A Multi-Trait Association Analysis of Brain Disorders and Platelet Traits Identifies Novel Susceptibility Loci for Major Depression, Alzheimer’s and Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Strengths and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Canobbio, I. Blood platelets: Circulating mirrors of neurons? Res. Pract. Thromb. Haemost. 2019, 3, 564–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canobbio, I.; Barbieri, S.S. Are platelets more than a model of brain neurons? Bleeding Thromb. Vasc. Biol. 2022, 1, 1. [Google Scholar] [CrossRef]
- Tseng, W.-L.; Huang, C.-L.; Chong, K.-Y.; Liao, C.-H.; Stern, A.; Cheng, J.-C.; Tseng, C.-P. Reelin is a platelet protein and functions as a positive regulator of platelet spreading on fibrinogen. Cell. Mol. Life Sci. 2010, 67, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Krueger, I.; Gremer, L.; Mangels, L.; Klier, M.; Jurk, K.; Willbold, D.; Bock, H.H.; Elvers, M. Reelin Amplifies Glycoprotein VI Activation and AlphaIIb Beta3 Integrin Outside-In Signaling via PLC Gamma 2 and Rho GTPases. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2391–2403. [Google Scholar] [CrossRef]
- Tirozzi, A.; Izzi, B.; Noro, F.; Marotta, A.; Gianfagna, F.; Hoylaerts, M.F.; Cerletti, C.; Donati, M.B.; De Gaetano, G.; Iacoviello, L.; et al. Assessing genetic overlap between platelet parameters and neurodegenerative disorders. Front. Immunol. 2020, 11, 2127. [Google Scholar] [CrossRef]
- Canobbio, I.; Abubaker, A.A.; Visconte, C.; Torti, M.; Pula, G. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer’s disease. Front. Cell. Neurosci. 2015, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Izzi, B.; Tirozzi, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Hoylaerts, M.F.; Iacoviello, L.; Gialluisi, A. Beyond Haemostasis and Thrombosis: Platelets in Depression and Its Co-Morbidities. Int. J. Mol. Sci. 2020, 21, 817. [Google Scholar] [CrossRef]
- Bondade, S.; Supriya; Seema, H.S.; Shivakumar, B.K. Mean Platelet Volume in Depression and Anxiety Disorder- a Hospital Based Case-control Study. Int. Neuropsychiatr. Dis. J. 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Cai, L.; Xu, L.; Wei, L.; Chen, W. Relationship of mean platelet volume to MDD: A retrospective study. Shanghai Arch. Psychiatry 2017, 29, 21–29. [Google Scholar]
- Tirozzi, A.; Parisi, R.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Gialluisi, A. Genomic Overlap between Platelet Parameters Variability and Age at Onset of Parkinson Disease. Appl. Sci. 2021, 11, 6927. [Google Scholar] [CrossRef]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.C.; Jin, D.; Li, Y.; Wang, R.T. Mean platelet volume and platelet distribution width in vascular dementia and Alzheimer’s disease. Platelets 2014, 25, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gialluisi, A.; Izzi, B.; Di Castelnuovo, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Revisiting the link between platelets and depression through genetic epidemiology: New insights from platelet distribution width. Haematologica 2019, 105, e246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turley, P.; Walters, R.K.; Maghzian, O.; Okbay, A.; Lee, J.J.; Fontana, M.A.; Nguyen-Viet, T.A.; Wedow, R.; Zacher, M.; Furlotte, N.A.; et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 2018, 50, 229–237. [Google Scholar] [CrossRef]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.; et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Blauwendraat, C.; Heilbron, K.; Vallerga, C.L.; Bandres-Ciga, S.; von Coelln, R.; Pihlstrøm, L.; Simón-Sánchez, J.; Schulte, C.; Sharma, M.; Krohn, L.; et al. Parkinson’s disease age at onset genome-wide association study: Defining heritability, genetic loci, and α-synuclein mechanisms. Mov. Disord. 2019, 34, 866–875. [Google Scholar] [CrossRef] [Green Version]
- Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Vuckovic, D.; Bao, E.L.; Akbari, P.; Lareau, C.A.; Mousas, A.; Jiang, T.; Chen, M.H.; Raffield, L.M.; Tardaguila, M.; Huffman, J.E.; et al. The Polygenic and Monogenic Basis of Blood Traits and Diseases. Cell 2020, 182, 1214–1231.e11. [Google Scholar] [CrossRef]
- Watanabe, K.; Taskesen, E.; Van Bochoven, A.; Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef] [Green Version]
- de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 2015, 11, e1004219. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.H.; Franklin, R.J.M.; Johnson, T.; Estrada, K.; et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 2021, 53, 392–402. [Google Scholar] [CrossRef]
- Bone, W.P.; Siewert, K.M.; Jha, A.; Klarin, D.; Damrauer, S.M.; Chang, K.-M.; Tsao, P.S.; Assimes, T.L.; Ritchie, M.D.; Voight, B.F. Multi-trait association studies discover pleiotropic loci between Alzheimer’s disease and cardiometabolic traits. Alzheimers. Res. Ther. 2021, 13, 34. [Google Scholar] [CrossRef]
- Chen, M.-H.; Raffield, L.M.; Mousas, A.; Sakaue, S.; Huffman, J.E.; Moscati, A.; Trivedi, B.; Jiang, T.; Akbari, P.; Vuckovic, D.; et al. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell 2020, 182, 1198–1213.e14. [Google Scholar] [CrossRef]
- Li, Q.S.; Tian, C.; Hinds, D.; Seabrook, G.R. The association of clinical phenotypes to known AD/FTD genetic risk loci and their inter-relationship. PLoS ONE 2020, 15, e0241552. [Google Scholar] [CrossRef]
- Astle, W.J.; Elding, H.; Jiang, T.; Allen, D.; Ruklisa, D.; Mann, A.L.; Mead, D.; Bouman, H.; Riveros-Mckay, F.; Kostadima, M.A.; et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell 2016, 167, 1415–1429.e19. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, A.B.; Zampieri, F.G.; Rosa, R.G.; Azevedo, L.C.P.; Veiga, V.C.; Avezum, A.; Damiani, L.P.; Marcadenti, A.; Kawano-Dourado, L.; Lisboa, T.; et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N. Engl. J. Med. 2020, 383, 2041–2052. [Google Scholar] [CrossRef]
- Park, Y.H.; Pyun, J.-M.; Hodges, A.; Jang, J.-W.; Bice, P.J.; Kim, S.; Saykin, A.J.; Nho, K. Dysregulated expression levels of APH1B in peripheral blood are associated with brain atrophy and amyloid-β deposition in Alzheimer’s disease. Alzheimer’s Res. Ther. 2021, 13, 183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, W.; Cao, X.; Wang, Y.; Zhu, C.; Guan, J. Identification of Serum Biomarkers in Patients with Alzheimer’s Disease by 2D-DIGE Proteomics. Gerontology 2022, 68, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Xi, J.; Wang, R.; Zhao, Q.; Liang, X.; Wu, W.; Zheng, L.; Guo, Q.; Hong, Z.; Fu, H.; et al. The Relationship Between Low-Density Lipoprotein Cholesterol and Progression of Mild Cognitive Impairment: The Influence of rs6859 in PVRL2. Front. Genet. 2022, 13, 823406. [Google Scholar] [CrossRef] [PubMed]
- Sierksma, A.; Lu, A.; Mancuso, R.; Fattorelli, N.; Thrupp, N.; Salta, E.; Zoco, J.; Blum, D.; Buée, L.; De Strooper, B.; et al. Novel Alzheimer risk genes determine the microglia response to amyloid-β but not to TAU pathology. EMBO Mol. Med. 2020, 12, e10606. [Google Scholar] [CrossRef] [PubMed]
- Wightman, D.P.; Jansen, I.E.; Savage, J.E.; Shadrin, A.A.; Bahrami, S.; Holland, D.; Rongve, A.; Børte, S.; Winsvold, B.S.; Drange, O.K.; et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 2021, 53, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Sakaue, S.; Kanai, M.; Tanigawa, Y.; Karjalainen, J.; Kurki, M.; Koshiba, S.; Narita, A.; Konuma, T.; Yamamoto, K.; Akiyama, M.; et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021, 53, 1415–1424. [Google Scholar] [CrossRef]
- Lu, S.-S.; Gong, F.-F.; Feng, F.; Hu, C.-Y.; Qian, Z.-Z.; Wu, Y.-L.; Yang, H.-Y.; Sun, Y.-H. Association of microtubule associated protein tau/Saitohin (MAPT/STH) MAPT_238bp/STH Q7R polymorphisms and Parkinson’s disease: A meta-analysis. Biochem. Biophys. Res. Commun. 2014, 453, 653–661. [Google Scholar] [CrossRef]
- Lutz, M.W.; Sprague, D.; Barrera, J.; Chiba-Falek, O. Shared genetic etiology underlying Alzheimer’s disease and major depressive disorder. Transl. Psychiatry 2020, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Cao, H.; Baranova, A. Shared Genetic Liability and Causal Associations Between Major Depressive Disorder and Cardiovascular Diseases. Front. Cardiovasc. Med. 2021, 8, 735136. [Google Scholar] [CrossRef]
- Loh, P.-R.; Kichaev, G.; Gazal, S.; Schoech, A.P.; Price, A.L. Mixed-model association for biobank-scale datasets. Nat. Genet. 2018, 50, 906–908. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, Z. ApoE and Neurodegenerative Diseases in Aging. Adv. Exp. Med. Biol. 2018, 1086, 77–92. [Google Scholar] [CrossRef]
- Cherian, A.; Divya, K.P. Genetics of Parkinson’s disease. Acta Neurol. Belg. 2020, 120, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Al-Naama, N.; Mackeh, R.; Kino, T. C(2)H(2)-Type Zinc Finger Proteins in Brain Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic Literature-Based Analysis. Front. Neurol. 2020, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Krimbou, L.; Denis, M.; Haidar, B.; Carrier, M.; Marcil, M.; Genest, J.J. Molecular interactions between apoE and ABCA1: Impact on apoE lipidation. J. Lipid Res. 2004, 45, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Logan, T.; Bendor, J.; Toupin, C.; Thorn, K.; Edwards, R.H. α-Synuclein promotes dilation of the exocytotic fusion pore. Nat. Neurosci. 2017, 20, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Chiu, T.-Y.; Lee, T.-Y.; Hsieh, H.-J.; Lin, C.-C.; Kao, L.-S. Soluble α-synuclein facilitates priming and fusion by releasing Ca2+ from the thapsigargin-sensitive Ca2+ pool in PC12 cells. J. Cell Sci. 2018, 131, jcs213017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaser, A.J.; Osterberg, V.R.; Dent, S.E.; Stackhouse, T.L.; Wakeham, C.M.; Boutros, S.W.; Weston, L.J.; Owen, N.; Weissman, T.A.; Luna, E.; et al. Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Sci. Rep. 2019, 9, 10919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, H.; Nambu-Niibori, A.; Wilson-Morifuji, M.; Mizuguchi, S.; Araki, N.; Sumiyoshi, H.; Sato, M.; Mezaki, Y.; Senoo, H.; Ishikawa, K.; et al. Epiplakin modifies the motility of the HeLa cells and accumulates at the outer surfaces of 3-D cell clusters. J. Dermatol. 2013, 40, 249–258. [Google Scholar] [CrossRef]
- Yao, G.; Su, X.; Nguyen, V.; Roberts, K.; Li, X.; Takakura, A.; Plomann, M.; Zhou, J. Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-Wasp complex. Hum. Mol. Genet. 2014, 23, 2769–2779. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, M.; Nefedova, V.; Artemova, N.; Kleymenov, S.; Levitsky, D.; Matyushenko, A. Structural and Functional Peculiarities of Cytoplasmic Tropomyosin Isoforms, the Products of TPM1 and TPM4 Genes. Int. J. Mol. Sci. 2021, 22, 5141. [Google Scholar] [CrossRef]
- Bodakuntla, S.; Yuan, X.; Genova, M.; Gadadhar, S.; Leboucher, S.; Birling, M.-C.; Klein, D.; Martini, R.; Janke, C.; Magiera, M.M. Distinct roles of α- and β-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration. EMBO J. 2021, 40, e108498. [Google Scholar] [CrossRef]
- Duffy, S.L.; Steiner, K.A.; Tam, P.P.L.; Boyd, A.W. Expression analysis of the Epha1 receptor tyrosine kinase and its high-affinity ligands Efna1 and Efna3 during early mouse development. Gene Expr. Patterns 2006, 6, 719–723. [Google Scholar] [CrossRef]
- Wang, R.; Yang, S.; Nie, T.; Zhu, G.; Feng, D.; Yang, Q. Transcription Factors: Potential Cell Death Markers in Parkinson’s Disease. Neurosci. Bull. 2017, 33, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Bhatia-Dey, N.; Heinbockel, T. The Olfactory System as Marker of Neurodegeneration in Aging, Neurological and Neuropsychiatric Disorders. Int. J. Environ. Res. Public Health 2021, 18, 6976. [Google Scholar] [CrossRef] [PubMed]
- Zima, L.; West, R.; Smolen, P.; Kobori, N.; Hergenroeder, G.W.; Choi, H.A.; Moore, A.N.; Redell, J.B.; Dash, P.K. Epigenetic modifications and their potential contributions to traumatic brain injury pathobiology and outcome. J. Neurotrauma 2022, 39, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gu, Z.; Lin, S.; Chen, L.; Dzreyan, V.; Eid, M.; Demyanenko, S.; He, B. Histone Deacetylases as Epigenetic Targets for Treating Parkinson’s Disease. Brain Sci. 2022, 12, 672. [Google Scholar] [CrossRef] [PubMed]
- Koçer, A.; Yaman, A.; Niftaliyev, E.; Dürüyen, H.; Eryilmaz, M.; Koçer, E. Assessment of platelet indices in patients with neurodegenerative diseases: Mean platelet volume was increased in patients with Parkinson’s disease. Curr. Gerontol. Geriatr. Res. 2013, 2013, 986254. [Google Scholar] [CrossRef]
- Subrahmanian, N.; LaVoie, M.J. Is there a special relationship between complex I activity and nigral neuronal loss in Parkinson’s disease? A critical reappraisal. Brain Res. 2021, 1767, 147434. [Google Scholar] [CrossRef] [PubMed]
- Melchinger, H.; Jain, K.; Tyagi, T.; Hwa, J. Role of Platelet Mitochondria: Life in a Nucleus-Free Zone. Front. Cardiovasc. Med. 2019, 6, 153. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Rathod, S.S.S.; Ghoneim, M.M.; Alshehri, S.; Ahmad, J.; Mishra, A.; Alhakamy, N.A. DNA Methylation: A Promising Approach in Management of Alzheimer’s Disease and Other Neurodegenerative Disorders. Biology 2022, 11, 90. [Google Scholar] [CrossRef]
- Fuior, E.V.; Gafencu, A.V. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int. J. Mol. Sci. 2019, 20, 5939. [Google Scholar] [CrossRef] [Green Version]
- Dominiczak, M.H.; Caslake, M.J. Apolipoproteins: Metabolic role and clinical biochemistry applications. Ann. Clin. Biochem. 2011, 48, 498–515. [Google Scholar] [CrossRef]
- Van Giau, V.; Bagyinszky, E.; An, S.S.A.; Kim, S.Y. Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatr. Dis. Treat. 2015, 11, 1723–1737. [Google Scholar] [CrossRef]
- Zhou, Y.; Mägi, R.; Milani, L.; Lauschke, V.M. Global genetic diversity of human apolipoproteins and effects on cardiovascular disease risk. J. Lipid Res. 2018, 59, 1987–2000. [Google Scholar] [CrossRef] [Green Version]
- Darling, T.K.; Lamb, T.J. Emerging roles for Eph receptors and ephrin ligands in immunity. Front. Immunol. 2019, 10, 1473. [Google Scholar] [CrossRef] [Green Version]
- Wee Yong, V.; Forsyth, P.A.; Bell, R.; Krekoski, C.A.; Edwards, D.R. Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 1998, 21, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.C.; Šimurina, M.; Garcia, M.T.; Novokmet, M.; Wang, Y.; Rudan, I.; Campbell, H.; Lauc, G.; Thomas, M.G.; Wang, W. The N-glycosylation of immunoglobulin G as a novel biomarker of Parkinson’s disease. Glycobiology 2017, 27, 501–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, C.F.; Rowe, D.B.; Mizuno, Y.; Mori, H.; Halliday, G.M. A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 2005, 128, 2665–2674. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Yu, W.; Zhao, Z.; Song, C.; Liu, Y.; Jia, G.; Wang, X.; Liu, Y. Peripheral Humoral Immune Response Is Associated With the Non-motor Symptoms of Parkinson’s Disease. Front. Neurosci. 2019, 13, 1057. [Google Scholar] [CrossRef] [Green Version]
- Sastry, B.R.; Morishita, W.; Yip, S.; Shew, T. Gaba-ergic transmission in deep cerebellar nuclei. Prog. Neurobiol. 1997, 53, 259–271. [Google Scholar] [CrossRef] [PubMed]
CHR | Pos | REF | ALT | rsID | p | nSNPs | Gene | Disorder |
---|---|---|---|---|---|---|---|---|
8 | 144,992,361 | C | T | rs7822511 | 8.82 × 10−11 | 139 | EPPK1 | AD |
22 | 43,414,330 | A | G | rs3091364 | 3.82 × 10−10 | 16 | TTLL1 | AD |
22 | 43,279,611 | A | G | rs4822218 | 3.91 × 10−10 | 9 | PACSIN2 | AD |
19 | 16,211,630 | A | G | rs59508494 | 1.49 × 10−9 | 3 | TPM4 | AD |
15 | 65,170,949 | C | T | rs2013555 | 6.37 × 10−9 | 72 | PIF1 | AD |
16 | 30,902,353 | A | G | rs80095680 | 3.62 × 10−8 | 89 | ZNF689 | AD |
7 | 99,581,469 | C | T | rs11761882 | 4.64 × 10−8 | 34 | AZGP1P1 | AD |
4 | 975,238 | C | T | rs73211813 | 2.99 × 10−10 | 45 | SLC26A1 | PD |
1 | 155,053,719 | C | T | rs1462855 | 4.17 × 10−8 | 36 | EFNA3 | PD |
14 | 104,000,183 | C | T | rs2756127 | 8.20 × 10−11 | 108 | TRMT61A | MDD |
13 | 31,733,057 | A | G | rs41292151 | 5.34 × 10−9 | 23 | HSPH1 | MDD |
(a) | ||||||
---|---|---|---|---|---|---|
SYMBOL | CHR | START | STOP | NSNPS | ZSTAT | p |
PVRIG | 7 | 99,805,864 | 99,829,113 | 43 | 5.5752 | 1.24 × 10−8 |
FAM57B | 16 | 30,025,748 | 30074299 | 42 | 5.1135 | 1.58 × 10−7 |
NDUFS2 | 1 | 1.61 × 108 | 1.61 × 108 | 43 | 5.0689 | 2.00 × 10−7 |
C16orf92 | 16 | 30,024,655 | 30,049,057 | 27 | 4.8555 | 6.01 × 10−7 |
KLC3 | 19 | 45,826,692 | 45,864,778 | 46 | 4.6901 | 1.37 × 10−6 |
B4GALT3 | 1 | 1.61 × 108 | 1.61 × 108 | 18 | 4.6514 | 1.65 × 10−6 |
ZNF688 | 16 | 30,570,667 | 30,594,055 | 5 | 4.6452 | 1.70 × 10−6 |
DEDD | 1 | 1.61 × 108 | 1.61 × 108 | 22 | 4.6293 | 1.83 × 10−6 |
(b) | ||||||
SYMBOL | CHR | START | STOP | NSNPS | ZSTAT | p |
DPM3 | 1 | 1.55 × 108 | 1.55 × 108 | 17 | 7.3804 | 7.89 × 10−14 |
SLC26A1 | 4 | 962,861 | 997,228 | 60 | 6.3491 | 1.08 × 10−10 |
FBXL19 | 16 | 30,924,376 | 30,970,104 | 26 | 6.2787 | 1.71 × 10−10 |
SMIM15 | 5 | 60,443,536 | 60,468,301 | 38 | 6.1459 | 3.98 × 10−10 |
ERCC8 | 5 | 60,159,658 | 60,250,900 | 133 | 5.727 | 5.11 × 10−9 |
FAM200B | 4 | 15,673,285 | 15,717,188 | 66 | 5.2295 | 8.50 × 10−8 |
CTF1 | 16 | 30,897,928 | 30,924,881 | 13 | 5.2123 | 9.32 × 10−8 |
ADAM15 | 1 | 1.55 × 108 | 1.55 × 108 | 24 | 5.1236 | 1.50 × 10−7 |
PRSS8 | 16 | 31,132,756 | 31,157,083 | 17 | 5.0704 | 1.99 × 10−7 |
NCOR1 | 17 | 15,922,471 | 16,131,499 | 206 | 5.0238 | 2.53 × 10−7 |
VKORC1 | 16 | 31,092,163 | 31,117,301 | 10 | 4.9064 | 4.64 × 10−7 |
ZNF668 | 16 | 31,062,164 | 31,095,641 | 19 | 4.8085 | 7.61 × 10−7 |
PRSS36 | 16 | 31,140,246 | 31,171,415 | 19 | 4.7714 | 9.15 × 10−7 |
ZNF668 | 16 | 31,062,813 | 31,083,451 | 14 | 4.7305 | 1.12 × 10−6 |
SRCAP | 16 | 30,699,530 | 30,765,602 | 18 | 4.6567 | 1.61 × 10−6 |
(c) | ||||||
SYMBOL | CHR | START | STOP | NSNPS | ZSTAT | p |
ZNF165 | 6 | 28,038,753 | 28,067,341 | 45 | 7.314 | 1.30 × 10−13 |
BTN2A2 | 6 | 26,373,324 | 26,405,102 | 88 | 6.2064 | 2.71 × 10−10 |
OR2W1 | 6 | 29,001,990 | 29023,017 | 5 | 5.9545 | 1.30 × 10−9 |
OR12D3 | 6 | 29,331,200 | 29,353,068 | 6 | 5.9392 | 1.43 × 10−9 |
TRMT61A | 14 | 1.04 × 108 | 1.04 × 108 | 44 | 5.9312 | 1.50 × 10−9 |
OR2J1 | 6 | 29,058,386 | 29,079,658 | 5 | 5.6346 | 8.77 × 10−9 |
HMGN4 | 6 | 26,528,633 | 26,556,482 | 30 | 5.5889 | 1.14 × 10−8 |
OR2B3 | 6 | 29,043,985 | 29,065,090 | 4 | 5.2266 | 8.63 × 10−8 |
BTN3A3 | 6 | 26,430,700 | 26,463,643 | 54 | 4.9893 | 3.03 × 10−7 |
ZNF197 | 3 | 44,616,380 | 44,699,963 | 70 | 4.8584 | 5.92 × 10−7 |
ZNF35 | 3 | 44,680,219 | 44,712,283 | 18 | 4.8361 | 6.62 × 10−7 |
TRIM27 | 6 | 28,860,779 | 28,901,766 | 11 | 4.7826 | 8.65 × 10−7 |
OR2B6 | 6 | 27,915,019 | 27,935,960 | 14 | 4.7288 | 1.13 × 10−6 |
DLST | 14 | 75,338,594 | 75,380,448 | 62 | 4.6985 | 1.31 × 10−6 |
RHOBTB1 | 10 | 62,619,196 | 62,771,198 | 238 | 4.6824 | 1.42 × 10−6 |
ZNF660 | 3 | 44,609,715 | 44,651,186 | 46 | 4.6731 | 1.48 × 10−6 |
RBM4B | 11 | 66,422,469 | 66,455,392 | 19 | 4.6717 | 1.49 × 10−6 |
ITGB6 | 2 | 1.61 × 108 | 1.61 × 108 | 312 | 4.6636 | 1.55 × 10−6 |
RBM14-RBM4 | 11 | 66,374,097 | 66,423,940 | 32 | 4.5834 | 2.29 × 10−6 |
(a) | ||||||
---|---|---|---|---|---|---|
SNPs Overlap between | SNP | Gene | Chr:position | Function | Previously Associated with AD | Previously Associated with Platelet Parameters |
AD and all platelet parameters | rs6727023 | EHD3 | 2:31475960 | Upstream | ||
rs62118504 | EXOC3L2 | 19:45734751 | Intronic | [23] | ||
rs2143926 | 22:43185180 | |||||
rs4822218 | PACSIN2 | 22:43279611 | Intronic | |||
rs2267487 | PACSIN2 | 22:43411389 | Upstream | |||
AD, MPV and PDW | rs4575098 | B4GALT3 | 1:161155392 | Upstream | [23] | |
rs585021 | ITGB5 | 3:124482869 | Intronic | |||
rs11620465 | LRCH1 | 13:47250344 | Intronic | |||
rs3091364 | 22:43414330 | |||||
AD, MPV and Plt | rs12461065 | PPP1R37 | 19:45605308 | Intronic | [23] | |
rs12461144 | EXOC3L2 | 19:45723706 | Intronic | [23] | ||
rs123187 | 19:45830947 | [23] | ||||
AD, PDW and Plt | rs9357551 | 6:47606029 | [24] | Plt [25] | ||
AD and MPV | rs10934680 | KALRN | 3:124440780 | Downstream | ||
rs11669338 | NECTIN2 | 19:45382984 | Downstream | [24] | ||
rs138235833 | 19:45415285 | |||||
rs620807 | 19:45706952 | [24] | ||||
rs4803806 | 19:45708947 | |||||
AD and PDW | rs858502 | CASTOR3 | 7:99843353 | Intronic | [24] | |
rs7113976 | 11:85869737 | [24] | ||||
rs283810 | NECTIN2 | 19:45388241 | Downstream | [24] | ||
rs1160983 | TOMM40 | 19:45397229 | Synonymous variant | |||
rs584007 | APOC1 | 19:45416478 | Upstream | [24] | ||
rs117648021 | EIF3L | 22:38274632 | Intronic | |||
(b) | ||||||
SNPs Overlap between | SNP | Gene | Chr:position | Function | Previously Associated with PD | Previously Associated with Platelet Parameters |
PD, MPV and PDW | rs10847839 | HIP1R | 12:122838013 | Intronic | ||
PD and MPV | rs17689966 | CRHR1 | 17:45833089 | Intronic | ||
rs9899833 | MAPT | 17:45915577 | Intronic |
(a) | |||
---|---|---|---|
Genes Overlap between | Gene | Previously Associated with AD | Previously Associated with Platelet Parameters |
AD and all platelet parameters | AC005779.2 | ||
AC006126.3 | |||
CD2AP | [26] | MPV [26] and Plt [26] | |
CKM | [16] | ||
EHD3 | MPV [27], PDW [19] and Plt [27] | ||
EXOC3L2 | [24] | ||
KLC3 | |||
L47234.1 | |||
MARK4 | [24] | MPV [25], PDW [27] and Plt [25] | |
PVR | [24] | MPV [27] | |
AD, MPV and PDW | ADAMTS4 | [24] | |
AL590714.1 | |||
APOA2 | |||
B4GALT3 | |||
DEDD | [24] | ||
NDUFS2 | |||
TOMM40L | [28] | ||
AD, MPV and Plt | GEMIN7 | [24] | |
AD, PDW and Plt | GATS | [29] | |
AZGP1 | [30] | ||
PILRA | [24] | ||
AD and MPV | BLOC1S3 | [24] | MPV [25], PDW [27] and Plt [27] |
PPP1R37 | [24] | ||
PVRL2 | [31] | ||
AD and PDW | APOC1 | [23] | PDW [19] |
APOE | [24] | PDW [19] and Plt [27] | |
GPC2 | [32] | ||
PVRIG | |||
SLC24A4 | [24] | PDW [19] | |
STAG3 | [33] | ||
TOMM40 | [24] | ||
AD and Plt | IGSF23 | [24] | |
PICALM | [24] | ||
(b) | |||
Genes Overlap between | Gene | Previously Associated with PD | Previously Associated with Platelet Parameters |
PD and MPV | WNT3 | [34] | |
AC008498.1 | |||
SPPL2C | [34] | ||
ARHGAP27 | [34] | ||
CRHR1 | [34] | ||
MAPT | [34] | Plt [25] | |
ELOVL7 | [34] | MPV [19] | |
ERCC8 | |||
SMIM15 | |||
PLEKHM1 | [34] | ||
KANSL1 | [34] | ||
NSF | [34] | ||
NDUFAF2 | [34] | ||
STH | [35] | ||
PD and PDW | SRCAP | MPV [19] | |
(c) | |||
Genes Overlap between | Gene | Previously Associated with AD | Previously Associated with Platelet Parameters |
MDD and MPV | OR2J3 | [36] | |
TRIM27 | |||
OR5V1 | [37] | ||
C11orf31 | |||
OR2B3 | |||
NRD1 | |||
OR12D3 | |||
HIST1H2BK | |||
OR2J1 | |||
OR2W1 | |||
HIST1H4K | |||
HIST1H2AK | |||
MDD and PDW | MARK3 | [37] | PDW [38] |
TRMT61A | |||
MDD, PDW and Plt | HIST1H3B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirozzi, A.; Quiccione, M.S.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Gialluisi, A. A Multi-Trait Association Analysis of Brain Disorders and Platelet Traits Identifies Novel Susceptibility Loci for Major Depression, Alzheimer’s and Parkinson’s Disease. Cells 2023, 12, 245. https://doi.org/10.3390/cells12020245
Tirozzi A, Quiccione MS, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Gialluisi A. A Multi-Trait Association Analysis of Brain Disorders and Platelet Traits Identifies Novel Susceptibility Loci for Major Depression, Alzheimer’s and Parkinson’s Disease. Cells. 2023; 12(2):245. https://doi.org/10.3390/cells12020245
Chicago/Turabian StyleTirozzi, Alfonsina, Miriam Shasa Quiccione, Chiara Cerletti, Maria Benedetta Donati, Giovanni de Gaetano, Licia Iacoviello, and Alessandro Gialluisi. 2023. "A Multi-Trait Association Analysis of Brain Disorders and Platelet Traits Identifies Novel Susceptibility Loci for Major Depression, Alzheimer’s and Parkinson’s Disease" Cells 12, no. 2: 245. https://doi.org/10.3390/cells12020245
APA StyleTirozzi, A., Quiccione, M. S., Cerletti, C., Donati, M. B., de Gaetano, G., Iacoviello, L., & Gialluisi, A. (2023). A Multi-Trait Association Analysis of Brain Disorders and Platelet Traits Identifies Novel Susceptibility Loci for Major Depression, Alzheimer’s and Parkinson’s Disease. Cells, 12(2), 245. https://doi.org/10.3390/cells12020245