Structural Transition of the Nucleosome during Transcription Elongation
Abstract
:1. Introduction
2. The Nucleosome Structure
3. DNA Peeling during Nucleosome Transcription
4. Histone Chaperone FACT
5. Functions of FACT
6. FACT–Nucleosome Structures
7. Structural Transition of FACT Binding to the Nucleosome during Transcription Elongation
8. Structural Diversity of Nucleosomes in Complexes with FACT
9. Template DNA Looping-Mediated Nucleosome Retention
10. Structures of the Template DNA Loop during Transcription Elongation
11. Concluding Remarks and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olins, A.L.; Olins, D.E. Spheroid Chromatin Units (ν Bodies). Science 1974, 183, 330–332. [Google Scholar] [CrossRef]
- Kornberg, R.D.; Thomas, J.O. Chromatin Structure: Oligomers of the Histones. Science 1974, 184, 865–868. [Google Scholar] [CrossRef]
- Wolffe, A.P. (Ed.) Chromatin: Structure and Function; Academic Press Inc.: London, UK; San Diego, CA, USA, 1997; ISBN 978-0-12-761911-8. [Google Scholar]
- Koyama, M.; Kurumizaka, H. Structural Diversity of the Nucleosome. J. Biochem. 2018, 163, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.; Lis, J.T. Control of Transcriptional Elongation. Annu. Rev. Genet. 2013, 47, 483–508. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.; Workman, J.L. Histone Exchange, Chromatin Structure and the Regulation of Transcription. Nat. Rev. Mol. Cell Biol. 2015, 16, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Smolle, M.; Workman, J.L. Transcription-Associated Histone Modifications and Cryptic Transcription. Biochim. Biophys. Acta 2013, 1829, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Weng, H.; Zhou, K.; Wu, T.; Zhao, B.S.; Sun, M.; Chen, Z.; Deng, X.; Xiao, G.; Auer, F.; et al. Histone H3 Trimethylation at Lysine 36 Guides M6A RNA Modification Co-Transcriptionally. Nature 2019, 567, 414–419. [Google Scholar] [CrossRef]
- Wagner, E.J.; Carpenter, P.B. Understanding the Language of Lys36 Methylation at Histone H3. Nat. Rev. Mol. Cell Biol. 2012, 13, 115–126. [Google Scholar] [CrossRef]
- Formosa, T.; Winston, F. The Role of FACT in Managing Chromatin: Disruption, Assembly, or Repair? Nucleic Acids Res. 2020, 48, 11929–11941. [Google Scholar] [CrossRef]
- Gurova, K.; Chang, H.W.; Valieva, M.E.; Sandlesh, P.; Studitsky, V.M. Structure and Function of the Histone Chaperone FACT—Resolving FACTual Issues. Biochim. Biophys. Acta Gene Regul. Mech. 2018, 1861, 892–904. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Y.; Luger, K. Histone Chaperone FACT FAcilitates Chromatin Transcription: Mechanistic and Structural Insights. Curr. Opin. Struct. Biol. 2020, 65, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Studitsky, V.M.; Nizovtseva, E.V.; Shaytan, A.K.; Luse, D.S. Nucleosomal Barrier to Transcription: Structural Determinants and Changes in Chromatin Structure. Biochem. Mol. Biol. J. 2016, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Kulaeva, O.I.; Hsieh, F.K.; Chang, H.W.; Luse, D.S.; Studitsky, V.M. Mechanism of Transcription through a Nucleosome by RNA Polymerase II. Biochim. Biophys. Acta 2013, 1829, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Kujirai, T.; Kurumizaka, H. Transcription through the Nucleosome. Curr. Opin. Struct. Biol. 2020, 61, 42–49. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Vazquez Nunez, R.; Vos, S.M. Structural Advances in Transcription Elongation. Curr. Opin. Struct. Biol. 2022, 75, 102422. [Google Scholar] [CrossRef]
- Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal Structure of the Nucleosome Core Particle at 2.8 Å Resolution. Nature 1997, 389, 251–260. [Google Scholar] [CrossRef]
- McGinty, R.K.; Tan, S. Nucleosome Structure and Function. Chem. Rev. 2015, 115, 2255–2273. [Google Scholar] [CrossRef]
- Hirano, R.; Arimura, Y.; Kujirai, T.; Shibata, M.; Okuda, A.; Morishima, K.; Inoue, R.; Sugiyama, M.; Kurumizaka, H. Histone Variant H2A.B-H2B Dimers Are Spontaneously Exchanged with Canonical H2A-H2B in the Nucleosome. Commun. Biol. 2021, 4, 191. [Google Scholar] [CrossRef]
- Zhou, M.; Dai, L.; Li, C.; Shi, L.; Huang, Y.; Guo, Z.; Wu, F.; Zhu, P.; Zhou, Z. Structural Basis of Nucleosome Dynamics Modulation by Histone Variants H2A.B and H2A.Z.2.2. EMBO J. 2021, 40, e105907. [Google Scholar] [CrossRef]
- Li, G.; Widom, J. Nucleosomes Facilitate Their Own Invasion. Nat. Struct. Mol. Biol. 2004, 11, 763–769. [Google Scholar] [CrossRef]
- Bilokapic, S.; Strauss, M.; Halic, M. Histone Octamer Rearranges to Adapt to DNA Unwrapping. Nat. Struct. Mol. Biol. 2018, 25, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Zlatanova, J.; Bishop, T.C.; Victor, J.M.; Jackson, V.; van Holde, K. The Nucleosome Family: Dynamic and Growing. Struct. Lond. Engl. 1993 2009, 17, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Kono, H. Distinct Roles of Histone H3 and H2A Tails in Nucleosome Stability. Sci. Rep. 2016, 6, 31437. [Google Scholar] [CrossRef] [PubMed]
- Armeev, G.A.; Kniazeva, A.S.; Komarova, G.A.; Kirpichnikov, M.P.; Shaytan, A.K. Histone Dynamics Mediate DNA Unwrapping and Sliding in Nucleosomes. Nat. Commun. 2021, 12, 2387. [Google Scholar] [CrossRef]
- Valieva, M.E.; Gerasimova, N.S.; Kudryashova, K.S.; Kozlova, A.L.; Kirpichnikov, M.P.; Hu, Q.; Botuyan, M.V.; Mer, G.; Feofanov, A.V.; Studitsky, V.M. Stabilization of Nucleosomes by Histone Tails and by FACT Revealed by SpFRET Microscopy. Cancers 2017, 9, 3. [Google Scholar] [CrossRef]
- Hao, F.; Murphy, K.J.; Kujirai, T.; Kamo, N.; Kato, J.; Koyama, M.; Okamato, A.; Hayashi, G.; Kurumizaka, H.; Hayes, J.J. Acetylation-Modulated Communication between the H3 N-Terminal Tail Domain and the Intrinsically Disordered H1 C-Terminal Domain. Nucleic Acids Res. 2020, 48, 11510–11520. [Google Scholar] [CrossRef] [PubMed]
- McGinty, R.K.; Tan, S. Principles of Nucleosome Recognition by Chromatin Factors and Enzymes. Curr. Opin. Struct. Biol. 2021, 71, 16–26. [Google Scholar] [CrossRef]
- Kwak, H.; Fuda, N.J.; Core, L.J.; Lis, J.T. Precise Maps of RNA Polymerase Reveal How Promoters Direct Initiation and Pausing. Science 2013, 339, 950–953. [Google Scholar] [CrossRef]
- Weber, C.M.; Ramachandran, S.; Henikoff, S. Nucleosomes Are Context-Specific, H2A.Z-Modulated Barriers to RNA Polymerase. Mol. Cell 2014, 53, 819–830. [Google Scholar] [CrossRef]
- Teves, S.S.; Weber, C.M.; Henikoff, S. Transcribing through the Nucleosome. Trends Biochem. Sci. 2014, 39, 577–586. [Google Scholar] [CrossRef]
- Bondarenko, V.A.; Steele, L.M.; Ujvári, A.; Gaykalova, D.A.; Kulaeva, O.I.; Polikanov, Y.S.; Luse, D.S.; Studitsky, V.M. Nucleosomes Can Form a Polar Barrier to Transcript Elongation by RNA Polymerase II. Mol. Cell 2006, 24, 469–479. [Google Scholar] [CrossRef]
- Zhou, K.; Gaullier, G.; Luger, K. Nucleosome Structure and Dynamics Are Coming of Age. Nat. Struct. Mol. Biol. 2019, 26, 3–13. [Google Scholar] [CrossRef]
- Takizawa, Y.; Kurumizaka, H. Chromatin Structure Meets Cryo-EM: Dynamic Building Blocks of the Functional Architecture. Biochim. Biophys. Acta BBA-Gene Regul. Mech. 2022, 1865, 194851. [Google Scholar] [CrossRef]
- Gaykalova, D.A.; Kulaeva, O.I.; Volokh, O.; Shaytan, A.K.; Hsieh, F.K.; Kirpichnikov, M.P.; Sokolova, O.S.; Studitsky, V.M. Structural Analysis of Nucleosomal Barrier to Transcription. Proc. Natl. Acad. Sci. USA 2015, 112, E5787–E5795. [Google Scholar] [CrossRef]
- Farnung, L.; Vos, S.M.; Cramer, P. Structure of Transcribing RNA Polymerase II-Nucleosome Complex. Nat. Commun. 2018, 9, 5432. [Google Scholar] [CrossRef] [PubMed]
- Kujirai, T.; Ehara, H.; Fujino, Y.; Shirouzu, M.; Sekine, S.; Kurumizaka, H. Structural Basis of the Nucleosome Transition during RNA Polymerase II Passage. Science 2018, 362, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Ehara, H.; Kujirai, T.; Fujino, Y.; Shirouzu, M.; Kurumizaka, H.; Sekine, S. Structural Insight into Nucleosome Transcription by RNA Polymerase II with Elongation Factors. Science 2019, 363, 744–747. [Google Scholar] [CrossRef]
- Farnung, L.; Ochmann, M.; Engeholm, M.; Cramer, P. Structural Basis of Nucleosome Transcription Mediated by Chd1 and FACT. Nat. Struct. Mol. Biol. 2021, 28, 382–387. [Google Scholar] [CrossRef]
- Farnung, L.; Ochmann, M.; Garg, G.; Vos, S.M.; Cramer, P. Structure of a Backtracked Hexasomal Intermediate of Nucleosome Transcription. Mol. Cell 2022, 82, 3126–3134.e7. [Google Scholar] [CrossRef]
- Filipovski, M.; Soffers, J.H.M.; Vos, S.M.; Farnung, L. Structural Basis of Nucleosome Retention during Transcription Elongation. Science 2022, 376, 1313–1316. [Google Scholar] [CrossRef] [PubMed]
- Ehara, H.; Kujirai, T.; Shirouzu, M.; Kurumizaka, H.; Sekine, S. Structural Basis of Nucleosome Disassembly and Reassembly by RNAPII Elongation Complex with FACT. Science 2022, 377, eabp9466. [Google Scholar] [CrossRef]
- Jin, J.; Bai, L.; Johnson, D.S.; Fulbright, R.M.; Kireeva, M.L.; Kashlev, M.; Wang, M.D. Synergistic Action of RNA Polymerases in Overcoming the Nucleosomal Barrier. Nat. Struct. Mol. Biol. 2010, 17, 745–752. [Google Scholar] [CrossRef]
- Hall, M.A.; Shundrovsky, A.; Bai, L.; Fulbright, R.M.; Lis, J.T.; Wang, M.D. High-Resolution Dynamic Mapping of Histone-DNA Interactions in a Nucleosome. Nat. Struct. Mol. Biol. 2009, 16, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Tessarz, P.; Kouzarides, T. Histone Core Modifications Regulating Nucleosome Structure and Dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.; Daujat, S.; Schneider, R. Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends Genet. TIG 2016, 32, 42–56. [Google Scholar] [CrossRef]
- Tropberger, P.; Pott, S.; Keller, C.; Kamieniarz-Gdula, K.; Caron, M.; Richter, F.; Li, G.; Mittler, G.; Liu, E.T.; Bühler, M.; et al. Regulation of Transcription through Acetylation of H3K122 on the Lateral Surface of the Histone Octamer. Cell 2013, 152, 859–872. [Google Scholar] [CrossRef] [PubMed]
- Di Cerbo, V.; Mohn, F.; Ryan, D.P.; Montellier, E.; Kacem, S.; Tropberger, P.; Kallis, E.; Holzner, M.; Hoerner, L.; Feldmann, A.; et al. Acetylation of Histone H3 at Lysine 64 Regulates Nucleosome Dynamics and Facilitates Transcription. eLife 2014, 3, e01632. [Google Scholar] [CrossRef]
- Topal, S.; Vasseur, P.; Radman-Livaja, M.; Peterson, C.L. Distinct Transcriptional Roles for Histone H3-K56 Acetylation during the Cell Cycle in Yeast. Nat. Commun. 2019, 10, 4372. [Google Scholar] [CrossRef]
- Bintu, L.; Ishibashi, T.; Dangkulwanich, M.; Wu, Y.Y.; Lubkowska, L.; Kashlev, M.; Bustamante, C. Nucleosomal Elements That Control the Topography of the Barrier to Transcription. Cell 2012, 151, 738–749. [Google Scholar] [CrossRef]
- Huynh, M.T.; Yadav, S.P.; Reese, J.C.; Lee, T.H. Nucleosome Dynamics during Transcription Elongation. ACS Chem. Biol. 2020, 15, 3133–3142. [Google Scholar] [CrossRef]
- Chen, Z.; Gabizon, R.; Brown, A.I.; Lee, A.; Song, A.; Díaz-Celis, C.; Kaplan, C.D.; Koslover, E.F.; Yao, T.; Bustamante, C. High-Resolution and High-Accuracy Topographic and Transcriptional Maps of the Nucleosome Barrier. eLife 2019, 8, e48281. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.K.; Fisher, M.; Újvári, A.; Studitsky, V.M.; Luse, D.S. Histone Sin Mutations Promote Nucleosome Traversal and Histone Displacement by RNA Polymerase II. EMBO Rep. 2010, 11, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Kurumizaka, H.; Wolffe, A.P. Sin Mutations of Histone H3: Influence on Nucleosome Core Structure and Function. Mol. Cell. Biol. 1997, 17, 6953–6969. [Google Scholar] [CrossRef]
- Horn, P.J.; Crowley, K.A.; Carruthers, L.M.; Hansen, J.C.; Peterson, C.L. The SIN Domain of the Histone Octamer Is Essential for Intramolecular Folding of Nucleosomal Arrays. Nat. Struct. Biol. 2002, 9, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Hildreth, A.E.; Ellison, M.A.; Francette, A.M.; Seraly, J.M.; Lotka, L.M.; Arndt, K.M. The Nucleosome DNA Entry-Exit Site Is Important for Transcription Termination and Prevention of Pervasive Transcription. eLife 2020, 9, e57757. [Google Scholar] [CrossRef]
- Újvári, A.; Hsieh, F.K.; Luse, S.W.; Studitsky, V.M.; Luse, D.S. Histone N-Terminal Tails Interfere with Nucleosome Traversal by RNA Polymerase II. J. Biol. Chem. 2008, 283, 32236–32243. [Google Scholar] [CrossRef] [PubMed]
- Gerasimova, N.S.; Pestov, N.A.; Studitsky, V.M. Role of Histone Tails and Single Strand DNA Breaks in Nucleosomal Arrest of RNA Polymerase. Int. J. Mol. Sci. 2023, 24, 2295. [Google Scholar] [CrossRef]
- Schwabish, M.A.; Struhl, K. Evidence for Eviction and Rapid Deposition of Histones upon Transcriptional Elongation by RNA Polymerase II. Mol. Cell. Biol. 2004, 24, 10111–10117. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, K.; Zhang, N.; Wei, H.; Tan, Y.Z.; Zhang, Z.; Carragher, B.; Potter, C.S.; D’Arcy, S.; Luger, K. FACT Caught in the Act of Manipulating the Nucleosome. Nature 2020, 577, 426–431. [Google Scholar] [CrossRef]
- Mayanagi, K.; Saikusa, K.; Miyazaki, N.; Akashi, S.; Iwasaki, K.; Nishimura, Y.; Morikawa, K.; Tsunaka, Y. Structural Visualization of Key Steps in Nucleosome Reorganization by Human FACT. Sci. Rep. 2019, 9, 10183. [Google Scholar] [CrossRef]
- Evrin, C.; Serra-Cardona, A.; Duan, S.; Mukherjee, P.P.; Zhang, Z.; Labib, K.P.M. Spt5 Histone Binding Activity Preserves Chromatin during Transcription by RNA Polymerase II. EMBO J. 2022, 41, e109783. [Google Scholar] [CrossRef] [PubMed]
- Orphanides, G.; LeRoy, G.; Chang, C.H.; Luse, D.S.; Reinberg, D. FACT, a Factor That Facilitates Transcript Elongation through Nucleosomes. Cell 1998, 92, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Orphanides, G.; Wu, W.H.; Lane, W.S.; Hampsey, M.; Reinberg, D. The Chromatin-Specific Transcription Elongation Factor FACT Comprises Human SPT16 and SSRP1 Proteins. Nature 1999, 400, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Wittmeyer, J.; Joss, L.; Formosa, T. Spt16 and Pob3 of Saccharomyces cerevisiae Form an Essential, Abundant Heterodimer That Is Nuclear, Chromatin-Associated, and Copurifies with DNA Polymerase α. Biochemistry 1999, 38, 8961–8971. [Google Scholar] [CrossRef]
- Stuwe, T.; Hothorn, M.; Lejeune, E.; Rybin, V.; Bortfeld, M.; Scheffzek, K.; Ladurner, A.G. The FACT Spt16 “Peptidase” Domain Is a Histone H3-H4 Binding Module. Proc. Natl. Acad. Sci. USA 2008, 105, 8884–8889. [Google Scholar] [CrossRef]
- VanDemark, A.P.; Xin, H.; McCullough, L.; Rawlins, R.; Bentley, S.; Heroux, A.; Stillman, D.J.; Hill, C.P.; Formosa, T. Structural and Functional Analysis of the Spt16p N-Terminal Domain Reveals Overlapping Roles of YFACT Subunits *. J. Biol. Chem. 2008, 283, 5058–5068. [Google Scholar] [CrossRef] [PubMed]
- Kemble, D.J.; Whitby, F.G.; Robinson, H.; McCullough, L.L.; Formosa, T.; Hill, C.P. Structure of the Spt16 Middle Domain Reveals Functional Features of the Histone Chaperone FACT. J. Biol. Chem. 2013, 288, 10188–10194. [Google Scholar] [CrossRef]
- Hondele, M.; Stuwe, T.; Hassler, M.; Halbach, F.; Bowman, A.; Zhang, E.T.; Nijmeijer, B.; Kotthoff, C.; Rybin, V.; Amlacher, S.; et al. Structural Basis of Histone H2A-H2B Recognition by the Essential Chaperone FACT. Nature 2013, 499, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Kemble, D.J.; McCullough, L.L.; Whitby, F.G.; Formosa, T.; Hill, C.P. FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs. Mol. Cell 2015, 60, 294–306. [Google Scholar] [CrossRef]
- VanDemark, A.P.; Blanksma, M.; Ferris, E.; Heroux, A.; Hill, C.P.; Formosa, T. The Structure of the yFACT Pob3-M Domain, Its Interaction with the DNA Replication Factor RPA, and a Potential Role in Nucleosome Deposition. Mol. Cell 2006, 22, 363–374. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, F.; Liu, Y.; Shao, C.; Li, S.; Lv, H.; Shi, Y.; Niu, L.; Teng, M.; Li, X. Crystal Structure of Human SSRP1 Middle Domain Reveals a Role in DNA Binding. Sci. Rep. 2015, 5, 18688. [Google Scholar] [CrossRef]
- Kasai, N.; Tsunaka, Y.; Ohki, I.; Hirose, S.; Morikawa, K.; Tate, S. Solution Structure of the HMG-Box Domain in the SSRP1 Subunit of FACT. J. Biomol. NMR 2005, 32, 83–88. [Google Scholar] [CrossRef]
- Allain, F.H.; Yen, Y.M.; Masse, J.E.; Schultze, P.; Dieckmann, T.; Johnson, R.C.; Feigon, J. Solution Structure of the HMG Protein NHP6A and Its Interaction with DNA Reveals the Structural Determinants for Non-Sequence-Specific Binding. EMBO J. 1999, 18, 2563–2579. [Google Scholar] [CrossRef] [PubMed]
- Stillman, D.J. Nhp6: A Small but Powerful Effector of Chromatin Structure in Saccharomyces cerevisiae. Biochim. Biophys. Acta 2010, 1799, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Brewster, N.K.; Johnston, G.C.; Singer, R.A. A Bipartite Yeast SSRP1 Analog Comprised of Pob3 and Nhp6 Proteins Modulates Transcription. Mol. Cell. Biol. 2001, 21, 3491–3502. [Google Scholar] [CrossRef] [PubMed]
- Winkler, D.D.; Luger, K. The Histone Chaperone FACT: Structural Insights and Mechanisms for Nucleosome Reorganization. J. Biol. Chem. 2011, 286, 18369–18374. [Google Scholar] [CrossRef]
- Tsunaka, Y.; Fujiwara, Y.; Oyama, T.; Hirose, S.; Morikawa, K. Integrated Molecular Mechanism Directing Nucleosome Reorganization by Human FACT. Genes Dev. 2016, 30, 673–686. [Google Scholar] [CrossRef]
- Mason, P.B.; Struhl, K. The FACT Complex Travels with Elongating RNA Polymerase II and Is Important for the Fidelity of Transcriptional Initiation in Vivo. Mol. Cell. Biol. 2003, 23, 8323–8333. [Google Scholar] [CrossRef]
- Saunders, A.; Werner, J.; Andrulis, E.D.; Nakayama, T.; Hirose, S.; Reinberg, D.; Lis, J.T. Tracking FACT and the RNA Polymerase II Elongation Complex through Chromatin in Vivo. Science 2003, 301, 1094–1096. [Google Scholar] [CrossRef]
- Kim, M.; Ahn, S.H.; Krogan, N.J.; Greenblatt, J.F.; Buratowski, S. Transitions in RNA Polymerase II Elongation Complexes at the 3′ Ends of Genes. EMBO J. 2004, 23, 354–364. [Google Scholar] [CrossRef]
- Mayer, A.; Lidschreiber, M.; Siebert, M.; Leike, K.; Söding, J.; Cramer, P. Uniform Transitions of the General RNA Polymerase II Transcription Complex. Nat. Struct. Mol. Biol. 2010, 17, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.; Singh, P.; Ananthakrishnan, S.; Adamczyk, S.; Schimmel, O.; Govind, C.K. Acetylation-Dependent Recruitment of the FACT Complex and Its Role in Regulating Pol II Occupancy Genome-Wide in Saccharomyces cerevisiae. Genetics 2018, 209, 743–756. [Google Scholar] [CrossRef]
- Martin, B.J.E.; Chruscicki, A.T.; Howe, L.J. Transcription Promotes the Interaction of the FAcilitates Chromatin Transactions (FACT) Complex with Nucleosomes in Saccharomyces cerevisiae. Genetics 2018, 210, 869–881. [Google Scholar] [CrossRef]
- Jeronimo, C.; Angel, A.; Nguyen, V.Q.; Kim, J.M.; Poitras, C.; Lambert, E.; Collin, P.; Mellor, J.; Wu, C.; Robert, F. FACT Is Recruited to the +1 Nucleosome of Transcribed Genes and Spreads in a Chd1-Dependent Manner. Mol. Cell 2021, 81, 3542–3559.e11. [Google Scholar] [CrossRef]
- Belotserkovskaya, R.; Oh, S.; Bondarenko, V.A.; Orphanides, G.; Studitsky, V.M.; Reinberg, D. FACT Facilitates Transcription-Dependent Nucleosome Alteration. Science 2003, 301, 1090–1093. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.K.; Kulaeva, O.I.; Patel, S.S.; Dyer, P.N.; Luger, K.; Reinberg, D.; Studitsky, V.M. Histone Chaperone FACT Action during Transcription through Chromatin by RNA Polymerase II. Proc. Natl. Acad. Sci. USA 2013, 110, 7654–7659. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, Y.; Edwards, G.; Krzizike, D.; Scherman, H.; Luger, K. The Histone Chaperone FACT Modulates Nucleosome Structure by Tethering Its Components. Life Sci. Alliance 2018, 1, e201800107. [Google Scholar] [CrossRef]
- Valieva, M.E.; Armeev, G.A.; Kudryashova, K.S.; Gerasimova, N.S.; Shaytan, A.K.; Kulaeva, O.I.; McCullough, L.L.; Formosa, T.; Georgiev, P.G.; Kirpichnikov, M.P.; et al. Large-Scale ATP-Independent Nucleosome Unfolding by a Histone Chaperone. Nat. Struct. Mol. Biol. 2016, 23, 1111–1116. [Google Scholar] [CrossRef]
- Xin, H.; Takahata, S.; Blanksma, M.; McCullough, L.; Stillman, D.J.; Formosa, T. YFACT Induces Global Accessibility of Nucleosomal DNA Without H2A–H2B Displacement. Mol. Cell 2009, 35, 365–376. [Google Scholar] [CrossRef]
- Jamai, A.; Puglisi, A.; Strubin, M. Histone Chaperone Spt16 Promotes Redeposition of the Original H3-H4 Histones Evicted by Elongating RNA Polymerase. Mol. Cell 2009, 35, 377–383. [Google Scholar] [CrossRef]
- Formosa, T.; Ruone, S.; Adams, M.D.; Olsen, A.E.; Eriksson, P.; Yu, Y.; Rhoades, A.R.; Kaufman, P.D.; Stillman, D.J. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae Cause Dependence on the Hir/Hpc Pathway: Polymerase Passage May Degrade Chromatin Structure. Genetics 2002, 162, 1557–1571. [Google Scholar] [CrossRef]
- Chen, P.; Dong, L.; Hu, M.; Wang, Y.Z.; Xiao, X.; Zhao, Z.; Yan, J.; Wang, P.Y.; Reinberg, D.; Li, M.; et al. Functions of FACT in Breaking the Nucleosome and Maintaining Its Integrity at the Single-Nucleosome Level. Mol. Cell 2018, 71, 284–293.e4. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, C.D.; Laprade, L.; Winston, F. Transcription Elongation Factors Repress Transcription Initiation from Cryptic Sites. Science 2003, 301, 1096–1099. [Google Scholar] [CrossRef] [PubMed]
- Cheung, V.; Chua, G.; Batada, N.N.; Landry, C.R.; Michnick, S.W.; Hughes, T.R.; Winston, F. Chromatin- and Transcription-Related Factors Repress Transcription from within Coding Regions throughout the Saccharomyces cerevisiae Genome. PLoS Biol. 2008, 6, e277. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Ard, R.; Leng, X.; Ivanov, M.; Kindgren, P.; Pelechano, V.; Marquardt, S. Transcription-Driven Chromatin Repression of Intragenic Transcription Start Sites. PLoS Genet. 2019, 15, e1007969. [Google Scholar] [CrossRef] [PubMed]
- Workman, J.L. Nucleosome Displacement in Transcription. Genes Dev. 2006, 20, 2009–2017. [Google Scholar] [CrossRef] [PubMed]
- Jeronimo, C.; Watanabe, S.; Kaplan, C.D.; Peterson, C.L.; Robert, F. The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations. Mol. Cell 2015, 58, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Jeronimo, C.; Poitras, C.; Robert, F. Histone Recycling by FACT and Spt6 during Transcription Prevents the Scrambling of Histone Modifications. Cell Rep. 2019, 28, 1206–1218.e8. [Google Scholar] [CrossRef]
- Tettey, T.T.; Gao, X.; Shao, W.; Li, H.; Story, B.A.; Chitsazan, A.D.; Glaser, R.L.; Goode, Z.H.; Seidel, C.W.; Conaway, R.C.; et al. A Role for FACT in RNA Polymerase II Promoter-Proximal Pausing. Cell Rep. 2019, 27, 3770–3779.e7. [Google Scholar] [CrossRef]
- McCullough, L.; Connell, Z.; Petersen, C.; Formosa, T. The Abundant Histone Chaperones Spt6 and FACT Collaborate to Assemble, Inspect, and Maintain Chromatin Structure in Saccharomyces cerevisiae. Genetics 2015, 201, 1031–1045. [Google Scholar] [CrossRef]
- Ramachandran, S.; Ahmad, K.; Henikoff, S. Transcription and Remodeling Produce Asymmetrically Unwrapped Nucleosomal Intermediates. Mol. Cell 2017, 68, 1038–1053.e4. [Google Scholar] [CrossRef]
- Hodges, A.J.; Gloss, L.M.; Wyrick, J.J. Residues in the Nucleosome Acidic Patch Regulate Histone Occupancy and Are Important for FACT Binding in Saccharomyces cerevisiae. Genetics 2017, 206, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, C.E.; Hildreth, A.E.; McShane, B.M.; Shirra, M.K.; Arndt, K.M. The Nucleosome Acidic Patch Directly Interacts with Subunits of the Paf1 and FACT Complexes and Controls Chromatin Architecture in Vivo. Nucleic Acids Res. 2019, 47, 8410–8423. [Google Scholar] [CrossRef] [PubMed]
- Sivkina, A.L.; Karlova, M.G.; Valieva, M.E.; McCullough, L.L.; Formosa, T.; Shaytan, A.K.; Feofanov, A.V.; Kirpichnikov, M.P.; Sokolova, O.S.; Studitsky, V.M. Electron Microscopy Analysis of ATP-Independent Nucleosome Unfolding by FACT. Commun. Biol. 2022, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Cook, P.R. Kinetics of Core Histones in Living Human Cells: Little Exchange of H3 and H4 and Some Rapid Exchange of H2b. J. Cell Biol. 2001, 153, 1341–1354. [Google Scholar] [CrossRef]
- Thiriet, C.; Hayes, J.J. Replication-Independent Core Histone Dynamics at Transcriptionally Active Loci in Vivo. Genes Dev. 2005, 19, 677–682. [Google Scholar] [CrossRef]
- Cole, H.A.; Ocampo, J.; Iben, J.R.; Chereji, R.V.; Clark, D.J. Heavy Transcription of Yeast Genes Correlates with Differential Loss of Histone H2B Relative to H4 and Queued RNA Polymerases. Nucleic Acids Res. 2014, 42, 12512–12522. [Google Scholar] [CrossRef]
- Ulyanova, N.P.; Schnitzler, G.R. Human SWI/SNF Generates Abundant, Structurally Altered Dinucleosomes on Polynucleosomal Templates. Mol. Cell. Biol. 2005, 25, 11156–11170. [Google Scholar] [CrossRef]
- Engeholm, M.; de Jager, M.; Flaus, A.; Brenk, R.; van Noort, J.; Owen-Hughes, T. Nucleosomes Can Invade DNA Territories Occupied by Their Neighbors. Nat. Struct. Mol. Biol. 2009, 16, 151–158. [Google Scholar] [CrossRef]
- Kato, D.; Osakabe, A.; Arimura, Y.; Mizukami, Y.; Horikoshi, N.; Saikusa, K.; Akashi, S.; Nishimura, Y.; Park, S.Y.; Nogami, J.; et al. Crystal Structure of the Overlapping Dinucleosome Composed of Hexasome and Octasome. Science 2017, 356, 205–208. [Google Scholar] [CrossRef]
- Ocampo, J.; Chereji, R.V.; Eriksson, P.R.; Clark, D.J. Contrasting Roles of the RSC and ISW1/CHD1 Chromatin Remodelers in RNA Polymerase II Elongation and Termination. Genome Res. 2019, 29, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Studitsky, V.M.; Kassavetis, G.A.; Geiduschek, E.P.; Felsenfeld, G. Mechanism of Transcription Through the Nucleosome by Eukaryotic RNA Polymerase. Science 1997, 278, 1960–1963. [Google Scholar] [CrossRef] [PubMed]
- Hodges, C.; Bintu, L.; Lubkowska, L.; Kashlev, M.; Bustamante, C. Nucleosomal Fluctuations Govern the Transcription Dynamics of RNA Polymerase II. Science 2009, 325, 626–628. [Google Scholar] [CrossRef] [PubMed]
- Bintu, L.; Kopaczynska, M.; Hodges, C.; Lubkowska, L.; Kashlev, M.; Bustamante, C. The Elongation Rate of RNA Polymerase Determines the Fate of Transcribed Nucleosomes. Nat. Struct. Mol. Biol. 2011, 18, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Kireeva, M.L.; Walter, W.; Tchernajenko, V.; Bondarenko, V.; Kashlev, M.; Studitsky, V.M. Nucleosome Remodeling Induced by RNA Polymerase II: Loss of the H2A/H2B Dimer during Transcription. Mol. Cell 2002, 9, 541–552. [Google Scholar] [CrossRef]
- Kulaeva, O.I.; Gaykalova, D.A.; Pestov, N.A.; Golovastov, V.V.; Vassylyev, D.G.; Artsimovitch, I.; Studitsky, V.M. Mechanism of Chromatin Remodeling and Recovery during Passage of RNA Polymerase II. Nat. Struct. Mol. Biol. 2009, 16, 1272–1278. [Google Scholar] [CrossRef]
- Gerasimova, N.S.; Volokh, O.I.; Pestov, N.A.; Armeev, G.A.; Kirpichnikov, M.P.; Shaytan, A.K.; Sokolova, O.S.; Studitsky, V.M. Structure of an Intranucleosomal DNA Loop That Senses DNA Damage during Transcription. Cells 2022, 11, 2678. [Google Scholar] [CrossRef]
- Crickard, J.B.; Lee, J.; Lee, T.H.; Reese, J.C. The Elongation Factor Spt4/5 Regulates RNA Polymerase II Transcription through the Nucleosome. Nucleic Acids Res. 2017, 45, 6362–6374. [Google Scholar] [CrossRef]
- Pestov, N.A.; Gerasimova, N.S.; Kulaeva, O.I.; Studitsky, V.M. Structure of Transcribed Chromatin Is a Sensor of DNA Damage. Sci. Adv. 2015, 1, e1500021. [Google Scholar] [CrossRef]
- Zou, T.; Hashiya, F.; Wei, Y.; Yu, Z.; Pandian, G.N.; Sugiyama, H. Direct Observation of H3–H4 Octasome by High-Speed AFM. Chem.–Eur. J. 2018, 24, 15998–16002. [Google Scholar] [CrossRef]
- Nozawa, K.; Takizawa, Y.; Pierrakeas, L.; Sogawa-Fujiwara, C.; Saikusa, K.; Akashi, S.; Luk, E.; Kurumizaka, H. Cryo–Electron Microscopy Structure of the H3-H4 Octasome: A Nucleosome-like Particle without Histones H2A and H2B. Proc. Natl. Acad. Sci. USA 2022, 119, e2206542119. [Google Scholar] [CrossRef] [PubMed]
- Torné, J.; Ray-Gallet, D.; Boyarchuk, E.; Garnier, M.; Le Baccon, P.; Coulon, A.; Orsi, G.A.; Almouzni, G. Two HIRA-Dependent Pathways Mediate H3.3 de Novo Deposition and Recycling during Transcription. Nat. Struct. Mol. Biol. 2020, 27, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Kuryan, B.G.; Kim, J.; Tran, N.N.H.; Lombardo, S.R.; Venkatesh, S.; Workman, J.L.; Carey, M. Histone Density Is Maintained during Transcription Mediated by the Chromatin Remodeler RSC and Histone Chaperone NAP1 in Vitro. Proc. Natl. Acad. Sci. USA 2012, 109, 1931–1936. [Google Scholar] [CrossRef]
- LeRoy, G.; Oksuz, O.; Descostes, N.; Aoi, Y.; Ganai, R.A.; Kara, H.O.; Yu, J.R.; Lee, C.H.; Stafford, J.; Shilatifard, A.; et al. LEDGF and HDGF2 Relieve the Nucleosome-Induced Barrier to Transcription in Differentiated Cells. Sci. Adv. 2019, 5, eaay3068. [Google Scholar] [CrossRef] [PubMed]
Spt16 Mode | 1 | 2 | 3 | |
---|---|---|---|---|
Nucleosome conditions | H2A–H2B presence on Spt16 side | Yes | Yes | Yes |
SHL(−7)–(−4) DNA peeling | Yes | Yes | Yes | |
SHL(−7)–(−1) DNA peeling | No | Yes | No | |
H2A-docking domain disruption on Spt16 side | No | Yes | No | |
Binding states | CTD binding to H2A–H2B | Yes | Yes | Yes |
MD binding to H3–H4 | No | Yes | No | |
Linker helix binding to acidic patch | / | Yes | No | |
MD position on nucleosomal DNA | SHL(−0.5)–(+1) | SHL(−0.5)–(+1) | SHL(−1)–(0) | |
PDB IDs | 7NKY | 7XSX, 7XTI, 7XTD | 6UPK, 6UPL, 7XT7 |
Ssrp1/Pob3 Mode | 1 | 2 | 3 | |
---|---|---|---|---|
Nucleosome conditions | H2A–H2B presence on Pob3 side | Yes | Yes | No |
SHL(+5)–(+7) DNA peeling | Yes, No | Yes | Yes | |
H2A-docking domain disruption on the Ssrp1/Pob3 side | No | No | / | |
Binding states | MD binding to H3–H4 | No | No | Yes |
MD position on nucleosomal DNA | SHL(+1) | SHL(+0.5) | SHL(+0.5) | |
PDB IDs | 7NKY, 7XSX, 7XTD | 6UPL, 7XT7 | 6UPK, 7XTI |
DD Mode | 1 | 2 |
---|---|---|
Spt16 mode | 1, 2 | 3 |
Ssrp1/Pob3 mode | 1, 3 | 2, 3 |
DD binding to nucleosomal DNA | SHL(+0.5) | SHL(−0.5) |
PDB IDs | 7NKY, 7XSX, 7XTI, 7XTD | 6UPL, 6UPK, 7XT7 |
PDB ID | Description | Spt16 MD Mode | Ssrp1/Pob3 MD Mode | DD Mode | Reference |
---|---|---|---|---|---|
7NKY | EC paused at SHL(−4) | 1 | 1 | 1 | [39] |
7XSX | EC paused at SHL(0): EC49 | 2 | 1 | 1 | [42] |
7XT7 | EC paused at SHL(0):EC49B Histone octamer jumped downstream of EC49 | 3 | 2 | 2 | [42] |
7XTI | EC paused at SHL(+1):EC58hex histone hexamer upstream of the EC | 2 | 3 | 1 | [42] |
7XTD | EC paused at SHL(+1):EC58oct Histone octamer upstream of the EC | 2 | 1 | 1 | [42] |
6UPL | FACT-octasome complex reconstituted by mixing H2A–H2B dimer, H3–H4 tetramer, and FACT | 3 | 2 | 2 | [60] |
6UPK | FACT-hexasome complex reconstituted by mixing H2A–H2B dimer, H3–H4 tetramer, and FACT | 3 | 3 | 2 | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujirai, T.; Ehara, H.; Sekine, S.-i.; Kurumizaka, H. Structural Transition of the Nucleosome during Transcription Elongation. Cells 2023, 12, 1388. https://doi.org/10.3390/cells12101388
Kujirai T, Ehara H, Sekine S-i, Kurumizaka H. Structural Transition of the Nucleosome during Transcription Elongation. Cells. 2023; 12(10):1388. https://doi.org/10.3390/cells12101388
Chicago/Turabian StyleKujirai, Tomoya, Haruhiko Ehara, Shun-ichi Sekine, and Hitoshi Kurumizaka. 2023. "Structural Transition of the Nucleosome during Transcription Elongation" Cells 12, no. 10: 1388. https://doi.org/10.3390/cells12101388
APA StyleKujirai, T., Ehara, H., Sekine, S. -i., & Kurumizaka, H. (2023). Structural Transition of the Nucleosome during Transcription Elongation. Cells, 12(10), 1388. https://doi.org/10.3390/cells12101388