Satureja bachtiarica Induces Cancer Cell Death in Breast and Glioblastoma Cancer in 2D/3D Models and Suppresses Breast Cancer Stem Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. HPLC Analysis
2.3. Cell lines and Culture Conditions
2.4. Spheroid Culture
2.5. Sphere Culture
2.6. Cell Viability Assay
2.7. Spheroid Growth Rate Assay
2.8. Annexin V/PI Double Staining Assay for Apoptosis
2.9. Scratch Wound-Healing and Transwell Invasion Assays
2.10. Spheroid Disaggregation Assay
2.11. Colony Assay
2.12. Sphere Formation Efficiency Assay
2.13. Flow Cytometry Assay
2.14. Western Blot Analysis
2.15. Reverse Transcription–Quantitative (q-RT) PCR
2.16. Statistical Analyses
3. Results
3.1. HPLC Results
3.2. S. bachtiarica Reduces the Viability of Adherent MDAMB-231 and U87-MG Cells and Induces Apoptosis
3.3. S. bachtiarica Reduces the Growth Rate of MDAMB-231 and U87-MG Spheroids
3.4. S. bachtiarica Decreases Clonogenic Growth of MDAMB-231 and U87-MG Cell Lines
3.5. S. bachtiarica Inhibits MDAMB-231 and U87-MG Cell Motility and Invasion through DownRegulation of EMT Factors
3.6. S. bachtiarica Inhibits Disaggregation of MDAMB-231 and U87-MG Spheroids
3.7. S. bachtiarica Reduces Stemness Potential in Breast Cancer Cell Line and Mammospheres
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- World Health Organization. World Health Statistics 2008; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Carvalho, M.; Jerónimo, C.; Valentão, P.; Andrade, P.B.; Silva, B.M. Green tea: A promising anticancer agent for renal cell carcinoma. Food Chem. 2010, 122, 49–54. [Google Scholar] [CrossRef]
- Heron, F.V.T.; Marcia, I.G.; Giselle, Z.J.; Edgar, J.P.-G. Anti-cancer phytometabolites targeting cancer stem cells. Curr. Genom. 2017, 18, 156–174. [Google Scholar]
- O’Connor, M.L.; Xiang, D.; Shigdar, S.; Macdonald, J.; Li, Y.; Wang, T.; Pu, C.; Wang, Z.; Qiao, L.; Duan, W. Cancer stem cells: A contentious hypothesis now moving forward. Cancer Lett. 2014, 344, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Garraway, L.A.; Jänne, P.A. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov. 2012, 2, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Powell, K.; Li, L. Breast cancer stem cells: Biomarkers, identification and isolation methods, regulating mechanisms, cellular origin, and beyond. Cancers 2020, 14, 3765. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zuo, C.; Fang, P.; Liu, G.; Qiu, Y.; Huang, Y.; Tang, R. Targeting glioblastoma stem cells: A review on biomarkers, signal pathways and targeted therapy. Front. Oncol. 2021, 11, 701291. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, S.; Wei, X.J.N. Cancer stem cells and drug resistance: The potential of nanomedicine. Nanomedicine 2012, 7, 597–615. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Huang, Y.-h.; Chen, J.-L. Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol. Sin. 2013, 34, 732–740. [Google Scholar] [CrossRef]
- Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef]
- Friedrich, J.; Eder, W.; Castaneda, J.; Doss, M.; Huber, E.; Ebner, R.; Kunz-Schughart, L.A. A reliable tool to determine cell viability in complex 3-d culture: The acid phosphatase assay. SLAS Discov. 2007, 12, 925–937. [Google Scholar] [CrossRef]
- Alharbi, K.S.; Almalki, W.H.; Makeen, H.A.; Albratty, M.; Meraya, A.M.; Nagraik, R.; Sharma, A.; Kumar, D.; Chellappan, D.K.; Singh, S.K.; et al. Role of Medicinal plant-derived Nutraceuticals as a potential target for the treatment of breast cancer. J. Food Biochem. 2022, 46, e14387. [Google Scholar] [CrossRef] [PubMed]
- Lutoti, S.; Kaggwa, B.; Kamba, P.F.; Mukonzo, J.; Sesaazi, C.D.; Katuura, E. Ethnobotanical Survey of Medicinal Plants Used in Breast Cancer Treatment by Traditional Health Practitioners in Central Uganda. J. Multidiscip. Healthc. 2023, 31, 635–651. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Luthra, R.; Bharadvaja, N. Medicinal Plants for Glioblastoma Treatment. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem. -Anti-Cancer Agents) 2022, 22, 2367–2384. [Google Scholar] [CrossRef] [PubMed]
- Rahimmalek, M.; Afshari, M.; Sarfaraz, D.; Miroliaei, M. Using HPLC and multivariate analyses to investigate variations in the polyphenolic compounds as well as antioxidant and antiglycative activities of some Lamiaceae species native to Iran. Ind. Crops Prod. 2020, 154, 112640. [Google Scholar] [CrossRef]
- Ghasemi Pirbalouti, A.; Siahpoosh, A.; Setayesh, M.; Craker, L. Antioxidant activity, total phenolic and flavonoid contents of some medicinal and aromatic plants used as herbal teas and condiments in Iran. J. Med. Food 2014, 17, 1151–1157. [Google Scholar] [CrossRef]
- Khadivi-Khub, A.; Salehi-Arjmand, H.; Hadian, J. Morphological and phytochemical variation of Satureja bachtiarica populations from Iran. Ind. Crops Prod. 2014, 54, 257–265. [Google Scholar] [CrossRef]
- Soodi, M.; Saeidnia, S.; Sharifzadeh, M.; Hajimehdipoor, H.; Dashti, A.; Sepand, M.R.; Moradi, S. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer’s disease. Metab. Brain Dis. 2016, 31, 395–404. [Google Scholar] [CrossRef]
- Behdarvand Shoushtar, A.; Sazegar, H.; Ghasemi Pirbaloti, A. Cytotoxic effect of hydroalcoholic extract from Satureja bachtiarica Bunge on Hela cancer cells line. J. Med. Herb. 2017, 7, 223–229. [Google Scholar]
- Soodi, M.; Moradi, S.; Sharifzadeh, M.; Saeidnia, S. Satureja bachtiarica methanolic extract ameliorate beta amyloid induced memory impairment. Res. Pharm. Sci. 2012, 7, 802. [Google Scholar]
- Joudaki, R.; Setorki, M. The protective effect of Satureja bachtiarica hydroalcoholic extract on streptozotocin-induced diabetes through modulating glucose transporter 2 and 4 expression and inhibiting oxidative stress. Pharm. Biol. 2019, 57, 318–327. [Google Scholar] [CrossRef]
- Jafari, F.; Ghavidel, F.; Zarshenas, M.M. A critical overview on the pharmacological and clinical aspects of popular Satureja species. J. Acupunct. Meridian Stud. 2016, 9, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Falsafi, T.; Moradi, P.; Mahboubi, M.; Rahimi, E.; Momtaz, H.; Hamedi, B. Chemical composition and anti-Helicobacter pylori effect of Satureja bachtiarica Bunge essential oil. Phytomedicine 2015, 22, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Arabzadeh, S.; Hossein, G.; Salehi-Dulabi, Z.; Zarnani, A.H. WNT5A-ROR2 is induced by infammatory mediators and is involved in the migration of human ovarian cancer cell line SKOV-3. Cell Mol. Biol. Lett. 2016, 21, 9. [Google Scholar] [CrossRef]
- Liu, W.-W.; Meng, J.; Cui, J.; Luan, Y.-S. Characterization and function of microRNA∗ s in plants. Front. Plant Sci. 2017, 8, 2200. [Google Scholar] [CrossRef] [PubMed]
- Fomeshi, M.R.; Ebrahimi, M.; Mowla, S.J.; Firouzi, J.; Khosravani, P. CD133 is not suitable marker for isolating melanoma stem cells from D10 cell line. Cell J. 2016, 18, 21. [Google Scholar]
- Roudi, R.; Madjd, Z.; Ebrahimi, M.; Samani, F.; Samadikuchaksaraei, A. CD44 and CD24 cannot act as cancer stem cell markers in human lung adenocarcinoma cell line A549. Cell. Mol. Biol. Lett. 2014, 19, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 2003, 100, 3983–3988. [Google Scholar] [CrossRef]
- Senbanjo, L.T.; Chellaiah, M.A. CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol. 2017, 5, 18. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, Z.; Xu, X.; Qi, H.; Cheng, Z.; Chen, L. Anticancer effects of rosmarinic acid in human oral cancer cells is mediated via endoplasmic reticulum stress, apoptosis, G2/M cell cycle arrest and inhibition of cell migration. J. BUON 2020, 25, 1245–1250. [Google Scholar] [PubMed]
- Chaitanya, M.V.N.L.; Ramanunny, A.K.; Babu, M.R.; Gulati, M.; Vishwas, S.; Singh, T.G.; Chellappan, D.K.; Adams, J.; Dua, K.; Singh, S.K. Journey of Rosmarinic acid as biomedicine to nano-biomedicine for treating cancer: Current strategies and future perspectives. Pharmaceutics 2022, 14, 2401. [Google Scholar] [CrossRef] [PubMed]
- Mihanfar, A.; Darband, S.G.; Sadighparvar, S.; Kaviani, M.; Mirza-Aghazadeh-Attari, M.; Yousefi, B.; Majidinia, M. In vitro and in vivo anticancer effects of syringic acid on colorectal cancer: Possible mechanistic view. Chem. Biol. Interact. 2021, 337, 109337. [Google Scholar] [CrossRef]
- Asadipour, M.; Malek-Hosseini, S.; Amirghofran, Z. Anti-leukemic activity of Satureja bachtiarica occurs by apoptosis in human cells. Biotech. Histochem. 2020, 95, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Čakar, J.; Lojo, N.K.; Haverić, A.; Hadžić, M.; Lasić, L.; Zeljković, S.Ć.; Haverić, S.; Bajrović, K. Satureja subspicata and S. horvatii Extracts induce overexpression of the BCl-2 family of anti-apoptotic genes and reduce micronuclei frequency in mice. Nat. Prod. Commun. 2018, 13, 723–726. [Google Scholar] [CrossRef]
- Esmaeili-Mahani, S.; Samandari-Bahraseman, M.R.; Yaghoobi, M.M. In-vitro anti-proliferative and pro-apoptotic properties of Sutureja khuzestanica on human breast cancer cell line (MCF-7) and its synergic effects with anticancer drug vincristine. Iran. J. Pharm. Res. IJPR 2018, 17, 343. [Google Scholar]
- Abdol, H.; Taghipour, L.; Raeghi, S.; Rad, F.A.; Soltanzadeh, H. Anti-proliferative Effect of Satureja sahandica Extraction by Co-administration of Layered Double Hydroxide (LDH) Nanosheets on HepG2 Hepatocellular Carcinoma Cell Line. Gene Cell Tissue 2023, 10, e131147. [Google Scholar] [CrossRef]
- Gabrielli, B.; Brooks, K.; Pavey, S. Defective cell cycle checkpoints as targets for anti-cancer therapies. Front. Pharmacol. 2012, 3, 9. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Heaster, T.M.; Fischer, M.A.; Stengel, K.R.; Zhou, X.; Ramsey, H.; Zhou, M.M.; Savona, M.R.; Skala, M.C. BET inhibitors reduce cell size and induce reversible cell cycle arrest in AML. J. Cell. Biochem. 2019, 120, 7309–7322. [Google Scholar] [CrossRef]
- Han, Y.-H.; Kee, J.-Y.; Hong, S.-H. Rosmarinic acid activates AMPK to inhibit metastasis of colorectal cancer. Front. Pharmacol. 2018, 9, 68. [Google Scholar] [CrossRef]
- Li, D.; Luo, D.; Hu, S.; Zhao, H.; Peng, B. Syringic Acid Suppressed Proliferation, Invasion, and Migration via Inhibition of Matrix Metalloproteinases Expression on Glioblastoma Cells by Promoting Apoptosis. Curr. Pharm. Biotechnol. 2023, 24, 310–316. [Google Scholar] [PubMed]
- Velu, P.; Vijayalakshmi, A.; Vinothkumar, V. Inhibiting the PI3K/Akt, NF-κB signalling pathways with syringic acid for attenuating the development of oral squamous cell carcinoma cells SCC131. J. Pharm. Pharmacol. 2020, 72, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, Y. Cancer stem cells: Models, mechanisms and implications for improved treatment. Cell Cycle 2008, 7, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- de la Mare, J.-A.; Sterrenberg, J.N.; Sukhthankar, M.G.; Chiwakata, M.T.; Beukes, D.R.; Blatch, G.L.; Edkins, A.L. Assessment of potential anti-cancer stem cell activity of marine algal compounds using an in vitro mammosphere assay. Cancer Cell Int. 2013, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Firouzi, J.; Sotoodehnejadnematalahi, F.; Shokouhifar, A.; Rahimi, M.; Sodeifi, N.; Sahranavardfar, P.; Azimi, M.; Janzamin, E.; Safa, M.; Ebrahimi, M. Silibinin exhibits anti-tumor effects in a breast cancer stem cell model by targeting stemness and induction of differentiation and apoptosis. BioImpacts BI 2022, 12, 415. [Google Scholar] [CrossRef]
- Abdal Dayem, A.; Choi, H.Y.; Yang, G.-M.; Kim, K.; Saha, S.K.; Cho, S.-G. The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: Molecular mechanisms. Nutrients 2016, 8, 581. [Google Scholar] [CrossRef]
- Ghasemi, S.; Xu, S.; Nabavi, S.M.; Amirkhani, M.A.; Sureda, A.; Tejada, S.; Lorigooini, Z. Epigenetic targeting of cancer stem cells by polyphenols (cancer stem cells targeting). Phytother. Res. 2021, 35, 3649–3664. [Google Scholar] [CrossRef]
- Bayat, S.; Khaniani, M.S.; Choupani, J.; Alivand, M.R.; Derakhshan, S.M. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed. Pharmacother. 2018, 97, 1445–1453. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Tang, S.-N.; Zhu, W.; Meeker, D.; Shankar, S. Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front. Biosci. Elite 2011, 3, 515. [Google Scholar] [CrossRef]
- Zhou, W.; Kallifatidis, G.; Baumann, B.; Rausch, V.; Mattern, J.; Gladkich, J.; Giese, N.; Moldenhauer, G.; Wirth, T.; Büchler, M.W. Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int. J. Oncol. 2010, 37, 551–561. [Google Scholar]
- Montales, M.T.E.; Rahal, O.M.; Kang, J.; Rogers, T.J.; Prior, R.L.; Wu, X.; Simmen, R.C. Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells. Carcinogenesis 2012, 33, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Blanpain, C.; Fuchs, E. Epidermal homeostasis: A balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 2009, 10, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Pramanik, D. Phytochemicals and cancer stem cells: A pancreatic cancer overview. Curr. Chem. Biol. 2016, 10, 98–108. [Google Scholar] [CrossRef]
- Ganesan, K.; Jayachandran, M.; Xu, B. Diet-derived phytochemicals targeting colon cancer stem cells and microbiota in colorectal cancer. Int. J. Mol. Sci. 2020, 21, 3976. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Lertpiriyapong, K.; Steelman, L.S.; Abrams, S.L.; Yang, L.V.; Murata, R.M.; Rosalen, P.L.; Scalisi, A.; Neri, L.M.; Cocco, L. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging 2017, 9, 1477. [Google Scholar] [CrossRef]
Primer | Sequence |
---|---|
NANOG | F: 5′AGC TAC AAA CAG GTG AAG AC3′ R: 5′GGT GGT AGG AAG AGT AAA GG3′ |
SOX-2 | F: 5′ATGCACCGCTACGACGTG 3′ R: 5′GCTGCGAGTAGGACATGCT 3′ |
KLF-4 | F: 5′ATTACCAAGAGCTCATGCCA3′ R: 5′CCTTGAGATGGGAACTCTTTG3′ |
OCT-4 | F: 5′TCT ATT TGG GAA GGT ATT CAG C3′ R: 5′ATT GTT GTC AGC TTC CTC CA3′ |
Snail-1 | F: 5′ CCAGAGTTTACCTTCCAGCA 3′ R: 5′GATGAGCATTGGCAGCGA 3′ |
c-MYC | F:5′ACACATCAGCACAACTACG3′ R:5′CGCCTCTTGACATTCTCC3′ |
CDH-1 | F: 5′GCTCTCCACTCTTACTTCCT3′ R: 5′GTTTGGTCTGATGCG3′ |
CDH-2 | F: 5′GCCCAAGACAAAGAGACCC3′ R: 5′CTGCTGACTCCTTCACTGAC3′ |
ZEB-1 | F: 5′CAGATGAAGCAGGATGTACAGTAA3′ R: 5′CTCTTCAGGTGCCTCAGGAA3′ |
ZO-1 | F: 5′ACCAGTAAGTCGTCCTGATCC3′ R: 5′TCGGCCAAATCTTCTCACTCC3′ |
Compounds | RT a | S. bachtiarica (mg/100 gr DW) | S. bachtiarica (μg/1 mL Extract) |
---|---|---|---|
Gallic acid | 5.08 | 1.32 ± 0.12 | 2.64 |
Caffeic acid | 14.46 | 15.75 ± 0.32 | 31.5 |
Vanilic acid | 16.23 | n.d. | n.d. |
Syringic acid | 17.45 | 36.72 ± 2.13 | 73.44 |
p-Coumaric acid | 26.8 | 12.86 ± 1.29 | 25.72 |
Rutin | 28.41 | 13.41 ± 2.05 | 26.82 |
Ferulic acid | 29.18 | 11.12 ± 1.11 | 22.24 |
Rosmarinic acid | 39.05 | 183.28 ± 7.9 | 366.56 |
Luteolin | 50.16 | 2.86 ± 0.27 | 5.72 |
Quercetin | 50.64 | 5.23 ± 0.52 | 10.46 |
Apigenin | 56.33 | 24.8 ± 3.15 | 49.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavareh, V.A.; Gharibi, S.; Hosseini Rizi, M.; Nekookar, A.; Mirhendi, H.; Rahimmalek, M.; Szumny, A. Satureja bachtiarica Induces Cancer Cell Death in Breast and Glioblastoma Cancer in 2D/3D Models and Suppresses Breast Cancer Stem Cells. Cells 2023, 12, 2713. https://doi.org/10.3390/cells12232713
Zavareh VA, Gharibi S, Hosseini Rizi M, Nekookar A, Mirhendi H, Rahimmalek M, Szumny A. Satureja bachtiarica Induces Cancer Cell Death in Breast and Glioblastoma Cancer in 2D/3D Models and Suppresses Breast Cancer Stem Cells. Cells. 2023; 12(23):2713. https://doi.org/10.3390/cells12232713
Chicago/Turabian StyleZavareh, Vajihe Azimian, Shima Gharibi, Mahnaz Hosseini Rizi, Abdolhossein Nekookar, Hossein Mirhendi, Mehdi Rahimmalek, and Antoni Szumny. 2023. "Satureja bachtiarica Induces Cancer Cell Death in Breast and Glioblastoma Cancer in 2D/3D Models and Suppresses Breast Cancer Stem Cells" Cells 12, no. 23: 2713. https://doi.org/10.3390/cells12232713
APA StyleZavareh, V. A., Gharibi, S., Hosseini Rizi, M., Nekookar, A., Mirhendi, H., Rahimmalek, M., & Szumny, A. (2023). Satureja bachtiarica Induces Cancer Cell Death in Breast and Glioblastoma Cancer in 2D/3D Models and Suppresses Breast Cancer Stem Cells. Cells, 12(23), 2713. https://doi.org/10.3390/cells12232713