous Cell Carcinoma Growth and Metastasis through TXNDC5 by Activating the PI3K/AKT Pathway. J. Exp. Clin. Cancer Res. 2019, 38. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kim, H.R.; Ryu, P.D.; Lee, S.Y. Regulation of Voltage-Gated Potassium Channels Attenuates Resistance of Side-Population Cells to Gefitinib in the Human Lung Cancer Cell Line NCI-H460. BMC Pharm. Toxicol 2017, 18, 14. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, J.-W.; Byun, J.K.; Kim, H.K.; Ryu, P.D.; Lee, S.Y.; Kim, D.-Y. Silencing of Voltage-Gated Potassium Channel Kv9.3 Inhibits Proliferation in Human Colon and Lung Carcinoma Cells. Oncotarget 2015, 6, 8132–8143. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Zhu, S.; Lan, X. MiR-483–5p Promotes Esophageal Cancer Progression by Targeting KCNQ1. Biochem. Biophys. Res. Commun. 2020, 531, 615–621. [Google Scholar] [CrossRef]
- Liu, L.; Zhan, P.; Nie, D.; Fan, L.; Lin, H.; Gao, L.; Mao, X. Intermediate-Conductance-Ca2-Activated K Channel IKCa1 Is Upregulated and Promotes Cell Proliferation in Cervical Cancer. Med. Sci. Monit. Basic Res. 2017, 23, 45–57. [Google Scholar] [CrossRef]
- Nakamura, S.; Kanda, M.; Koike, M.; Shimizu, D.; Umeda, S.; Hattori, N.; Hayashi, M.; Tanaka, C.; Kobayashi, D.; Yamada, S.; et al. KCNJ15 Expression and Malignant Behavior of Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2020, 27, 2559–2568. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Zhang, Y.H.; Sun, H.Y.; Lau, C.P.; Li, G.R. Epidermal Growth Factor Receptor Tyrosine Kinase Regulates the Human Inward Rectifier Potassium K IR2.3 Channel, Stably Expressed in HEK 293 Cells. Br. J. Pharm. 2011, 164, 1469–1478. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, A.Y.; Hinojosa, L.M.; Parraguirre-Martínez, S.; González, A.; Morales, F.; Montalvo, G.; Vera, E.; Hernández-Gallegos, E.; Camacho, J. Expression of KATP Channels in Human Cervical Cancer: Potential Tools for Diagnosis and Therapy. Oncol. Lett. 2018, 15, 6302–6308. [Google Scholar] [CrossRef]
- Xu, K.; Sun, G.; Li, M.; Chen, H.; Zhang, Z.; Qian, X.; Li, P.; Xu, L.; Huang, W.; Wang, X. Glibenclamide Targets Sulfonylurea Receptor 1 to Inhibit P70S6K Activity and Upregulate KLF4 Expression to Suppress Non-Small Cell Lung Carcinoma. Mol. Cancer 2019, 18, 2085–2096. [Google Scholar] [CrossRef]
- Zavala, W.D.; Foscolo, M.R.; Kunda, P.E.; Cavicchia, J.C.; Acosta, C.G. Changes in the Expression of the Potassium Channels TASK1, TASK3 and TRESK in a Rat Model of Oral Squamous Cell Carcinoma and Their Relation to Malignancy. Arch. Oral Biol. 2019, 100, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Walline, H.M.; Komarck, C.M.; McHugh, J.B.; Bellile, E.L.; Brenner, J.C.; Prince, M.E.; McKean, E.L.; Chepeha, D.B.; Wolf, G.T.; Worden, F.P.; et al. Genomic Integration of High-Risk HPV Alters Gene Expression in Oropharyngeal Squamous Cell. Mol. Cancer Res. 2016, 14, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Lin, N.; Zuo, W.; Luo, H.; Li, Y.; Liu, S.; Meng, L.; Fan, A.; Zhu, L.; Jacob, T.J.C.; et al. Ethanol Promotes Cell Migration via Activation of Chloride Channels in Nasopharyngeal Carcinoma Cells. Alcohol. Clin. Exp. Res. 2015, 39, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Li, R.F.; Man, Q.W.; Liu, J.Y.; Zheng, Y.Y.; Gao, X.; Liu, H.M. Overexpression of T-Type Calcium Channel Cav3.1 in Oral Squamous Cell Carcinoma: Association with Proliferation and Anti-Apoptotic Activity. J. Mol. Histol. 2021, 52, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Bhargava, A.; Rath, S.N. T-Type Calcium Channel Antagonist, TTA-A2 Exhibits Anti-Cancer Properties in 3D Spheroids of A549, a Lung Adenocarcinoma Cell Line. Life Sci. 2020, 260, 118291. [Google Scholar] [CrossRef]
- Ay, A.; Benzerdjerb, N.; Sevestre, H.; Ahidouch, A.; Ouidid, H. Orai3 Constitutes a Native Store-Operated Calcium Entry That Regulates Non Small Cell Lung Adenocarcinoma Cell Proliferation. PLoS ONE 2015, 10, e0124201. [Google Scholar] [CrossRef]
- Marincsák, R.; Tóth, B.; Czifra, G.; Márton, I.; Rédl, P.; Tar, I.; Tóth, L.; Kovács, L.; Bíró, T. Increased Expression of TRPV1 in Squamous Cell Carcinoma of the Human Tongue. Oral Dis. 2009, 15, 328–335. [Google Scholar] [CrossRef]
- Fujii, S.; Tajiri, Y.; Hasegawa, K.; Matsumoto, S.; Yoshimoto, R.U.; Wada, H.; Kishida, S.; Kido, M.A.; Yoshikawa, H.; Ozeki, S.; et al. The TRPV4-AKT Axis Promotes Oral Squamous Cell Carcinoma Cell Proliferation via CaMKII Activation. Lab. Investig. 2020, 100, 311–323. [Google Scholar] [CrossRef]
- Yuan, P.; Rao, W.; Lin, Z.; Liu, S.; Lin, X.; Wu, C.; Lin, X.; Hu, Z.; Ye, W. Genomic Analyses Reveal SCN7A Is Associated with the Prognosis of Esophageal Squamous Cell Carcinoma. Esophagus 2022, 19, 303–315. [Google Scholar] [CrossRef]
- Hernandez-Plata, E.; Ortiz, C.S.; Marquina-Castillo, B.; Medina-Martinez, I.; Alfaro, A.; Berumen, J.; Rivera, M.; Gomora, J.C. Overexpression of Nav1.6 Channels Is Associated with the Invasion Capacity of Human Cervical Cancer. Int. J. Cancer 2012, 130, 2013–2023. [Google Scholar] [CrossRef]
- Guan, Y.; Luan, Y.; Xie, Y.; Zhou, H.; Li, W.; Zhang, X.; Shen, X.; Chen, Y.; Xu, L.; Lin, Z.; et al. Chloride Channel-3 Is Required for Efficient Tumour Cell Migration and Invasion in Human Cervical Squamous Cell Carcinoma. Gynecol. Oncol. 2019, 153, 661–669. [Google Scholar] [CrossRef]
- Mitsuda, M.; Shiozaki, A.; Kudou, M.; Shimizu, H.; Arita, T.; Kosuga, T.; Konishi, H.; Komatsu, S.; Kubota, T.; Fujiwara, H.; et al. Functional Analysis and Clinical Significance of Chloride Channel 2 Expression in Esophageal Squamous Cell Carcinoma. Surg. Oncol. 2021, 28, 5384–5397. [Google Scholar] [CrossRef]
- Shi, Z.Z.; Shang, L.; Jiang, Y.Y.; Hao, J.J.; Zhang, Y.; Zhang, T.T.; Lin, D.C.; Liu, S.G.; Wang, B.S.; Gong, T.; et al. Consistent and Differential Genetic Aberrations between Esophageal Dysplasia and Squamous Cell Carcinoma Detected by Array Comparative Genomic Hybridization. Clin. Cancer Res. 2013, 19, 5867–5878. [Google Scholar] [CrossRef]
- Ruiz, C.; Martins, J.R.; Rudin, F.; Schneider, S.; Dietsche, T.; Fischer, C.A.; Tornillo, L.; Terracciano, L.M.; Schreiber, R.; Bubendorf, L.; et al. Enhanced Expression of ANO1 in Head and Neck Squamous Cell Carcinoma Causes Cell Migration and Correlates with Poor Prognosis. PLoS ONE 2012, 7, e43265. [Google Scholar] [CrossRef]
- Godse, N.R.; Khan, N.; Yochum, Z.A.; Gomez-Casal, R.; Kemp, C.; Shiwarski, D.J.; Seethala, R.S.; Kulich, S.; Seshadri, M.; Burns, T.F.; et al. TMEM16A/ANO1 Inhibits Apoptosis via Downregulation of Bim Expression. Clin. Cancer Res. 2017, 23, 7324–7332. [Google Scholar] [CrossRef]
- Bill, A.; Gutierrez, A.; Kulkarni, S.; Kemp, C.; Bonenfant, D.; Voshol, H.; Duvvuri, U.; Gaither, L.A. ANO1/TMEM16A Interacts with EGFR and Correlates with Sensitivity to EGFR-Targeting Therapy in Head and Neck Cancer. Oncotarget 2015, 6, 9173–9188. [Google Scholar] [CrossRef]
- Ayoub, C.; Wasylyk, C.; Li, Y.; Thomas, E.; Marisa, L.; Robé, A.; Roux, M.; Abecassis, J.; De Reyniès, A.; Wasylyk, B. ANO1 Amplification and Expression in HNSCC with a High Propensity for Future Distant Metastasis and Its Functions in HNSCC Cell Lines. Br. J. Cancer 2010, 103, 715–726. [Google Scholar] [CrossRef]
- Siemer, S.; Fauth, T.; Scholz, P.; Al-zamel, Y.; Khamis, A.; Gül, D.; Freudelsperger, L.; Wollenberg, B.; Becker, S.; Stauber, R.H.; et al. Profiling Cisplatin Resistance in Head and Neck Cancer: A Critical Role of the Vrac Ion Channel for Chemoresistance. Cancers 2021, 13, 4831. [Google Scholar] [CrossRef]
- Wu, X.Y.; Yu, X.Y. Overexpression of KCNJ4 Correlates with Cancer Progression and Unfavorable Prognosis in Lung Adenocarcinoma. J. Biochem. Mol. Toxicol. 2019, 33, e22270. [Google Scholar] [CrossRef]
- Bulk, E.; Ay, A.S.; Hammadi, M.; Ouadid-Ahidouch, H.; Schelhaas, S.; Hascher, A.; Rohde, C.; Thoennissen, N.H.; Wiewrodt, R.; Schmidt, E.; et al. Epigenetic Dysregulation of KCa3.1 Channels Induces Poor Prognosis in Lung Cancer. Int. J. Cancer 2015, 137, 1306–1317. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, Q.; Liang, J.; Zhang, L.; Zhang, H. The Ion Channel Gene KCNAB2 Is Associated with Poor Prognosis and Loss of Immune Infiltration in Lung Adenocarcinoma. Cells 2022, 11, 3438. [Google Scholar] [CrossRef] [PubMed]
- Ashton, C.; Rhie, S.K.; Carmichael, J.D.; Zada, G. Role of KCNAB2 Expression in Modulating Hormone Secretion in Somatotroph Pituitary Adenoma. J. Neurosurg. 2021, 134, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Li, K.; Yang, J. Potassium Voltage-Gated Channel Subfamily D Member 2 Induces an Aggressive Phenotype in Lung Adenocarcinoma. Neoplasma 2021, 68, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Chimote, A.A.; Hajdu, P.; Sfyris, A.M.; Gleich, B.N.; Wise-Draper, T.; Casper, K.A.; Conforti, L. Kv1.3 Channels Mark Functionally Competent CD8+ Tumor-Infiltrating Lymphocytes in Head and Neck Cancer. Cancer Res. 2017, 77, 53–61. [Google Scholar] [CrossRef]
- Qian, C.; Dai, Y.; Xu, X.; Jiang, Y. HIF-1α Regulates Proliferation and Invasion of Oral Cancer Cells through Kv3.4 Channel. Ann. Clin. Lab. Sci. 2019, 49, 457–467. [Google Scholar]
- Lastraioli, E.; Lottini, T.; Iorio, J.; Freschi, G.; Fazi, M.; Duranti, C.; Carraresi, L.; Messerini, L.; Taddei, A.; Ringressi, M.N.; et al. HERG1 Behaves as Biomarker of Progression to Adenocarcinoma in Barrett’s Esophagus and Can Be Exploited for a Novel Endoscopic Surveillance. Oncotarget 2016, 7, 59535–59547. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, W.; Zhang, S.; Wang, X.; Tang, Z.; Gu, J.; Li, J.; Huang, J. CACNA1B (Cav2.2) Overexpression and Its Association with Clinicopathologic Characteristics and Unfavorable Prognosis in Non-Small Cell Lung Cancer. Dis. Mrk. 2017, 2017, 6136410. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xie, X.; Wen, J.; Luo, K.J.; Liu, Q.W.; Yang, H.; Hu, Y.; Fu, J.H. TRPV6 Plays a New Role in Predicting Survival of Patients with Esophageal Squamous Cell Carcinoma. Diagn. Pathol. 2016, 11, 14. [Google Scholar] [CrossRef]
- Schaefer, E.A.M.; Stohr, S.; Meister, M.; Aigner, A.; Gudermann, T.; Buech, T.R.H. Stimulation of the Chemosensory TRPA1 Cation Channel by Volatile Toxic Substances Promotes Cell Survival of Small Cell Lung Cancer Cells. Biochem. Pharm. 2013, 85, 426–438. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, X.; Lan, Y.; Liang, P.; Huang, Y.; Wang, Y.; Zhou, X.; Zhang, Z.; Liang, Y.; Xiao, X. Aberrant Inactivation of SCNN1G Promotes the Motility of Head and Neck Squamous Cell Carcinoma. Pathol. Res. Pract. 2022, 240, 154175. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, W.; Dai, Y.; Qian, C.; Dong, Y.; Chen, Z.; Meng, L.; Jiang, Z.; Huang, T.; Hu, J.; et al. Voltage-Gated Sodium Channel Nav1.5 Promotes Proliferation, Migration and Invasion of Oral Squamous Cell Carcinoma. Acta Biochim. Biophys. Sin. 2019, 51, 562–570. [Google Scholar] [CrossRef]
- Campbell, T.M.; Main, M.J.; Fitzgerald, E.M. Functional Expression of the Voltage-Gated Na+- Channel Nav1.7 Is Necessary for EGF-Mediated Invasion in Human Non-Small Cell Lung Cancer Cells. J. Cell Sci. 2013, 126, 4939–4949. [Google Scholar] [CrossRef]
- Lu, A.; Shi, Y.; Liu, Y.; Lin, J.; Zhang, H.; Guo, Y.; Li, L.; Lin, Z.; Wu, J.; Ji, D.; et al. Integrative Analyses Identified Ion Channel Genes GJB2 and SCNN1B as Prognostic Biomarkers and Therapeutic Targets for Lung Adenocarcinoma. Lung Cancer 2021, 158, 29–39. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Zhao, Z.; Xiu, R.; Jia, J.; Chen, P.; Liu, Y.; Wang, Y.; Yi, J. Cepharanthine, a Novel Selective ANO1 Inhibitor with Potential for Lung Adenocarcinoma Therapy. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119132. [Google Scholar] [CrossRef]
- Vyas, A.; Duvvuri, U.; Kiselyov, K. Copper-Dependent ATP7B up-Regulation Drives the Resistance of TMEM16A-Overexpressing Head-and-Neck Cancer Models to Platinum Toxicity. Biochem. J. 2019, 476, 3705–3719. [Google Scholar] [CrossRef]
- Vyas, A.; Gomez-Casal, R.; Cruz-Rangel, S.; Villanueva, H.; Sikora, A.G.; Rajagopalan, P.; Basu, D.; Pacheco, J.; Hammond, G.R.V.; Kiselyov, K.; et al. Lysosomal Inhibition Sensitizes TMEM16A-Expressing Cancer Cells to Chemotherapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2100670119. [Google Scholar] [CrossRef]
- Reddy, R.B.; Bhat, A.R.; James, B.L.; Govindan, S.V.; Mathew, R.; Ravindra, D.R.; Hedne, N.; Illiayaraja, J.; Kekatpure, V.; Khora, S.S.; et al. Meta-Analyses of Microarray Datasets Identifies ANO1 and FADD as Prognostic Markers of Head and Neck Cancer. PLoS ONE 2016, 11, e0147409. [Google Scholar] [CrossRef]
- Zhou, C.; Tang, X.; Xu, J.; Wang, J.; Yang, Y.; Chen, Y.; Chen, L.; Wang, L.; Zhu, L.; Yang, H. Opening of the CLC-3 Chloride Channel Induced by Dihydroartemisinin Contributed to Early Apoptotic Events in Human Poorly Differentiated Nasopharyngeal Carcinoma Cells. J. Cell. Biochem. 2018, 119, 9560–9572. [Google Scholar] [CrossRef]
- Fernández–Valle, Á.; Rodrigo, J.P.; Rodríguez–Santamarta, T.; Villaronga, M.Á.; Álvarez–Teijeiro, S.; García–Pedrero, J.M.; Suárez–Fernández, L.; Lequerica–Fernández, P.; de Vicente, J.C. HERG1 Potassium Channel Expression in Potentially Malignant Disorders of the Oral Mucosa and Prognostic Relevance in Oral Squamous Cell Carcinoma. Head Neck 2016, 38, 1672–1678. [Google Scholar] [CrossRef]
- Ariyoshi, W.; Okinaga, T.; Chaweewannakorn, W.; Akifusa, S.; Nisihara, T. Mechanisms Involved in Enhancement of Matrix Metalloproteinase-9 Expression in Macrophages by Interleukin-33. J. Cell. Physiol. 2017, 232, 3481–3495. [Google Scholar] [CrossRef]
- Pinto, M.C.; Schreiber, R.; Lerias, J.; Ousingsawat, J.; Duarte, A.; Amaral, M.; Kunzelmann, K. Regulation of TMEM16A by CK2 and Its Role in Cellular Proliferation. Cells 2020, 9, 1138. [Google Scholar] [CrossRef] [PubMed]
- Britschgi, A.; Bill, A.; Brinkhaus, H.; Rothwell, C.; Clay, I.; Duss, S.; Rebhan, M.; Raman, P.; Guy, C.T.; Wetzel, K.; et al. Calcium-Activated Chloride Channel ANO1 Promotes Breast Cancer Progression by Activating EGFR and CAMK Signaling. Proc. Natl. Acad Sci. USA 2013, 110, E1026–E1034. [Google Scholar] [CrossRef] [PubMed]
- Katsurahara, K.; Shiozaki, A.; Kosuga, T.; Kudou, M.; Shoda, K.; Arita, T.; Konishi, H.; Komatsu, S.; Kubota, T.; Fujiwara, H.; et al. ANO9 Regulated Cell Cycle in Human Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2020, 27, 3218–3230. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, H.; Yang, X.; Liang, X.; Tan, Q.; Chen, Z.; Zhao, C.; Gu, Z.; Yu, M.; Zheng, Y.; et al. The Apoptotic Effect of Zoledronic Acid on the Nasopharyngeal Carcinoma Cells via ROS Mediated Chloride Channel Activation. Clin. Exp. Pharm. Physiol. 2018, 45, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, S.T.; Rodrigo, J.P.; Allonca, E.; García-Carracedo, D.; Álvarez-Alija, G.; Casado-Zapico, S.; Fresno, M.F.; Rodríguez, C.; Suárez, C.; García-Pedrero, J.M. Expression and Clinical Significance of the Kv3.4 Potassium Channel Subunit in the Development and Progression of Head and Neck Squamous Cell Carcinomas. J. Pathol. 2010, 221, 402–410. [Google Scholar] [CrossRef]
- D’adamo, M.C.; Liantonio, A.; Rolland, J.F.; Pessia, M.; Imbrici, P. Kv1.1 Channelopathies: Pathophysiological Mechanisms and Therapeutic Approaches. Int. J. Mol. Sci. 2020, 21, 2935. [Google Scholar] [CrossRef]
- Hanukoglu, I.; Hanukoglu, A. Epithelial Sodium Channel (ENaC) Family: Phylogeny, Structure-Function, Tissue Distribution, and Associated Inherited Diseases. Gene 2016, 579, 95–132. [Google Scholar] [CrossRef]
- Menéndez, S.T.; Rodrigo, J.P.; Álvarez-Teijeiro, S.; Villaronga, M.Á.; Allonca, E.; Vallina, A.; Astudillo, A.; Barros, F.; Suárez, C.; García-Pedrero, J.M. Role of HERG1 Potassium Channel in Both Malignant Transformation and Disease Progression in Head and Neck Carcinomas. Mod. Pathol. 2012, 25, 1069–1078. [Google Scholar] [CrossRef]
- Suzuki, T.; Takimoto, K. Selective Expression of HERG and Kv2 Channels Influences Proliferation of Uterine Cancer Cells. Int. J. Oncol. 2004, 25, 153–159. [Google Scholar] [CrossRef]
- Jeon, W.; Dong, P.; Yeong, S. Effects of Voltage-Gated K+ Channel Blockers in Gefitinib-Resistant H460 Non-Small Cell Lung Cancer Cells. Anticancer. Res. 2012, 32, 5279–5284. [Google Scholar]
- He, H.; Song, X.; Yang, Z.; Mao, Y.; Zhang, K.; Wang, Y.; Su, B.; Li, Q.; Chen, H.; Li, Y. Upregulation of KCNQ1OT1 Promotes Resistance to Stereotactic Body Radiotherapy in Lung Adenocarcinoma by Inducing ATG5/ATG12-Mediated Autophagy via MiR-372-3p. Cell Death Dis. 2020, 11, 883. [Google Scholar] [CrossRef]
- Qiao, C.; Qiao, Y.; Jin, H.; Zheng, M.; Wang, L. LncRNA KCNQ1OT1 Contributes to the Cisplatin Resistance of Tongue Cancer through the KCNQ1OT1/MiR-124-3p/TRIM14 Axis. Eur. Rev. Med. Pharm. Sci. 2020, 24, 200–212. [Google Scholar] [CrossRef]
- Ren, K.; Xu, R.; Huang, J.; Zhao, J.; Shi, W. Knockdown of Long Non-Coding RNA KCNQ1OT1 Depressed Chemoresistance to Paclitaxel in Lung Adenocarcinoma. Cancer Chemother. Pharm. 2017, 80, 243–250. [Google Scholar] [CrossRef]
- Ge, N.; Yang, G.; Zhang, Y.; Chang, N.; Kang, H.; Zhou, Q.; Fan, P. Upregulation of KCNMA1 Facilitates the Reversal Effect of Verapamil on the Chemoresistance to Cisplatin of Esophageal Squamous Cell Carcinoma Cells. Eur. Rev. Med. Pharm. Sci. 2021, 25, 1869–1880. [Google Scholar] [CrossRef]
- Gawali, V.S.; Chimote, A.A.; Newton, H.S.; Feria-Garzón, M.G.; Chirra, M.; Janssen, E.M.; Wise-Draper, T.M.; Conforti, L. Immune Checkpoint Inhibitors Regulate K+ Channel Activity in Cytotoxic T Lymphocytes of Head and Neck Cancer Patients. Front. Pharm. 2021, 12, 742862. [Google Scholar] [CrossRef]
- Newton, H.S.; Gawali, V.S.; Chimote, A.A.; Lehn, M.A.; Palackdharry, S.M.; Hinrichs, B.H.; Jandarov, R.; Hildeman, D.; Janssen, E.M.; Wise-Draper, T.M.; et al. PD1 Blockade Enhances K+ Channel Activity, Ca2+ Signaling, and Migratory Ability in Cytotoxic T Lymphocytes of Patients with Head and Neck Cancer. J. Immunother. Cancer 2020, 8, e000844. [Google Scholar] [CrossRef]
- Bukhari, M.; Deng, H.; Sipes, D.; Ruane-Foster, M.; Purdy, K.; Woodworth, C.D.; Sur, S.; Samways, D.S.K. KCa3.1-Dependent Uptake of the Cytotoxic DNA-Binding Dye Hoechst 33258 into Cancerous but Not Healthy Cervical Cells. J. Biol. Chem. 2021, 296, 100084. [Google Scholar] [CrossRef]
- Liu, H.; Huang, J.; Peng, J.; Wu, X.; Zhang, Y.; Zhu, W.; Guo, L. Upregulation of the Inwardly Rectifying Potassium Channel Kir2.1 (KCNJ2) Modulates Multidrug Resistance of Small-Cell Lung Cancer under the Regulation of MiR-7 and the Ras/MAPK Pathway. Mol. Cancer 2015, 14, 59. [Google Scholar] [CrossRef]
- Leithner, K.; Hirschmugl, B.; Li, Y.; Tang, B.; Papp, R.; Nagaraj, C.; Stacher, E.; Stiegler, P.; Lindenmann, J.; Olschewski, A.; et al. TASK-1 Regulates Apoptosis and Proliferation in a Subset of Non-Small Cell Lung Cancers. PLoS ONE 2016, 11, e0157453. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, C.L.; Nie, C.J.; Li, J.C.; Zeng, T.-T.; Zhou, J.; Chen, J.; Chen, K.; Fu, L.; Liu, H.; et al. Investigation of Tumor Suppressing Function of CACNA2D3 in Esophageal Squamous Cell Carcinoma. PLoS ONE 2013, 8, e60027. [Google Scholar] [CrossRef]
- Bernaldo De Quirós, S.; Merlo, A.; Secades, P.; Zambrano, I.; Saenz, I.; María, S.; Ugidos, N.; Jantus-Lewintre, E.; Sirera, R.; Suarez, C.; et al. Identification of TRPC6 as a Possible Candidate Target Gene within an Amplicon at 11q21-Q22.2 for Migratory Capacity in Head and Neck Squamous Cell Carcinomas. BMC Cancer 2013, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, C.B.; Kirma, N.B.; De La Chapa, J.J.; Chen, R.; Henry, M.A.; Luo, S.; Hargreaves, K.M. Vanilloids Induce Oral Cancer Apoptosis Independent of TRPV1. Oral Oncol. 2014, 50, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Kudou, M.; Shiozaki, A.; Yamazato, Y.; Katsurahara, K.; Kosuga, T.; Shoda, K.; Arita, T.; Konishi, H.; Komatsu, S.; Kubota, T.; et al. The Expression and Role of TRPV2 in Esophageal Squamous Cell Carcinoma. Sci. Rep. 2019, 9, 16055. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Q.; Fan, K.; Li, B.; Li, H.; Qi, H.; Guo, J.; Cao, Y.; Sun, H. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2016, 17, 437. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Xu, W.L.; Xu, Z.Q.; Qi, C.; Li, Y.; Cheng, J.; Liu, L.K.; Wu, Y.N.; Gao, J.; Ye, J.H. The Overexpressed Functional Transient Receptor Potential Channel TRPM2 in Oral Squamous Cell Carcinoma. Sci. Rep. 2016, 6, 38471. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Y.; Huang, M.; Shen, B.; Xue, H.; Wu, K. Effect of TRPM2-Mediated Calcium Signaling on Cell Proliferation and Apoptosis in Esophageal Squamous Cell Carcinoma. Technol. Cancer Res. Treat. 2021, 20, 15330338211045213. [Google Scholar] [CrossRef]
- Liu, K.; Xu, S.H.; Chen, Z.; Zeng, Q.X.; Li, Z.J.; Chen, Z.M. TRPM7 Overexpression Enhances the Cancer Stem Cell-like and Metastatic Phenotypes of Lung Cancer through Modulation of the Hsp90α/UPA/MMP2 Signaling Pathway. BMC Cancer 2018, 18, 1167. [Google Scholar] [CrossRef]
- Li, K.; Chen, L.; Lin, Z.; Zhu, J.; Fang, Y.; Du, J.; Shen, B.; Wu, K.; Liu, Y. Role of the AMPK/ACC Signaling Pathway in TRPP2-Mediated Head and Neck Cancer Cell Proliferation. Biomed Res. Int. 2020, 2020, 4375075. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Zhu, X.; Chen, W.; Wang, H.; Jiang, Y. Preliminary Study on the Role of Voltage-Gated Sodium Channel Subtype Nav1.5 in Lymph Node Metastasis of Oral Squamous Cell Carcinoma. Chin. J. Stomatol. 2017, 52, 188–193. [Google Scholar]
- Xu, X.; Dai, Y.; Feng, L.; Zhang, H.; Hu, Y.; Xu, L.; Zhu, X.; Jiang, Y. Knockdown of Nav1.5 Inhibits Cell Proliferation, Migration and Invasion via Wnt/β-Catenin Signaling Pathway in Oral Squamous Cell Carcinoma. Acta Biochim. Biophys. Sin. 2020, 52, 527–535. [Google Scholar] [CrossRef]
- Driffort, V.; Gillet, L.; Bon, E.; Marionneau-Lambot, S.; Oullier, T.; Joulin, V.; Collin, C.; Pagès, J.C.; Jourdan, M.L.; Chevalier, S.; et al. Ranolazine Inhibits NaV1.5-Mediated Breast Cancer Cell Invasiveness and Lung Colonization. Mol. Cancer 2014, 13, 264. [Google Scholar] [CrossRef]
- Lopez-Charcas, O.; Espinosa, A.M.; Alfaro, A.; Herrera-Carrillo, Z.; Ramirez-Cordero, B.E.; Cortes-Reynosa, P.; Perez Salazar, E.; Berumen, J.; Gomora, J.C. The Invasiveness of Human Cervical Cancer Associated to the Function of NaV1.6 Channels Is Mediated by MMP-2 Activity. Sci. Rep. 2018, 8, 12955. [Google Scholar] [CrossRef]
- Ware, A.W.; Harris, J.J.; Slatter, T.L.; Cunliffe, H.E.; McDonald, F.J. The Epithelial Sodium Channel Has a Role in Breast Cancer Cell Proliferation. Breast Cancer Res. Treat. 2021, 187, 31–43. [Google Scholar] [CrossRef]
- Jia, L.; Liu, W.; Guan, L.; Lu, M.; Wang, K.W. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer. PLoS ONE 2015, 10, e0136584. [Google Scholar] [CrossRef]
- Lee, J.R.; Lee, J.Y.; Kim, H.J.; Hahn, M.J.; Kang, J.S.; Cho, H. The Inhibition of Chloride Intracellular Channel 1 Enhances Ca2+ and Reactive Oxygen Species Signaling in A549 Human Lung Cancer Cells. Exp. Mol. Med. 2019, 51, 1–11. [Google Scholar] [CrossRef]
- Shi, S.; Bai, X.; Ji, Q.; Wan, H.; An, H.; Kang, X.; Guo, S. Molecular Mechanism of Ion Channel Protein TMEM16A Regulated by Natural Product of Narirutin for Lung Cancer Adjuvant Treatment. Int. J. Biol. Macromol. 2022, 223, 1145–1157. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Xu, Y.; Guo, W.; Yu, H.; Zhang, L.; Wang, Y.; Chen, X. Acetylation-Stabilized Chloride Intracellular Channel 1 Exerts a Tumor-Promoting Effect on Cervical Cancer Cells by Activating NF-ΚB. Cell. Oncol. 2021, 44, 557–568. [Google Scholar] [CrossRef]
- Kakinouchi, K.; Yoshie, S.; Tsuji, S.; Murono, S.; Hazama, A. Dysfunction of Cl− Channels Promotes Epithelial to Mesenchymal Transition in Oral Squamous Cell Carcinoma via Activation of Wnt/β-Catenin Signaling Pathway. Biochem. Biophys. Res. Commun. 2021, 555, 95–101. [Google Scholar] [CrossRef]
- Kulkarni, S.; Bill, A.; Godse, N.R.; Khan, N.I.; Kass, J.I.; Steehler, K.; Kemp, C.; Davis, K.; Bertrand, C.A.; Vyas, A.R.; et al. TMEM16A/ANO1 Suppression Improves Response to Antibody-Mediated Targeted Therapy of EGFR and HER2/ERBB2. Genes Chromosom. Cancer 2017, 56, 460–471. [Google Scholar] [CrossRef]
- Wong, A.M.G.; Kong, K.L.; Chen, L.; Liu, M.; Wong, A.M.G.; Zhu, C.; Tsang, J.W.H.; Guan, X.Y. Characterization of CACNA2D3 as a Putative Tumor Suppressor Gene in the Development and Progression of Nasopharyngeal Carcinoma. Int. J. Cancer 2013, 133, 2284–2295. [Google Scholar] [CrossRef]
- Lima, F.J.; de Souza Lopes, M.L.D.; da Silva Barros, C.C.; Nonaka, C.F.W.; da Silveira, É.J.D. Modification in CLIC4 Expression Is Associated with P53, TGF-β, TNF-α and Myofibroblasts in Lip Carcinogenesis. Braz. Dent. J. 2020, 31, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, S.; Matsuda, M.; Kato, K.; Jimi, E.; Takeuchi, H.; Nakano, S.; Kajioka, S.; Matsuzaki, E.; Hirofuji, T.; Inoue, R.; et al. Volume-Regulated Chloride Channel Regulates Cell Proliferation and Is Involved in the Possible Interaction between TMEM16A and LRRC8A in Human Metastatic Oral Squamous Cell Carcinoma Cells. Eur. J. Pharm. 2021, 895, 173881. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhu, L.; Lin, J.; Liu, S.; Luo, H.; Mao, J.; Nie, S.; Chen, L.; Wang, L. Cisplatin Activates Volume-Sensitive Like Chloride Channels Via Purinergic Receptor Pathways in Nasopharyngeal Carcinoma Cells. J. Membr. Biol. 2015, 248, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Chang, R.; Shen, J.; Wang, Y.; Song, H.; Kang, X.; Zhao, Y.; Guo, S.; Qin, J. Self-Healing Pectin/Cellulose Hydrogel Loaded with Limonin as TMEM16A Inhibitor for Lung Adenocarcinoma Treatment. Int. J. Biol. Macromol. 2022, 219, 754–766. [Google Scholar] [CrossRef]
- Shi, S.; Ma, B.; Sun, F.; Qu, C.; Li, G.; Shi, D.; Liu, W.; Zhang, H.; Hailong, A. Zafirlukast Inhibits the Growth of Lung Adenocarcinoma via Inhibiting TMEM16A Channel Activity. J. Biol. Chem. 2022, 298, 101731. [Google Scholar] [CrossRef]
- Guo, S.; Chen, Y.; Shi, S.; Wang, X.; Zhang, H.; Zhan, Y.; An, H. Arctigenin, a Novel TMEM16A Inhibitor for Lung Adenocarcinoma Therapy. Pharm. Res. 2020, 155, 104721. [Google Scholar] [CrossRef]
- Guo, S.; Bai, X.; Shi, S.; Deng, Y.; Kang, X.; An, H. TMEM16A, a Homoharringtonine Receptor, as a Potential Endogenic Target for Lung Cancer Treatment. Int. J. Mol. Sci. 2021, 22, 10930. [Google Scholar] [CrossRef]
- Guo, S.; Chen, Y.; Pang, C.; Wang, X.; Shi, S.; Zhang, H.; An, H.; Zhan, Y. Matrine Is a Novel Inhibitor of the TMEM16A Chloride Channel with Antilung Adenocarcinoma Effects. J. Cell. Physiol. 2019, 234, 8698–8708. [Google Scholar] [CrossRef]
- Jeong, S.B.; Das, R.; Kim, D.H.; Lee, S.; Oh, H.I.; Jo, S.; Lee, Y.; Kim, J.; Park, S.J.; Choi, D.K.; et al. Anticancer Effect of Verteporfin on Non-Small Cell Lung Cancer via Downregulation of ANO1. Biomed. Pharmacother. 2022, 153, 113373. [Google Scholar] [CrossRef]
- Duvvuri, U.; Shiwarski, D.J.; Xiao, D.; Bertrand, C.; Huang, X.; Edinger, R.S.; Rock, J.R.; Harfe, B.D.; Henson, B.J.; Kunzelmann, K.; et al. TMEM16A Induces MAPK and Contributes Directly to Tumorigenesis and Cancer Progression. Cancer Res. 2012, 72, 3270–3281. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, J.; Wu, W.; Zhu, Q.; Tang, Y.; Zhu, C.; Dai, J.; Li, Z.; Wang, J.; Xue, L.; et al. Genome-Wide Copy Number Variation Analysis Identified ANO1 as a Novel Oncogene and Prognostic Biomarker in Esophageal Squamous Cell Cancer. Carcinogenesis 2019, 40, 1198–1208. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Zhang, Z.; Fan, Y.; Zhang, L.; Gao, K.; Luo, S.; Xiao, Q.; Sun, C. Simvastatin Inhibits Oral Squamous Cell Carcinoma by Targeting TMEM16A Ca2+-Activated Chloride Channel. J. Cancer Res. Clin. Oncol. 2021, 147, 1699–1711. [Google Scholar] [CrossRef]
- Glassmeier, G.; Hempel, K.; Wulfsen, I.; Bauer, C.K.; Schumacher, U.; Schwarz, J.R. Inhibition of HERG1 K + Channel Protein Expression Decreases Cell Proliferation of Human Small Cell Lung Cancer Cells. Pflug. Arch. 2012, 463, 365–376. [Google Scholar] [CrossRef]
- Rawluk, J.; Waller, C.F. Gefitinib. In Recent Results in Cancer Research; Springer: New York, NY, USA, 2018; Volume 211, pp. 235–246. [Google Scholar] [CrossRef]
- Chang, K.T.; Wu, H.J.; Liu, C.W.; Li, C.Y.; Lin, H.Y. A Novel Role of Arrhythmia-Related Gene KCNQ1 Revealed by Multi-Omic Analysis: Theragnostic Value and Potential Mechanisms in Lung Adenocarcinoma. Int. J. Mol. Sci. 2022, 23, 2279. [Google Scholar] [CrossRef]
- Xu, H.; Miao, J.; Liu, S.; Liu, H.; Zhang, L.; Zhang, Q. Long Non-Coding RNA KCNQ1 Overlapping Transcript 1 Promotes the Progression of Esophageal Squamous Cell Carcinoma by Adsorbing MicroRNA-133b. Clinics 2021, 76, e2175. [Google Scholar] [CrossRef]
- Vergara, C.; Latorre, R.; Marrion, N.V.; Adelmant, J.P. Calcium-Activated Potassium Channels. Curr. Opin. Neurobiol. 1998, 8, 321–329. [Google Scholar] [CrossRef]
- Simpson, W. The Calcium Channel Blocker Verapamil and Cancer Chemotherapy. Cell Calcium 1985, 6, 449–467. [Google Scholar] [CrossRef]
- Todesca, L.M.; Maskri, S.; Brömmel, K.; Thale, I.; Wünsch, B.; Koch, O.; Schwab, A. Targeting Kca3.1 Channels in Cancer. Cell. Physiol. Biochem. 2021, 22, 131–144. [Google Scholar] [CrossRef]
- De Felice, F.; Giudice, E.; Bolomini, G.; Distefano, M.G.; Scambia, G.; Fagotti, A.; Marchetti, C. Pembrolizumab for Advanced Cervical Cancer: Safety and Efficacy. Expert Rev. Anticancer. Ther. 2021, 21, 221–228. [Google Scholar] [CrossRef]
- Xu, P.; Mo, X.; Xia, R.; Jiang, L.; Zhang, C.; Xu, H.; Sun, Q.; Zhou, G.; Zhang, Y.; Wang, Y.; et al. KCNN4 Promotes the Progression of Lung Adenocarcinoma by Activating the AKT and ERK Signaling Pathways. Cancer Biomark. 2021, 31, 187–201. [Google Scholar] [CrossRef]
- Glaser, F.; Hundehege, P.; Bulk, E.; Todesca, L.M.; Schimmelpfennig, S.; Nass, E.; Budde, T.; Meuth, S.G.; Schwab, A. KCa Channel Blockers Increase Effectiveness of the EGF Receptor TK Inhibitor Erlotinib in Non-Small Cell Lung Cancer Cells (A549). Sci. Rep. 2021, 11, 18330. [Google Scholar] [CrossRef] [PubMed]
- Reimann, F.; Ashcroft, F.M. Inwardly Rectifying Potassium Channels. Curr. Opin. Cell Biol. 1999, 11, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Hibino, H.; Inanobe, A.; Furutani, K.; Murakami, S.; Findlay, I.; Kurachi, Y. Inwardly Rectifying Potassium Channels: Their Structure, Function, and Physiological Roles. Am. Physiol. Soc. 2010, 90, 291–366. [Google Scholar] [CrossRef]
- Rodrigo, G.C.; Standen, N.B. ATP-Sensitive Potassium Channels. Curr. Pharm. Des. 2005, 11, 1915–1940. [Google Scholar] [CrossRef] [PubMed]
- Pergakis, M.; Badjatia, N.; Chaturvedi, S.; Cronin, C.A.; Kimberly, W.T.; Sheth, K.N.; Simard, J.M. BIIB093 (IV Glibenclamide): An Investigational Compound for the Prevention and Treatment of Severe Cerebral Edema. Expert Opin. Investig. Drugs 2019, 28, 1031–1040. [Google Scholar] [CrossRef]
- Kamuene, J.M.; Xu, Y.; Plant, L.D. The Pharmacology of Two-Pore Domain Potassium Channels. In Handbook of Experimental Pharmacology; Springer Science and Business Media Deutschland GmbH: Argovia, Switzerland, 2021; Volume 267, pp. 417–443. [Google Scholar] [CrossRef]
- Cardoso, F.C.; Lewis, R.J. Sodium Channels and Pain: From Toxins to Therapies. Br. J. Pharm. 2018, 175, 2138–2157. [Google Scholar] [CrossRef]
- Chen-Izu, Y.; Shaw, R.M.; Pitt, G.S.; Yarov-Yarovoy, V.; Sack, J.T.; Abriel, H.; Aldrich, R.W.; Belardinelli, L.; Cannell, M.B.; Catterall, W.A.; et al. Na+ Channel Function, Regulation, Structure, Trafficking and Sequestration. J. Physiol. 2015, 593, 1347–1360. [Google Scholar] [CrossRef]
- Hernandez, C.M.; Richards, J.R. Physiology, Sodium Channels, StatPearls. In Treasure Island; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Lopez-Charcas, O.; Pukkanasut, P.; Velu, S.E.; Brackenbury, W.J.; Hales, T.G.; Besson, P.; Gomora, J.C.; Bastien Roger, S. Pharmacological and Nutritional Targeting of Voltage-Gated Sodium Channels in the Treatment of Cancers. Science 2021, 24, 102270. [Google Scholar] [CrossRef]
- Bertil, H. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Associates, INC: Washington, WA, USA, 2001. [Google Scholar]
- Catterall, W.A.; Goldin, A.L.; Waxman, S.G. International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels. Pharm. Rev. 2005, 57, 397–409. [Google Scholar] [CrossRef]
- Catterall, W.A. From Ionic Currents to Molecular Mechanisms. Neuron 2000, 26, 13–25. [Google Scholar] [CrossRef]
- Yu, F.H.; Catterall, W.A. Overview of the Voltage-Gated Sodium Channel Family. Genome Biol. 2003, 4, 207. [Google Scholar] [CrossRef]
- Brackenbury, W.J. Voltage-Gated Sodium Channels and Metastatic Disease. Channels 2012, 6, 352–361. [Google Scholar] [CrossRef]
- Roger, S.; Potier, M.; Vandier, C.; Besson, P.; Le Guennec, J.-Y. Voltage-Gated Sodium Channels: New Targets in Cancer Therapy? Curr. Pharm. Des. 2006, 12, 3681–3695. [Google Scholar] [CrossRef]
- Hanukoglu, I.; Boggula, V.R.; Vaknine, H.; Sharma, S.; Kleyman, T.; Hanukoglu, A. Expression of Epithelial Sodium Channel (ENaC) and CFTR in the Human Epidermis and Epidermal Appendages. Histochem. Cell Biol. 2017, 147, 733–748. [Google Scholar] [CrossRef]
- Galizia, L.; Ojea, A.; Kotsias, B.A. Regulación Por Proteasas Del Canal de Sodio Sensible al Amiloride (ENaC). Medicina 2011, 71, 179–182. [Google Scholar]
- Liu, C.; Zhu, L.L.; Xu, S.G.; Ji, H.L.; Li, X.M. ENaC/DEG in Tumor Development and Progression. J. Cancer 2016, 7, 1888–1891. [Google Scholar] [CrossRef]
- He, M.; Liu, S.; Gallolu Kankanamalage, S.; Borromeo, M.D.; Girard, L.; Gazdar, A.F.; Minna, J.D.; Johnson, J.E.; Cobb, M.H. The Epithelial Sodium Channel (AENaC) Is a Downstream Therapeutic Target of ASCL1 in Pulmonary Neuroendocrine Tumors. Transl. Oncol. 2018, 11, 292–299. [Google Scholar] [CrossRef]
- Amara, S.; Ivy, M.T.; Myles, E.L.; Tiriveedhi, V. Sodium Channel ΓENaC Mediates IL-17 Synergized High Salt Induced Inflammatory Stress in Breast Cancer Cells. Cell Immunol 2016, 302, 1–10. [Google Scholar] [CrossRef]
- Gururaja Rao, S.; Ponnalagu, D.; Patel, N.J.; Singh, H. Three Decades of Chloride Intracellular Channel Proteins: From Organelle to Organ Physiology. Curr. Protoc. Pharm. 2018, 80, 11.21.1–11.21.17. [Google Scholar] [CrossRef]
- Jentsch, T.J.; Stein, V.; Weinreich, F.; Zdebik, A.A. Molecular Structure and Physiological Function of Chloride Channels. Physiol. Rev. 2002, 82, 503–568. [Google Scholar] [CrossRef]
- Jentsch, T.J.; Günther, W. Chloride Channels: An Emerging Molecular Picture. BioEssays 1997, 19, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Poroca, D.R.; Pelis, R.M.; Chappe, V.M. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies. Front. Pharmacol. 2017, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Planells-Cases, R.; Jentsch, T.J. Chloride Channelopathies. Biochim. Biophys. Acta Mol. Basis Dis. 2009, 1792, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, D.; Li, Y.; Chen, W.; Ruan, Z.; Deng, L.; Wang, L.; Tian, H.; Yiu, A.; Fan, C.; et al. Discovery of Bufadienolides as a Novel Class of ClC-3 Chloride Channel Activators with Antitumor Activities. J. Med. Chem. 2013, 56, 5734–5743. [Google Scholar] [CrossRef]
- Ye, D.; Luo, H.; Lai, Z.; Zou, L.; Zhu, L.; Mao, J.; Jacob, T.; Ye, W.; Wang, L.; Chen, L. ClC-3 Chloride Channel Proteins Regulate the Cell Cycle by Up-Regulating Cyclin D1-CDK4/6 through Suppressing P21/P27 Expression in Nasopharyngeal Carcinoma Cells. Sci. Rep. 2016, 6, 30276. [Google Scholar] [CrossRef]
- Wanitchakool, P.; Ousingsawat, J.; Sirianant, L.; MacAulay, N.; Schreiber, R.; Kunzelmann, K. Cl− Channels in Apoptosis. Eur. Biophys. J. 2016, 45, 599–610. [Google Scholar] [CrossRef]
- Xu, B.; Mao, J.; Wang, L.; Zhu, L.; Li, H.; Wang, W.; Jin, X.; Zhu, J.; Chen, L. ClC-3 Chloride Channels Are Essential for Cell Proliferation and Cell Cycle Progression in Nasopharyngeal Carcinoma Cells. Acta Biochim. Biophys. Sin. 2010, 42, 370–380. [Google Scholar] [CrossRef]
- Hong, S.; Bi, M.; Wang, L.; Kang, Z.; Ling, L.; Zhao, C. CLC-3 Channels in Cancer (Review). Oncol. Rep. 2015, 33, 507–514. [Google Scholar] [CrossRef]
- Dutzler, R. The ClC Family of Chloride Channels and Transporters. Curr. Opin. Struct. Biol. 2006, 16, 439–446. [Google Scholar] [CrossRef]
- Hartzell, C.; Putzier, I.; Arreola, J. Calcium-Activated Chloride Channels. Annu. Rev. Physiol. 2005, 67, 719–758. [Google Scholar] [CrossRef]
- Eggermont, J. Calcium-Activated Chloride Channels: (Un)Known, (Un)Loved? Proc. Am. Thorac. Soc. 2004, 1, 22–27. [Google Scholar] [CrossRef]
- Grigoriev, V. Calcium-Activated Chloride Channels: Structure, Properties, Role in Physiological and Pathological Processes. Biomeditsinskaya Khimiya 2021, 67, 17–33. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Hou, F.; Zhang, C.; Gao, J.; Wang, K.W. Inhibition of Ca2+ -Activated Chloride Channel ANO1 Suppresses Ovarian Cancer through Inactivating PI3K/Akt Signaling. Int. J. Cancer 2019, 144, 2215–2226. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Gao, J.; Cui, X.; Yang, S.; Liu, Z. Prognostic Significance of ANO1 Expression in Cancers. Medicine 2021, 100, e24525. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, L.; Li, N. ANO1: More Than Just Calcium-Activated Chloride Channel in Cancer. Front. Oncol. 2022, 12, 922838. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, R.; Jiang, D. TMEM16A as a Potential Biomarker in the Diagnosis and Prognosis of Lung Cancer. Iran. Med. 2019, 22, 32–38. [Google Scholar]
- He, Y.; Li, H.; Chen, Y.; Li, P.; Gao, L.; Zheng, Y.; Sun, Y.; Chen, J.; Qian, X. Expression of Anoctamin 1 Is Associated with Advanced Tumor Stage in Patients with Non-Small Cell Lung Cancer and Predicts Recurrence after Surgery. Clin. Transl. Oncol. 2017, 19, 1091–1098. [Google Scholar] [CrossRef]
- Chatterjee, S.; Browning, E.A.; Hong, N.; Debolt, K.; Sorokina, E.M.; Liu, W.; Birnbaum, M.J.; Fisher, A.B. Membrane Depolarization Is the Trigger for PI3K/Akt Activation and Leads to the Generation of ROS. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, 105–114. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, L.; Xue, Y.; Zhao, Z.; Li, H.; Niu, Z.; Wang, X.; Chen, P.; Zhang, J.; Zhang, X. Benzophenanthridine Alkaloids Suppress Lung Adenocarcinoma by Blocking TMEM16A Ca2+-Activated Cl− Channels. Pflug. Arch. 2020, 472, 1457–1467. [Google Scholar] [CrossRef]
- Shi, S.; Ma, B.; Sun, F.; Qu, C.; An, H. Theaflavin Binds to a Druggable Pocket of TMEM16A Channel and Inhibits Lung Adenocarcinoma Cell Viability. J. Biol. Chem. 2021, 297, 101016. [Google Scholar] [CrossRef]
- Lang, F.; Busch, G.L.; Ritter, M.; Vo¨lkl, H.; Vo¨lkl, V.; Waldegger, S.; Gulbins, E.; Ha¨ussinger, D.; Ha¨ussinger, H. Functional Significance of Cell Volume Regulatory Mechanisms. Physiol Rev. 1998, 78, 247–306. [Google Scholar] [CrossRef] [PubMed]
- Sardini, A.; Amey, J.S.; Weylandt, K.H.; Nobles, M.; Valverde, M.A.; Higgins, C.F. Cell Volume Regulation and Swelling-Activated Chloride Channels. Biochim. Biophys. Acta Biomembr. 2003, 1618, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, J.; Trouet, D.; Carton, I.; Nilius, B. Cellular Function and Control of Volume-Regulated Anion Channels. Cell Biochem. Biophys. 2001, 35, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.D.; Labron, M.W.; Boehnke, S.E.; Carnduff, L.; Kirov, S.A. VRACs CARVe a Path for Novel Mechanisms of Communication in the CNS. Sci. Signal. 2007, 17, 787–802. [Google Scholar] [CrossRef]
- Poulsen, K.A.; Andersen, E.C.; Hansen, C.F.; Klausen, T.K.; Hougaard, C.; Lambert, I.H.; Hoffmann, E.K. Deregulation of Apoptotic Volume Decrease and Ionic Movements in Multidrug-Resistant Tumor Cells: Role of Chloride Channels. Am. J. Physiol. Cell Physiol. 2010, 298, 14–25. [Google Scholar] [CrossRef]
- Lang, F.; Hoffmann, E.K. Role of Ion Transport in Control of Apoptotic Cell Death. Compr. Physiol. 2012, 2, 2037–2061. [Google Scholar] [CrossRef]
- Hoffmann, E.K.; Lambe, I.H. Ion Channels and Transporters in the Development of Drug Resistance in Cancer Cells. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130169. [Google Scholar] [CrossRef]
- Lee, E.L.; Shimizu, T.; Ise, T.; Numata, T.; Kohno, K.; Okada, Y. Impaired Activity of Volume-Sensitive Cl- Channel Is Involved in Cisplatin Resistance of Cancer Cells. J. Cell. Physiol. 2007, 211, 513–521. [Google Scholar] [CrossRef]
- Kanno, Y.; Chen, C.Y.; Lee, H.L.; Chiou, J.F.; Chen, Y.J. Molecular Mechanisms of Chemotherapy Resistance in Head and Neck Cancers. Front. Oncol. 2021, 11, 640392. [Google Scholar] [CrossRef]
- Liu, T.; Stauber, T. The Volume-Regulated Anion Channel Lrrc8/Vrac Is Dispensable for Cell Proliferation and Migration. Int. J. Mol. Sci. 2019, 20, 2663. [Google Scholar] [CrossRef]
- Gururaja Rao, S.; Patel, N.J.; Singh, H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front. Physiol. 2020, 11, 96. [Google Scholar] [CrossRef]
- Peretti, M.; Angelini, M.; Savalli, N.; Florio, T.; Yuspa, S.H.; Mazzanti, M. Chloride Channels in Cancer: Focus on Chloride Intracellular Channel 1 and 4 (CLIC1 AND CLIC4) Proteins in Tumor Development and as Novel Therapeutic Targets. Biochim. Biophys. Acta Biomembr. 2015, 1848, 2523–2531. [Google Scholar] [CrossRef]
- Edwards, J.C.; Kahl, C.R. Chloride Channels of Intracellular Membranes. FEBS Lett. 2010, 584, 2102–2111. [Google Scholar] [CrossRef]
- Suh, K.S.; Yuspa, S.H. Intracellular Chloride Channels: Critical Mediators of Cell Viability and Potential Targets for Cancer Therapy. Curr. Pharm. Des. 2005, 11, 2753. [Google Scholar] [CrossRef]
- Huang, J.J.; Lin, J.; Chen, X.; Zhu, W. Identification of Chloride Intracellular Channels as Prognostic Factors Correlated with Immune Infiltration in Hepatocellular Carcinoma Using Bioinformatics Analysis. Medicine 2021, 100, e27739. [Google Scholar] [CrossRef]
- Gupte, A.; Mumper, R.J. Elevated Copper and Oxidative Stress in Cancer Cells as a Target for Cancer Treatment. Cancer Treat. Rev. 2009, 35, 32–46. [Google Scholar] [CrossRef]
- Fernández-Salas, E.; Suh, K.S.; Speransky, V.V.; Bowers, W.L.; Levy, J.M.; Adams, T.; Pathak, K.R.; Edwards, L.E.; Hayes, D.D.; Cheng, C.; et al. MtCLIC/CLIC4, an Organellular Chloride Channel Protein, Is Increased by DNA Damage and Participates in the Apoptotic Response to P53. Mol. Cell. Biol. 2002, 22, 3610–3620. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, W.; Huang, R.; Chen, D.; Li, Z.; Qi, X.; Sun, L.; Lin, L.; Zhang, Z. Comprehensive Analysis of Clinical Prognosis and CLIC1 Immune Invasion in Lung Adenocarcinoma. Medicine 2022, 101, e30760. [Google Scholar] [CrossRef]
- Dhanasekaran, D.N.; Reddy, E.P. JNK Signaling in Apoptosis. Oncogene 2008, 27, 6245–6251. [Google Scholar] [CrossRef]
- Yasuda, Y.; Nagano, T.; Jimbo, N.; Kiriu, T.; Suraya, R.; Hazama, D.; Yamamoto, M.; Maniwa, Y.; Nishimura, Y.; Kobayashi, K. Chloride Intracellular Channel 1 Expression Is Associated with Poor Prognosis of Lung Adenocarcinoma. Anticancer. Res. 2022, 42, 271–277. [Google Scholar] [CrossRef]
- Suh, K.S.; Crutchley, J.M.; Koochek, A.; Ryscavage, A.; Bhat, K.; Tanaka, T.; Oshima, A.; Fitzgerald, P.; Yuspa, S.H. Reciprocal Modifications of CLIC4 in Tumor Epithelium and Stroma Mark Malignant Progression of Multiple Human Cancers. Clin. Cancer Res. 2007, 13, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Yang, Y.; Madanikia, S.; Ho, Y.; Li, M.; Sanchez, V.; Cataisson, C.; Huang, J.; Yuspa, S.H. Elevating CLIC4 in Multiple Cell Types Reveals a TGF- Dependent Induction of a Dominant Negative Smad7 Splice Variant. PLoS ONE 2016, 11, e0161410. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Lu, J.; Yuan, R.; Liu, J.; Liu, Y.; Wu, K.; Wu, J.; Du, J.; Shen, B. Knockdown of CLIC4 Enhances ATP-Induced HN4 Cell Apoptosis through Mitochondrial and Endoplasmic Reticulum Pathways. Cell Biosci. 2016, 6, 5. [Google Scholar] [CrossRef]
- Okudela, K.; Katayama, A.; Woo, T.; Mitsui, H.; Suzuki, T.; Tateishi, Y.; Umeda, S.; Tajiri, M.; Masuda, M.; Nagahara, N.; et al. Proteome Analysis for Downstream Targets of Oncogenic KRAS—The Potential Participation of CLIC4 in Carcinogenesis in the Lung. PLoS ONE 2014, 9, e87193. [Google Scholar] [CrossRef] [PubMed]
- Kondratskyi, A.; Yassine, M.; Kondratska, K.; Skryma, R.; Slomianny, C.; Prevarskaya, N. Calcium-Permeable Ion Channels in Control of Autophagy and Cancer. Front. Physiol. 2013, 4, 272. [Google Scholar] [CrossRef]
- Antal, L.; Martin-Caraballo, M. T-Type Calcium Channels in Cancer. Cancers 2019, 11, 134. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Z.; Zhang, K.; Dong, Y.; Zhang, A.; Lu, C.; Liu, L. MicroRNA-107 Inhibits Proliferation and Invasion of Laryngeal Squamous Cell Carcinoma Cells by Targeting CACNA2D1 in Vitro. Anticancer. Drugs 2020, 31, 260–271. [Google Scholar] [CrossRef]
- Yu, J.; Wang, S.; Zhao, W.; Duan, J.; Wang, Z.; Chen, H.; Tian, Y.; Wang, D.; Zhao, J.; An, T.; et al. Mechanistic Exploration of Cancer Stem Cell Marker Voltage-Dependent Calcium Channel A2d1 Subunit-Mediated Chemotherapy Resistance in Small-Cell Lung Cancer. Clin. Cancer Res. 2018, 24, 2148–2158. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, X.; Zhao, W.; Yang, Y.; Zhang, Z. Calcium Channel A2δ1 Subunit Is a Functional Marker and Therapeutic Target for Tumor-Initiating Cells in Non-Small Cell Lung Cancer. Cell Death Dis. 2021, 12, 257. [Google Scholar] [CrossRef]
- Gao, S.; Yao, X.; Yan, N. Structure of Human Cav2.2 Channel Blocked by the Painkiller Ziconotide. Nature 2021, 596, 143–147. [Google Scholar] [CrossRef]
- Kessi, M.; Chen, B.; Peng, J.; Yan, F.; Yang, L.; Yin, F. Calcium Channelopathies and Intellectual Disability: A Systematic Review. Orphanet J. Rare Dis. 2021, 16, 219. [Google Scholar] [CrossRef]
- Cai, S.; Gomez, K.; Moutal, A.; Khanna, R. Targeting T-Type/CaV3.2 Channels for Chronic Pain. Transl. Res. 2021, 234, 20–30. [Google Scholar] [CrossRef]
- Mei, Y.; Barrett, J.E.; Hu, H. Calcium Release-Activated Calcium Channels and Pain. Cell Calcium 2018, 74, 180–185. [Google Scholar] [CrossRef]
- Novello, M.J.; Zhu, J.; Feng, Q.; Ikura, M.; Stathopulos, P.B. Structural Elements of Stromal Interaction Molecule Function. Cell Calcium 2018, 73, 88–94. [Google Scholar] [CrossRef]
- Kaneko, Y.; Szallasi, A. Transient Receptor Potential (TRP) Channels: A Clinical Perspective. Br. J. Pharm. 2013, 171, 2474–2507. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Montell, C. TRP Channels. Annu. Rev. Biochem. 2007, 76, 387–417. [Google Scholar] [CrossRef]
- Jardin, I.; Nieto, J.; Salido, G.M.; Rosado, J.A. TRPC6 Channel and Its Implications in Breast Cancer: An Overview. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867. [Google Scholar] [CrossRef]
- Kojima, I.; Nagasawa, M. TRPV2. In Handbook of Experimental Pharmacology; Springer: New York, NY, USA, 2014; Volume 222, pp. 247–272. [Google Scholar] [CrossRef]
- Garcia-Elias, A.; Mrkonjić, S.; Jung, C.; Pardo-Pastor, C.; Vicente, R.; Valverde, M.A. The Trpv4 Channel. Handb. Exp. Pharm. 2014, 222, 293–319. [Google Scholar] [CrossRef]
- Fecher-Trost, C.; Weissgerber, P.; Wissenbach, U. TRPV6 Channels. Handb. Exp. Pharm. 2014, 222, 359–384. [Google Scholar] [CrossRef]
- Miller, B.A. TRPM2 in Cancer. Cell Calcium 2019, 80, 8–17. [Google Scholar] [CrossRef]
- Zou, Z.G.; Rios, F.J.; Montezano, A.C.; Touyz, R.M. TRPM7, Magnesium, and Signaling. Int. J. Mol. Sci. 2019, 20, 1877. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, M.H.; Inoue, K.; Chu, X.P.; Seeds, J.; Xiong, Z.G. Transient Receptor Potential Melastatin 7-like Current in Human Head and Neck Carcinoma Cells: Role in Cell Proliferation. Cancer Res. 2007, 67, 10929–10938. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.-F.; Sun, M.-M.; Hu, X.-Y.; Du, J.; He, W. TRPP2 Ion Channels: The Roles in Various Subcellular Locations. Biochimie 2022, 201, 116–127. [Google Scholar] [CrossRef] [PubMed]
Associated Cancer | Types | References |
---|---|---|
Invasive cervical cancer | HPV-16, HPV-18, HPV-45, HPV-31, HPV-33 | [4] |
High grade cervical precancerous lesions | HPV-16, HPV-31, HPV-52, HPV-18, HPV-58 | [4] |
Low grade cervical precancerous lesions | HPV-16, HPV-51, HPV-6, HPV-66, HPV-56, HPV-18 | [4] |
Normal cervical cytology | HPV-16, HPV-62, HPV-53, HPV-84, HPV-51 | [4] |
Anal cancer | Cancerous types HPV-16, HPV-33, HPV-31, HPV-58, HPV-39, HPV-52 | [4] |
Non-cancerous types HPV-40, HPV-42, HPV-43, HPV-54, HPV-55 | [4] | |
Anal precancerous infection in men | Cancerous types HPV-16, HPV-18, HPV-33, HPV-31, HPV-58 | [4] |
Non-cancerous types HPV-6, HPV-74, HPV-11, HPV-44 | [4] | |
Penile cancer | Cancerous types HPV-16, HPV-33, HPV-35, HPV-59, HPV-18 | [4] |
Non-cancerous types HPV-6, HPV-11, HPV-32, HPV40, HPV-42 | [4] | |
Vulvar cancer | Cancerous types HPV-16, HPV-33, HPV-18, HPV-45, HPV-52 | [4] |
Non-cancerous types HPV-6, HPV-11, HPV-44, HPV-61 | [4] | |
Vaginal cancer | Cancerous types HPV-16, HPV-31, HPV-33, HPV-18, HPV-52, HPV-73 | [4] |
Non-cancerous types HPV-42, HPV-6 | [4] | |
Oral cavity cancer | HPV-16, HPV-18, HPV-31, HPV-33, HPV-35 | [4] |
Oropharyngeal cancer | HPV-6, HPV-11, HPV-16, HPV-18, HPV-31 | [4] |
Laryngeal cancer | HPV-6, HPV-11, HPV-16, HPV-18, HPV-31 | [4] |
Lung cancer | HPV-6, HPV-11, HPV-16, HPV-18 | [20] |
Colorectal cancer | HPV-16, HPV-18 | [21] |
Bladder cancer | HPV-16, HPV-18, HPV-6 | [22] |
Breast cancer | HPV-18 | [23,24] |
Potential Clinical Use | Channel Family | Head and Neck Carcinoma 1 | Cervical Cancer | Lung Cancer | References |
---|---|---|---|---|---|
Diagnosis | Potassium channels | KCNH2 KCNQ1 KCNJ15 KCNK3 KCNK9 KCNK18 | KCNH1 * KCNMA1 * KCNN4 * KCNJ11 * | KCNQ KCNS3 KCNJ4 KCNJ8 KCNK3 | [29,75,76,77,78,79,80,81,82,83,84,85,86] |
Calcium channels | CACNA1G TRPV1 TRPV4 | STIM1 * | CACNA1G CACNA1H Orai3 | [58,87,88,89,90,91] | |
Sodium channels | SCN2A SCN7A SCN5A | SCN8A * | SCN9A | [31,92,93] | |
Chloride channels | ANO1 CLCN2 | ANO1 | [94,95,96,97,98,99,100,101] | ||
Prognosis | Potassium channels | KCNH2 KCNC4 KCNA3 KCNQ1OT1 KCNJ15 | KCNA1* KCNMA1* | KCND2 KCNQ1 KCNAB2 KCNN4 KCNJ4 | [29,57,78,80,95,102,103,104,105,106,107,108,109] |
Calcium channels | TRPV6 | STIM1 * | CACNA1B TRPA1 | [58,110,111,112] | |
Sodium channels | SCN5A SCNN1G SCN7A | SCN8A * | SCN9A SCNN1B | [31,92,113,114,115,116] | |
Chloride channels | ANO1 VRAC * ANO9 | CLCA2 | CLCA2 CLIC1 * | [117,118,119,120,121,122,123] | |
Therapy | Potassium channels | KCNH2 KCNQ1OT1 KCNMA1 KCNN4 | KCNH1 * KCNH2 * KCNC4 * KCNN4 * KCNJ11 * | KCNH1 KCNH2 KCNA1 KCNQ KCNS3 KCNQ1OT1KCNAB2 KCNN4 KCNJ4 KCNJ8 KCNK3 | [56,72,74,75,76,77,82,83,104,124,125,126,127,128,129,130,131,132,133,134,135] |
Calcium channels | CACNA2D3 CACNA2D1 TRPC6 TRPV1 TRPV2 TRPM2 TRPP2 | STIM1 | CACNA2D1 CACNA1 TRPV3 TRPM7 TRPA1 | [90,110,112,136,137,138,139,140,141,142,143,144] | |
Sodium channels | SCN5A SCNN1G | SCN8A * | SCN9A SCNN1A SCNN1B SCN5A | [114,115,116,145,146,147,148,149] | |
Chloride channels | ANO1 ClC-3 VRAC * ANO9 CLIC4 | CIC-3 | CLIC1 * ANO1 | [46,51,94,96,98,99,100,101,117,118,119,120,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiliquinga, A.J.; Acosta, B.; Ogonaga-Borja, I.; Villarruel-Melquiades, F.; de la Garza, J.; Gariglio, P.; Ocádiz-Delgado, R.; Ramírez, A.; Sánchez-Pérez, Y.; García-Cuellar, C.M.; et al. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023, 12, 1376. https://doi.org/10.3390/cells12101376
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, et al. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells. 2023; 12(10):1376. https://doi.org/10.3390/cells12101376
Chicago/Turabian StyleChiliquinga, Andrea Jazmín, Brenda Acosta, Ingrid Ogonaga-Borja, Fernanda Villarruel-Melquiades, Jaime de la Garza, Patricio Gariglio, Rodolfo Ocádiz-Delgado, Ana Ramírez, Yesennia Sánchez-Pérez, Claudia M. García-Cuellar, and et al. 2023. "Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers" Cells 12, no. 10: 1376. https://doi.org/10.3390/cells12101376
APA StyleChiliquinga, A. J., Acosta, B., Ogonaga-Borja, I., Villarruel-Melquiades, F., de la Garza, J., Gariglio, P., Ocádiz-Delgado, R., Ramírez, A., Sánchez-Pérez, Y., García-Cuellar, C. M., Bañuelos, C., & Camacho, J. (2023). Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells, 12(10), 1376. https://doi.org/10.3390/cells12101376