ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Lens Diameter Measurement
2.3. Histological Evaluation
2.4. Immunostaining
2.5. RNA Sequencing and Data Analysis
2.6. Lens Protein Determination
2.7. Glutathione Assays
2.8. Reactive Oxygen Species Assays
2.9. Free Amino Acid Detection
3. Results
3.1. ATF4 Is Required for Lens Epithelial Cell Proliferation and Survival during Late Embryonic Development
3.2. Unfolded Protein Response Markers Are Only Modestly Affected in the Atf4 Null Lens
3.3. RNAseq Revealed That ATF4 Regulates a Subset of the Lens Transcriptome
3.4. Atf4 Null Lens Epithelial Cells Downregulate Known Lens Epithelial Markers While Upregulating α-SMA Expression
3.5. ATF4 Likely Regulates a Portion of the Lens-Preferred Transcriptome Including Markers of Late Fiber Cell Differentiation
3.6. The Atf4 Null Lens Has Reduced mRNA Levels of Many Genes Regulating Amino Acid Metabolism and Reduced Free Amino Acid Pools
3.7. Aft4 Null Lenses Have Reduced Levels of Several Glutathione Pathway Genes and Free Glutathione
3.8. Atf4 Null Lenses May Have Alterations in Sugar Metabolism Compared to Wildtype
3.9. Only Portions of the Autophagy Pathway Are Induced in the Atf4 Null Lens
4. Discussion
4.1. ATF4 as a Component of the Gene Regulatory Network (GRN) Regulating Lens Development
4.2. ATF4 Appears to Not Regulate Developmental UPR in the Lens
4.3. ATF4 Likely Regulates Genes Involved in Amino Acid Transport and Glutathione Pathways in Lens
4.4. ATF4 Likely Functions to Metabolically Adapt the Lens to Its Avascular Environment
5. Conclusions and Outstanding Questions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bassnett, S.; Shi, Y.; Vrensen, G.F. Biological glass: Structural determinants of eye lens transparency. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 1250–1264. [Google Scholar] [CrossRef]
- Cvekl, A.; Zhang, X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet. 2017, 33, 677–702. [Google Scholar] [CrossRef]
- Kuszak, J.R. The ultrastructure of epithelial and fiber cells in the crystalline lens. Int. Rev. Cytol. 1995, 163, 305–350. [Google Scholar]
- Duncan, M.K.; Cvekl, A.; Kantorow, M.; Piatigorsky, J. Lens crystallins. In Development of the Ocular Lens; Lovicu, F.J., Robinson, M.L., Eds.; Cambridge University Press: Cambridge, UK, 2004; 416p. [Google Scholar]
- Cvekl, A.; McGreal, R.; Liu, W. Lens Development and Crystallin Gene Expression. Prog. Mol. Biol. Transl. Sci. 2015, 134, 129–167. [Google Scholar] [CrossRef]
- Brennan, L.; Costello, M.J.; Hejtmancik, J.F.; Menko, A.S.; Riazuddin, S.A.; Shiels, A.; Kantorow, M. Autophagy Requirements for Eye Lens Differentiation and Transparency. Cells 2023, 12, 475. [Google Scholar] [CrossRef] [PubMed]
- Bassnett, S. Lens organelle degradation. Exp. Eye Res. 2002, 74, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mathias, R.T.; Kistler, J.; Donaldson, P. The lens circulation. J. Membr. Biol. 2007, 216, 1–16. [Google Scholar] [CrossRef]
- Cvekl, A.; Zhao, Y.; Mcgreal, R.; Xie, Q.; Gu, X.; Zheng, D. Evolutionary Origins of Pax6 Control of Crystallin Genes. Genome Biol. Evol. 2017, 9, 2075–2092. [Google Scholar] [CrossRef]
- Ashery-Padan, R.; Marquardt, T.; Zhou, X.; Gruss, P. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 2000, 14, 2701–2711. [Google Scholar] [CrossRef]
- Kamachi, Y.; Uchikawa, M.; Tanouchi, A.; Sekido, R.; Kondoh, H. Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev. 2001, 15, 1272–1286. [Google Scholar] [CrossRef] [PubMed]
- Audette, D.S.; Anand, D.; So, T.; Rubenstein, T.B.; Lachke, S.A.; Lovicu, F.J.; Duncan, M.K. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development 2016, 143, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Wigle, J.T.; Chowdhury, K.; Gruss, P.; Oliver, G. Prox1 function is crucial for mouse lens-fibre elongation. Nat. Genet. 1999, 21, 318–322. [Google Scholar] [CrossRef]
- Kim, J.I.; Li, T.; Ho, I.C.; Grusby, M.J.; Glimcher, L.H. Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc. Natl. Acad. Sci. USA 1999, 96, 3781–3785. [Google Scholar] [CrossRef]
- Kawauchi, S.; Takahashi, S.; Nakajima, O.; Ogino, H.; Morita, M.; Nishizawa, M.; Yasuda, K.; Yamamoto, M. Regulation of Lens Fiber Cell Differentiation by Transcription Factor c-Maf. J. Biol. Chem. 1999, 274, 19254–19260. [Google Scholar] [CrossRef] [PubMed]
- Blixt, A.; Mahlapuu, M.; Aitola, M.; Pelto-Huikko, M.; Enerbäck, S.; Carlsson, P. A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev. 2000, 14, 245–254. [Google Scholar] [CrossRef]
- Brownell, I.; Dirksen, M.; Jamrich, M. Forkhead Foxe3 maps to the dysgenetic lens locus and is critical in lens development and differentiation. Genesis 2000, 27, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Anand, D.; Lachke, S.A. Systems biology of lens development: A paradigm for disease gene discovery in the eye. Exp. Eye Res. 2017, 156, 22–33. [Google Scholar] [CrossRef]
- De Maria, A.; Bassnett, S. Birc7: A Late Fiber Gene of the Crystalline Lens. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4823–4834. [Google Scholar] [CrossRef]
- Cvekl, A.; Ashery-Padan, R. The cellular and molecular mechanisms of vertebrate lens development. Development 2014, 141, 4432–4447. [Google Scholar] [CrossRef]
- Hejtmancik, J.F.; Beebe, D.C.; Ostrer, H.; Piatigorsky, J. d- and b-crystallin mRNA levels in the embryonic and posthatched chicken lens: Temporal and spatial changes during development. Dev. Biol. 1985, 109, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Faranda, A.P.; Shihan, M.H.; Wang, Y.; Duncan, M.K. The aging mouse lens transcriptome. Exp. Eye Res. 2021, 209, 108663. [Google Scholar] [CrossRef]
- Reddy, T.R.; Tang, H.; Li, X.; Wong-Staal, F. Functional interaction of the HTLV-1 transactivator Tax with activating transcription factor-4 (ATF4). Oncogene 1997, 14, 2785–2792. [Google Scholar] [CrossRef] [PubMed]
- Mahor, D.; Pandey, R.; Bulusu, V. TCA cycle off, ATF4 on for metabolic homeostasis. Trends Biochem. Sci. 2022, 47, 558–560. [Google Scholar] [CrossRef] [PubMed]
- B’chir, W.; Maurin, A.C.; Carraro, V.; Averous, J.; Jousse, C.; Muranishi, Y.; Parry, L.; Stepien, G.; Fafournoux, P.; Bruhat, A. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013, 41, 7683–7699. [Google Scholar] [CrossRef] [PubMed]
- Wortel, I.M.N.; Van Der Meer, L.T.; Kilberg, M.S.; Van Leeuwen, F.N. Surviving Stress: Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells. Trends Endocrinol. Metab. 2017, 28, 794–806. [Google Scholar] [CrossRef]
- Rasmussen, B.B.; Adams, C.M. ATF4 Is a Fundamental Regulator of Nutrient Sensing and Protein Turnover. J. Nutr. 2020, 150, 979–980. [Google Scholar] [CrossRef]
- Masuoka, H.C.; Townes, T.M. Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood 2002, 99, 736–745. [Google Scholar] [CrossRef]
- Hettmann, T.; Barton, K.; Leiden, J.M. Microphthalmia due to p53-mediated apoptosis of anterior lens epithelial cells in mice lacking the CREB-2 transcription factor. Dev. Biol. 2000, 222, 110–123. [Google Scholar] [CrossRef]
- Tanaka, T.; Tsujimura, T.; Takeda, K.; Sugihara, A.; Maekawa, A.; Terada, N.; Yoshida, N.; Akira, S. Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes Cells 1998, 3, 801–810. [Google Scholar] [CrossRef]
- Faranda, A.P.; Shihan, M.H.; Wang, Y.; Duncan, M.K. The effect of sex on the mouse lens transcriptome. Exp Eye Res. 2021, 209, 108676. [Google Scholar] [CrossRef]
- Alizadeh, A.; Clark, J.; Seeberger, T.; Hess, J.; Blankenship, T.; FitzGerald, P.G. Characterization of a mutation in the lens-specific CP49 in the 129 strain of mouse. Investig. Ophthalmol. Vis. Sci. 2004, 45, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Reed, N.A.; Oh, D.-J.; Czymmek, K.J.; Duncan, M.K. An immunohistochemical method for the detection of proteins in the vertebrate lens. J. Immunol. Methods 2001, 253, 243–252. [Google Scholar] [CrossRef]
- Shihan, M.H.; Novo, S.G.; Le Marchand, S.J.; Wang, Y.; Duncan, M.K. A simple method for quantitating confocal fluorescent images. Biochem. Biophys. Rep. 2021, 25, 100916. [Google Scholar] [CrossRef]
- Krueger, F.; James, F.; Ewels, P.; Afyounian, E.; Schuster-Boeckler, B. FelixKrueger/TrimGalore: v0.6.7, Zenodo; CERN: Geneva, Switzerland, 2021. [CrossRef]
- Bullard, J.H.; Purdom, E.; Hansen, K.D.; Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinform. 2010, 11, 94. [Google Scholar] [CrossRef]
- Durinck, S.; Moreau, Y.; Kasprzyk, A.; Davis, S.; De Moor, B.; Brazma, A.; Huber, W. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics 2005, 21, 3439–3440. [Google Scholar] [CrossRef]
- Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009, 4, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Chen, Y.; Lun, A.T.; Smyth, G.K. From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 2016, 5, 1438. [Google Scholar] [CrossRef]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Manthey, A.L.; Terrell, A.M.; Lachke, S.A.; Polson, S.W.; Duncan, M.K. Development of novel filtering criteria to analyze RNA-sequencing data obtained from the murine ocular lens during embryogenesis. Genom. Data 2014, 2, 369–374. [Google Scholar] [CrossRef]
- Chan, C.P.; Kok, K.H.; Tang, H.M.; Wong, C.M.; Jin, D.Y. Internal ribosome entry site-mediated translational regulation of ATF4 splice variant in mammalian unfolded protein response. Biochim. Biophys. Acta 2013, 1833, 2165–2175. [Google Scholar] [CrossRef]
- Kreitz, S.; Fackelmayer, F.O.; Gerdes, J.; Knippers, R. The proliferation-specific human Ki-67 protein is a constituent of compact chromatin. Exp. Cell Res. 2000, 261, 284–292. [Google Scholar] [CrossRef]
- Wang, Y.; Terrell, A.M.; Riggio, B.A.; Anand, D.; Lachke, S.A.; Duncan, M.K. beta1-Integrin Deletion From the Lens Activates Cellular Stress Responses Leading to Apoptosis and Fibrosis. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3896–3922. [Google Scholar] [CrossRef]
- Hetz, C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012, 13, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Firtina, Z.; Duncan, M.K. Unfolded Protein Response (UPR) is activated during normal lens development. Gene Expr. Patterns 2011, 11, 135–143. [Google Scholar] [CrossRef]
- Firtina, Z.; Danysh, B.P.; Bai, X.; Gould, D.B.; Kobayashi, T.; Duncan, M.K. Abnormal expression of collagen IV in lens activates unfolded protein response resulting in cataract. J. Biol. Chem. 2009, 284, 35872–35884. [Google Scholar] [CrossRef] [PubMed]
- Ikesugi, K.; Yamamoto, R.; Mulhern, M.L.; Shinohara, T. Role of the unfolded protein response (UPR) in cataract formation. Exp. Eye Res. 2006, 83, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Alapure, B.V.; Stull, J.K.; Firtina, Z.; Duncan, M.K. The unfolded protein response is activated in connexin 50 mutant mouse lenses. Exp. Eye Res. 2012, 102, 28–37. [Google Scholar] [CrossRef]
- Marton, M.; Banhegyi, G.; Gyongyosi, N.; Kalman, E.E.; Pettko-Szandtner, A.; Kaldi, K.; Kapuy, O. A systems biological analysis of the ATF4-GADD34-CHOP regulatory triangle upon endoplasmic reticulum stress. FEBS Open Bio 2022, 12, 2065–2082. [Google Scholar] [CrossRef]
- Lee, A.S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 2005, 35, 373–381. [Google Scholar] [CrossRef]
- Averous, J.; Bruhat, A.; Jousse, C.; Carraro, V.; Thiel, G.; Fafournoux, P. Induction of CHOP Expression by Amino Acid Limitation Requires Both ATF4 Expression and ATF2 Phosphorylation. J. Biol. Chem. 2004, 279, 5288–5297. [Google Scholar] [CrossRef]
- Piperi, C.; Adamopoulos, C.; Papavassiliou, A.G. XBP1: A Pivotal Transcriptional Regulator of Glucose and Lipid Metabolism. Trends Endocrinol. Metab. 2016, 27, 119–122. [Google Scholar] [CrossRef]
- Manthey, A.L.; Lachke, S.A.; FitzGerald, P.G.; Mason, R.W.; Scheiblin, D.A.; McDonald, J.H.; Duncan, M.K. Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development. Mech. Dev. 2014, 131, 86–110. [Google Scholar] [CrossRef]
- Kim, E.J.; Kho, J.H.; Kang, M.R.; Um, S.J. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell 2007, 28, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Pontoriero, G.F.; Smith, A.N.; Miller, L.A.; Radice, G.L.; West-Mays, J.A.; Lang, R.A. Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival. Dev. Biol. 2009, 326, 403–417. [Google Scholar] [CrossRef]
- Marcantonio, J.M.; Vrensen, G.F. Cell biology of posterior capsular opacification. Eye 1999, 13, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Simirskii, V.N.; Wang, Y.; Duncan, M.K. Conditional deletion of beta1-integrin from the developing lens leads to loss of the lens epithelial phenotype. Dev. Biol. 2007, 306, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Shihan, M.H.; Kanwar, M.; Wang, Y.; Jackson, E.E.; Faranda, A.P.; Duncan, M.K. Fibronectin has multifunctional roles in posterior capsular opacification (PCO). Matrix Biol. 2020, 90, 79–108. [Google Scholar] [CrossRef]
- Nakahara, M.; Nagasaka, A.; Koike, M.; Uchida, K.; Kawane, K.; Uchiyama, Y.; Nagata, S. Degradation of nuclear DNA by DNase II-like acid DNase in cortical fiber cells of mouse eye lens. FEBS J. 2007, 274, 3055–3064. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Landsbury, A.; Dahm, R.; Liu, Y.; Zhang, Q.; Quinlan, R.A. Functions of the intermediate filament cytoskeleton in the eye lens. J. Clin. Investig. 2009, 119, 1837–1848. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Huang, C.; Xue, L.; Peng, Y.; Fu, Q.; Gao, L.; Li, W. Targeted knockout of the mouse betaB2-crystallin gene (Crybb2) induces age-related cataract. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5476–5483. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.K.; Xie, L.; David, L.L.; Robinson, M.L.; Taube, J.R.; Cui, W.; Reneker, L.W. Ectopic Pax6 expression disturbs lens fiber cell differentiation. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3589–3598. [Google Scholar] [CrossRef] [PubMed]
- Vasiliev, O.; Rhodes, S.J.; Beebe, D.C. Identification and expression of Hop, an atypical homeobox gene expressed late in lens fiber cell terminal differentiation. Mol. Vis. 2007, 13, 114–124. [Google Scholar]
- Dash, S.; Dang, C.A.; Beebe, D.C.; Lachke, S.A. Deficiency of the RNA binding protein caprin2 causes lens defects and features of Peters anomaly. Dev. Dyn. 2015, 244, 1313–1327. [Google Scholar] [CrossRef]
- Lucey, M.M.; Wang, Y.; Bustin, M.; Duncan, M.K. Differential expression of the HMGN family of chromatin proteins during ocular development. Gene Expr. Patterns 2008, 8, 433–437. [Google Scholar] [CrossRef]
- Kakrana, A.; Yang, A.; Anand, D.; Djordjevic, D.; Ramachandruni, D.; Singh, A.; Huang, H.; Ho, J.W.K.; Lachke, S.A. iSyTE 2.0: A database for expression-based gene discovery in the eye. Nucleic Acids Res. 2018, 46, D875–D885. [Google Scholar] [CrossRef] [PubMed]
- Lachke, S.A.; Ho, J.W.; Kryukov, G.V.; O’Connell, D.J.; Aboukhalil, A.; Bulyk, M.L.; Park, P.J.; Maas, R.L. iSyTE: Integrated Systems Tool for Eye gene discovery. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1617–1627. [Google Scholar] [CrossRef]
- Ahsan, S.; Draghici, S. Identifying Significantly Impacted Pathways and Putative Mechanisms with iPathwayGuide. Curr. Protoc. Bioinform. 2017, 57, 7.15.1–7.15.30. [Google Scholar] [CrossRef]
- Nishimoto, S.; Kawane, K.; Watanabe-Fukunaga, R.; Fukuyama, H.; Ohsawa, Y.; Uchiyama, Y.; Hashida, N.; Ohguro, N.; Tano, Y.; Morimoto, T.; et al. Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens. Nature 2003, 424, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Pirity, M.K.; Wang, W.L.; Wolf, L.; Chauhan, B.K.; Cveklova, K.; Tamm, E.R.; Ashery-Padan, R.; Metzger, D.; Nakai, A.; et al. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation. Epigenetics Chromatin 2010, 3, 21. [Google Scholar] [CrossRef]
- Shan, J.; Zhang, F.; Sharkey, J.; Tang, T.A.; Örd, T.; Kilberg, M.S. The C/ebp-Atf response element (CARE) location reveals two distinct Atf4-dependent, elongation-mediated mechanisms for transcriptional induction of aminoacyl-tRNA synthetase genes in response to amino acid limitation. Nucleic Acids Res. 2016, 44, 9719–9732. [Google Scholar] [CrossRef]
- Krokowski, D.; Han, J.; Saikia, M.; Majumder, M.; Yuan, C.L.; Guan, B.J.; Bevilacqua, E.; Bussolati, O.; Broer, S.; Arvan, P.; et al. A self-defeating anabolic program leads to beta-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux. J. Biol. Chem. 2013, 288, 17202–17213. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Ohta, T.; Miura, F.; Oki, S. ChIP-Atlas 2021 update: A data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data. Nucleic Acids Res. 2022, 50, W175–W182. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Vishveshwara, S. A study of communication pathways in methionyl-tRNA synthetase by molecular dynamics simulations and structure network analysis. Proc. Natl. Acad. Sci. USA 2007, 104, 15711–15716. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Monnier, V.M.; Whitson, J. Lens glutathione homeostasis: Discrepancies and gaps in knowledge standing in the way of novel therapeutic approaches. Exp. Eye Res. 2017, 156, 103–111. [Google Scholar] [CrossRef]
- Varadaraj, K.; Gao, J.; Mathias, R.T.; Kumari, S.S. GPX1 knockout, not catalase knockout, causes accelerated abnormal optical aberrations and cataract in the aging lens. Mol. Vis. 2022, 28, 11–20. [Google Scholar] [PubMed]
- Jiang, G.; Zhang, B.B. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E671–E678. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Myopathies Related to Glycogen Metabolism Disorders. Neurotherapeutics 2018, 15, 915–927. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Abdelmohsen, K.; Abe, A.; Abedin, M.J.; Abeliovich, H.; Acevedo Arozena, A.; Adachi, H.; Adams, C.M.; Adams, P.D.; Adeli, K.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016, 12, 1–222. [Google Scholar] [CrossRef]
- Sabbieti, M.G.; Marchegiani, A.; Sufianov, A.A.; Gabai, V.L.; Shneider, A.; Agas, D. P62/SQSTM1 beyond Autophagy: Physiological Role and Therapeutic Applications in Laboratory and Domestic Animals. Life 2022, 12, 539. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, D.; Cvekl, A. A comprehensive spatial-temporal transcriptomic analysis of differentiating nascent mouse lens epithelial and fiber cells. Exp. Eye Res. 2018, 175, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Yang, Y.; Huang, J.; Ninkovic, J.; Walcher, T.; Wolf, L.; Vitenzon, A.; Zheng, D.; Gotz, M.; Beebe, D.C.; et al. Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain. PLoS ONE 2013, 8, e54507. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Harvey, S.A.; Kenchegowda, D.; Swamynathan, S.; Swamynathan, S.K. Regulation of mouse lens maturation and gene expression by Kruppel-like factor 4. Exp. Eye Res. 2013, 116, 205–218. [Google Scholar] [CrossRef]
- Mitra, S.; Ryoo, H.D. The unfolded protein response in metazoan development. J. Cell Sci. 2019, 132, jcs217216. [Google Scholar] [CrossRef]
- Hu, H.; Tian, M.; Ding, C.; Yu, S. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front. Immunol. 2018, 9, 3083. [Google Scholar] [CrossRef]
- Masson, G.R. Towards a model of GCN2 activation. Biochem. Soc. Trans. 2019, 47, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Torrence, M.E.; MacArthur, M.R.; Hosios, A.M.; Valvezan, A.J.; Asara, J.M.; Mitchell, J.R.; Manning, B.D. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. eLife 2021, 10, e63326. [Google Scholar] [CrossRef] [PubMed]
- Oki, S.; Ohta, T.; Shioi, G.; Hatanaka, H.; Ogasawara, O.; Okuda, Y.; Kawaji, H.; Nakaki, R.; Sese, J.; Meno, C. ChIP-Atlas: A data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep. 2018, 19, e46255. [Google Scholar] [CrossRef]
- Daster, S.; Amatruda, N.; Calabrese, D.; Ivanek, R.; Turrini, E.; Droeser, R.A.; Zajac, P.; Fimognari, C.; Spagnoli, G.C.; Iezzi, G.; et al. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget 2017, 8, 1725–1736. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Klieser, W.; Freyer, J.P.; Sutherland, R.M. Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids. Br. J. Cancer 1986, 53, 345–353. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Risau, W.; Drexler, H.C. Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: A role for vascular endothelial growth factor as a survival factor for endothelium. Dev. Dyn. 1998, 213, 322–333. [Google Scholar] [CrossRef]
- Hejtmancik, J.F.; Riazuddin, S.A.; McGreal, R.; Liu, W.; Cvekl, A.; Shiels, A. Lens Biology and Biochemistry. Prog. Mol. Biol. Transl. Sci. 2015, 134, 169–201. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, C.; Gao, Z.; Jiang, L.; Li, Q.; Shi, X.; Kong, Y.; Cao, J. ER stress-enhanced HMGA2 plays an important role in Cr (VI)-induced glycolysis and inhibited oxidative phosphorylation by targeting the transcription of ATF4. Chem. Biol. Interact. 2023, 369, 110293. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xia, R.; Yue, C.; Zhai, W.; Du, W.; Yang, Q.; Cao, H.; Chen, X.; Obando, D.; Zhu, Y.; et al. ATF4 Regulates CD4(+) T Cell Immune Responses through Metabolic Reprogramming. Cell. Rep. 2018, 23, 1754–1766. [Google Scholar] [CrossRef]
- Chen, Y.; Doughman, Y.Q.; Gu, S.; Jarrell, A.; Aota, S.; Cvekl, A.; Watanabe, M.; Dunwoodie, S.L.; Johnson, R.S.; van Heyningen, V.; et al. Cited2 is required for the proper formation of the hyaloid vasculature and for lens morphogenesis. Development 2008, 135, 2939–2948. [Google Scholar] [CrossRef] [PubMed]
- Shui, Y.B.; Arbeit, J.M.; Johnson, R.S.; Beebe, D.C. HIF-1: An age-dependent regulator of lens cell proliferation. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4961–4970. [Google Scholar] [CrossRef]
- Brennan, L.; Disatham, J.; Kantorow, M. Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a. Exp. Eye Res. 2020, 198, 108129. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sang, N. Hypoxia-Inducible Factor-1: A Critical Player in the Survival Strategy of Stressed Cells. J. Cell. Biochem. 2016, 117, 267–278. [Google Scholar] [CrossRef]
- Koditz, J.; Nesper, J.; Wottawa, M.; Stiehl, D.P.; Camenisch, G.; Franke, C.; Myllyharju, J.; Wenger, R.H.; Katschinski, D.M. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 2007, 110, 3610–3617. [Google Scholar] [CrossRef]
- Guimaraes-Camboa, N.; Stowe, J.; Aneas, I.; Sakabe, N.; Cattaneo, P.; Henderson, L.; Kilberg, M.S.; Johnson, R.S.; Chen, J.; McCulloch, A.D.; et al. HIF1alpha Represses Cell Stress Pathways to Allow Proliferation of Hypoxic Fetal Cardiomyocytes. Dev. Cell 2015, 33, 507–521. [Google Scholar] [CrossRef]
- Moulin, S.; Thomas, A.; Arnaud, C.; Arzt, M.; Wagner, S.; Maier, L.S.; Pepin, J.L.; Godin-Ribuot, D.; Gaucher, J.; Belaidi, E. Cooperation Between Hypoxia-Inducible Factor 1alpha and Activating Transcription Factor 4 in Sleep Apnea-Mediated Myocardial Injury. Can. J. Cardiol. 2020, 36, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Disatham, J.; Brennan, L.; Chauss, D.; Kantorow, J.; Afzali, B.; Kantorow, M. A functional map of genomic HIF1alpha-DNA complexes in the eye lens revealed through multiomics analysis. BMC Genom. 2021, 22, 497. [Google Scholar] [CrossRef] [PubMed]
- Kasinskas, R.W.; Venkatasubramanian, R.; Forbes, N.S. Rapid uptake of glucose and lactate, and not hypoxia, induces apoptosis in three-dimensional tumor tissue culture. Integr. Biol. 2014, 6, 399–410. [Google Scholar] [CrossRef]
- Luk, C.K.; Sutherland, R.M. Nutrient modification of proliferation and radiation response in EMT6/Ro spheroids. Int. J. Radiat. Oncol. Biol. Phys. 1987, 13, 885–895. [Google Scholar] [CrossRef]
- Novo, S.G.; Faranda, A.P.; Shihan, M.H.; Wang, Y.; Garg, A.; Duncan, M.K. The Immediate Early Response of Lens Epithelial Cells to Lens Injury. Cells 2022, 11, 3456. [Google Scholar] [CrossRef]
- Shihan, M.H.; Novo, S.G.; Wang, Y.; Sheppard, D.; Atakilit, A.; Arnold, T.D.; Rossi, N.M.; Faranda, A.P.; Duncan, M.K. alphaVbeta8 integrin targeting to prevent posterior capsular opacification. JCI Insight 2021, 6, e145715. [Google Scholar] [CrossRef] [PubMed]
Name of Experiment | GEO Accession | Experiment Type | Library Source |
---|---|---|---|
Lens Superficial Cortex vs. Lens Epithelial Cells | GSE205379 | Microarray | Transcriptomic |
Lens Deep Cortex vs. Lens Superficial Cortex | GSE205379 | Microarray | Transcriptomic |
Prox1 Knockout vs. Wildtype | GSE69940 | RNA-Seq | Transcriptomic |
HSF4 Knockout vs. Wildtype | GSE22362 | Microarray | Transcriptomic |
Whole Lens E15.5 vs. Whole Lens E13.5 | E15.5 (GSE49949) E13.5 (GSE69940) | RNA-Seq | Transcriptomic |
ATF4 Knockout vs. Wildtype | GSE35681 | ChIP-Seq | Genomic |
Symbol | Description | Citation | Fold Change | FDR | Wildtype FPKM | Atf4 KO FPKM |
---|---|---|---|---|---|---|
Foxe3 | Forkhead box E3 | [16] | −4.7 | 1.56 × 10−4 | 140 | 30 |
Dnase2b | Deoxyribonuclease II beta | [62] | −3.7 | 2.72 × 10−8 | 31 | 8.6 |
Birc7 | Baculoviral IAP repeat-containing 7 | [19] | −3.5 | 6.20 × 10−5 | 18 | 5.3 |
Bfsp1 | Beaded filament structural protein 1 | [63] | −2.7 | 6.06 × 10−5 | 2924 | 1094 |
Crybb2 | Crystallin, beta B2 | [64] | −2.7 | 9.45 × 10−3 | 23 | 8.8 |
Crygb | Crystallin, gamma B | [65] | −2.7 | 6.84 × 10−5 | 5582 | 2103 |
Crygf | Crystallin, gamma F | [65] | −2.5 | 8.17 × 10−4 | 7129 | 2869 |
Cryba4 | Crystallin, beta A4 | [65] | −2.3 | 2.72 × 10−4 | 4983 | 2138 |
Crygs | Crystallin, gamma S | [65] | −2.3 | 1.71 × 10−3 | 280 | 125 |
Hopx | HOP homeobox | [66] | −2.1 | 3.59 × 10−2 | 12 | 5.8 |
Crygd | Crystallin, gamma D | [65] | −2.0 | 9.70 × 10−3 | 5561 | 2783 |
Caprin2 | Caprin family member 2 | [67] | −2.0 | 6.24 × 10−3 | 100 | 51 |
Crygc | Crystallin, gamma C | [65] | −1.9 | 1.35 × 10−2 | 2881 | 1496 |
Cryba2 | Crystallin, beta A2 | [65] | −1.9 | 1.74 × 10−2 | 3397 | 1831 |
Hmgn3 | High mobility group nucleosomal binding domain 3 | [68] | −1.8 | 1.12 × 10−2 | 137 | 78.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, J.; Pompetti, A.J.; Faranda, A.P.; Wang, Y.; Novo, S.G.; Li, D.W.-C.; Duncan, M.K. ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment. Cells 2023, 12, 2636. https://doi.org/10.3390/cells12222636
Xiang J, Pompetti AJ, Faranda AP, Wang Y, Novo SG, Li DW-C, Duncan MK. ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment. Cells. 2023; 12(22):2636. https://doi.org/10.3390/cells12222636
Chicago/Turabian StyleXiang, Jiawen, Anthony J. Pompetti, Adam P. Faranda, Yan Wang, Samuel G. Novo, David Wan-Cheng Li, and Melinda K. Duncan. 2023. "ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment" Cells 12, no. 22: 2636. https://doi.org/10.3390/cells12222636
APA StyleXiang, J., Pompetti, A. J., Faranda, A. P., Wang, Y., Novo, S. G., Li, D. W. -C., & Duncan, M. K. (2023). ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment. Cells, 12(22), 2636. https://doi.org/10.3390/cells12222636