Ultrastructural Analysis of Cancer Cells Treated with the Radiopharmaceutical Radium Dichloride ([223Ra]RaCl2): Understanding the Effect on Cell Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Breast Cell Culture
2.2. Exposure to [223Ra]RaCl2 for Atomic Force Microscopy Analysis
2.3. Atomic Force Microscopy
2.4. Roughness Analysis
2.5. Nanomechanical Analysis
2.6. AFM Data Analysis
2.7. Exposure to [223Ra]RaCl2 for Transmission Electron Microscopy Analysis
2.8. Raman Analysis and Spectral Processing
2.9. Spectral Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brechbiel, M.W. Targeted α-Therapy. Dalton Trans. Camb. Engl. 2007, 2003, 4918–4928. [Google Scholar] [CrossRef] [Green Version]
- Pouget, J.P.; Constanzo, J. Revisiting the Radiobiology of Targeted Alpha Therapy. Front. Med. (Lausanne) 2021, 8, 692436. [Google Scholar] [CrossRef]
- Boldyrev, P.P.; Egorova, B.V.; Kokov, K.V.; Perminov, Y.A.; Proshin, M.A.; Chuvilin, D.Y. Physical and chemical processes on the 212Pb radionuclide production for nuclear medicine. J. Phys. Conf. Ser. 2018, 1099, 012003. [Google Scholar] [CrossRef]
- Persson, H.L.; Kurz, T.; Eaton, J.W.; Brunk, U.T. Radiation-induced cell death: Importance of lysosomal destabilization. Biochem. J. 2005, 389, 877–884. [Google Scholar] [CrossRef]
- Pouget, J.-P.; Georgakilas, A.G.; Ravanat, J.-L. Targeted and off-target (bystander and abscopal) effects of radiation therapy: Redox mechanisms and risk/benefit analysis. Antioxid. Redox Signal. 2018, 29, 1447–1487. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.G.; Chandrasekaran, K.; Morgan, F.W. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: A review. Mutagenesis 2006, 21, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.; Xu, A.; Zhou, H.; Wu, L.; Randers-Pehrson, G.; Santella, R.M.; Yu, Z.; Hei, T.K. Mechanism of genotoxicity induced by targeted cytoplasmic irradiation. Br. J. Cancer 2010, 103, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Liberal, F.D.C.G.; O’Sullivan, J.M.; McMahon, S.; Prise, K.M. Targeted Alpha Therapy: Current Clinical Applications. Cancer Biother. Radiopharm. 2020, 35, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, S.; Larsen, R.H.; Fosså, S.D.; Balteskard, L.; Borch, K.W.; Westlin, J.-E.; Salberg, G.; Bruland, Ø.S. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2005, 11, 4451–4459. [Google Scholar] [CrossRef]
- Morris, M.J.; Corey, E.; Guise, T.A.; Gulley, J.L.; Kelly, W.K.; Quinn, D.I.; Scholz, A.; Sgouros, G. Radium-223 mechanism of action: Implications for use in treatment combinations. Nat. Rev. Urol. 2019, 16, 745–756. [Google Scholar] [CrossRef]
- Targeted Alpha Therapy Working Group. Targeted Alpha Therapy, an Emerging Class of Cancer Agents: A Review. JAMA Oncol. 2018, 4, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Anderson, P.M.; Kairemo, K.; Huh, W.W.; Ravi, V.; Daw, N.C.; Somaiah, N.; Benjamin, R.S.; Hong, D.S.; Ravizzini, G.; et al. Alpha particle radium-223 dichloride (223RaCl2 ) in high risk osteosarcoma. J. Clin. Oncol. 2016, 34 (Suppl. S15), 11029. [Google Scholar] [CrossRef]
- Manafi-Farid, R.; Masoumi, F.; Divband, G.; Saidi, B.; Ataeinia, B.; Hertel, F.; Schweighofer-Zwink, G.; Morgenroth, A.; Beheshti, M. Targeted Palliative Radionuclide Therapy for Metastatic Bone Pain. J. Clin. Med. 2020, 9, 2622. [Google Scholar] [CrossRef]
- Aro, J.L.; Dinning, S.I.; Leung, E.Y.; Zuckier, L.S. Safe Use of Radium-223 Dichloride ((223)RaCl(2)) Across a Wide Range of Clinical Scenarios, Incorporating a 10-year Single-Institution Radiation Safety Experience. J. Med. Imaging Radiat. Sci. 2019, 50, S36–S40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dwyer, E.; Bodei, L.; Morris, M.J. The Role of Theranostics in Prostate Cancer. Semin. Radiat. Oncol. 2021, 31, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Dufrêne, Y.F. Atomic force microscopy: A powerful molecular toolkit in nanoproteomics. Proteomics 2009, 9, 5400–5405. [Google Scholar] [CrossRef]
- Gong, Y.; Misture, S.T.; Gao, P.; Mellott, N.P. Surface Roughness Measurements Using Power Spectrum Density Analysis with Enhanced Spatial Correlation Length. J. Phys. Chem. C 2016, 120, 22358–22364. [Google Scholar] [CrossRef]
- Kim, S.; Lee, Y.; Lee, M.; An, S.; Cho, S.-J. Quantitative Visualization of the Nanomechanical Young’s Modulus of Soft Materials by Atomic Force Microscopy. Nanomaterials 2021, 11, 1593. [Google Scholar] [CrossRef]
- Ong, Y.H.; Lim, M.; Liu, Q. Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells. Opt. Express 2012, 20, 22158–22171. [Google Scholar] [CrossRef]
- Galic, L.L.M. Cellular Membranes, a Versatile Adaptive Composite Material. Front. Cell Dev. Biol. 2020, 8, 684. [Google Scholar] [CrossRef]
- Nylandsted, C.D.J. Plasma membrane integrity in health and disease: Significance and therapeutic potential. Cell Discov. 2021, 7, 1–18. [Google Scholar] [CrossRef]
- Nicolson, G.L. Cell membrane fluid-mosaic structure and cancer metastasis. Cancer Res. 2015, 75, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Bertolet, A.; Ramos-Méndez, J.; Paganetti, H.; Schuemann, J. The relation between microdosimetry and induction of direct damage to DNA by alpha particles. Phys. Med. Biol. 2021, 66, 155016. [Google Scholar] [CrossRef] [PubMed]
- Bannik, K.; Madas, B.; Jarzombek, M.; Sutter, A.; Siemeister, G.; Mumberg, D.; Zitzmann-Kolbe, S. Radiobiological effects of the alpha emitter Ra-223 on tumor cells. Sci. Rep. 2019, 91, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dornish, M.; Heier-Baardson, H.; Pettersen, E. Cellular effects of alpha particle radiation from radium-223: AlpharadinTM, a new radiopharmaceutical for the treatment of skeletal metastases. Cancer Res. 2008, 68, 5749. [Google Scholar]
- Kidiyoor, G.R.; Li, Q.; Bastianello, G.; Bruhn, C.; Giovannetti, I.; Mohamood, A.; Beznoussenko, G.V.; Mironov, A.; Raab, M.; Piel, M.; et al. ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nat. Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Cho, S.; Vashisth, M.; Abbas, A.; Majkut, S.; Vogel, K.; Xia, Y.; Ivanovska, I.L.; Irianto, J.; Tewari, M.; Zhu, K.; et al. Mechanosensing by the Lamina Protects against Nuclear Rupture, DNA Damage, and Cell-Cycle Arrest. Dev. Cell 2019, 49, 920–935. [Google Scholar] [CrossRef]
- Denais, C.M.; Gilbert, R.M.; Isermann, P.; McGregor, A.L.; Lindert, M.T.; Weigelin, B.; Davidson, P.M.; Friedl, P.; Wolf, K.; Lammerding, J. Nuclear envelope rupture and repair during cancer cell migration. Science 2016, 352, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Earle, A.J.; Kirby, T.J.; Fedorchak, G.R.; Isermann, P.; Patel, J.; Iruvanti, S.; Moore, S.A.; Bonne, G.; Wallrath, L.L.; Lammerding, J. Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. Nat. Mater. 2020, 19, 464–473. [Google Scholar] [CrossRef]
- Nader, G.P.F.; Agüera-Gonzalez, S.; Routet, F.; Gratia, M.; Maurin, M.; Cancila, V.; Cadart, C.; Palamidessi, A.; Ramos, R.N.; Roman, M.S.; et al. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 2021, 184, 5230–5246. [Google Scholar] [CrossRef]
- Svetličič, M.; Bomhard, A.; Sterr, C.; Brückner, F.; Płódowska, M.; Lisowska, H.; Lundholm, L. Alpha Radiation as a Way to Target Heterochromatic and Gamma Radiation-Exposed Breast Cancer Cells. Cells 2020, 9, 1165. [Google Scholar] [CrossRef]
- Janssen, A.; Colmenares, S.U.; Karpen, G.H. Heterochromatin: Guardian of the genome. Annu. Rev. Cell Dev. Biol. 2018, 34, 265–288. [Google Scholar] [CrossRef] [Green Version]
- Cheutin, T.; Cavalli, G. The multiscale effects of polycomb mechanisms on 3D chromatin folding. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 399–417. [Google Scholar] [CrossRef]
- Tonnemacher, S.; Eltsov, M.; Jakob, B. Correlative Light and Electron Microscopy (CLEM) Analysis of Nuclear Reorganization Induced by Clustered DNA Damage Upon Charged Particle Irradiation. Int. J. Mol. Sci. 2020, 21, 1911. [Google Scholar] [CrossRef] [Green Version]
- Lorat, Y.; Reindl, J.; Isermann, A.; Rübe, C.; Friedl, A.; Rübe, C. Focused Ion Microbeam Irradiation Induces Clustering of DNA Double-Strand Breaks in Heterochromatin Visualized by Nanoscale-Resolution Electron Microscopy. Int. J. Mol. Sci. 2021, 22, 7638. [Google Scholar] [CrossRef]
- van der Doelen, M.J.; Isaacsson Velho, P.; Slootbeek, P.H.J.; Pamidimarri Naga, S.; Bormann, M.; van Helvert, S.; Kroeze, L.I.; van Oort, I.M.; Gerritsen, W.R.; Antonarakis, E.S.; et al. Impact of DNA damage repair defects on response to radium-223 and overall survival in metastatic castration-resistant prostate cancer. Eur. J. Cancer 2020, 136, 16–24. [Google Scholar] [CrossRef]
- Marques, I.A.; Abrantes, A.M.; Pires, A.S.; Neves, A.R.; Caramelo, F.J.; Rodrigues, T.; Matafome, P.; Tavares-da-Silva, E.; Gonçalves, A.C.; Pereira, C.C.; et al. Kinetics of radium-223 and its effects on survival, proliferation and DNA damage in lymph-node and bone metastatic prostate cancer cell lines. Int. J. Radiat. Biol. 2021, 97, 715–726. [Google Scholar] [CrossRef]
- Xu, J.; Yu, T.; Zois, C.; Cheng, J.-X.; Tang, Y.; Harris, A.; Huang, W. Unveiling Cancer Metabolism through Spontaneous and Coherent Raman Spectroscopy and Stable Isotope Probing. Cancers 2021, 13, 1718. [Google Scholar] [CrossRef]
- Noguchi, M.; Hirata, N.; Tanaka, T.; Suizu, F.; Nakajima, H.; Chiorini, J.A. Autophagy as a modulator of cell death machinery. Cell Death Dis. 2020, 11, 7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diniz Filho, J.F.S.; de Barros, A.O.d.S.; Pijeira, M.S.O.; Ricci-Junior, E.; Midlej, V.; Baroni, M.P.M.A.; dos Santos, C.C.; Alencar, L.M.R.; Santos-Oliveira, R. Ultrastructural Analysis of Cancer Cells Treated with the Radiopharmaceutical Radium Dichloride ([223Ra]RaCl2): Understanding the Effect on Cell Structure. Cells 2023, 12, 451. https://doi.org/10.3390/cells12030451
Diniz Filho JFS, de Barros AOdS, Pijeira MSO, Ricci-Junior E, Midlej V, Baroni MPMA, dos Santos CC, Alencar LMR, Santos-Oliveira R. Ultrastructural Analysis of Cancer Cells Treated with the Radiopharmaceutical Radium Dichloride ([223Ra]RaCl2): Understanding the Effect on Cell Structure. Cells. 2023; 12(3):451. https://doi.org/10.3390/cells12030451
Chicago/Turabian StyleDiniz Filho, Joel Félix Silva, Aline Oliveira da Silva de Barros, Martha Sahylí Ortega Pijeira, Eduardo Ricci-Junior, Victor Midlej, Mariana Pelissari Monteiro Aguiar Baroni, Clenilton Costa dos Santos, Luciana Magalhães Rebelo Alencar, and Ralph Santos-Oliveira. 2023. "Ultrastructural Analysis of Cancer Cells Treated with the Radiopharmaceutical Radium Dichloride ([223Ra]RaCl2): Understanding the Effect on Cell Structure" Cells 12, no. 3: 451. https://doi.org/10.3390/cells12030451
APA StyleDiniz Filho, J. F. S., de Barros, A. O. d. S., Pijeira, M. S. O., Ricci-Junior, E., Midlej, V., Baroni, M. P. M. A., dos Santos, C. C., Alencar, L. M. R., & Santos-Oliveira, R. (2023). Ultrastructural Analysis of Cancer Cells Treated with the Radiopharmaceutical Radium Dichloride ([223Ra]RaCl2): Understanding the Effect on Cell Structure. Cells, 12(3), 451. https://doi.org/10.3390/cells12030451