Continuous In Vitro Culture of Babesia duncani in a Serum-Free Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Culture of B. duncani in Different Growth Media
2.2. Effect of VP-SFM with Different Concentrations of AlbuMaxTM I on the Proliferation of B. duncani
2.3. Effect of VP-SFM with Different Concentrations of CD Lipid Mixture on the Proliferation of B. duncani
2.4. B. duncani Long-Term Culture by Using VP-SFMA or 1:100 CD Lipid Mixture with VP-SFM
2.5. Comparison of B. duncani Proliferation between VP-SFMA and HL-1 + 20% FBS Medium
2.6. Virulence Assays in Syrian Golden Hamsters
2.7. Statistical Analysis
3. Results
3.1. VP-SFM Medium with Different Concentrations of AlbuMaxTM I Affect the Proliferation of B. duncani In Vitro
3.2. Effect of VP-SFM with Different Concentrations of CD Lipid Mixture on the Proliferation of B. duncani
3.3. B. duncani Long-Term Culture by Using VP-SFMA or CD Lipid Mixture
3.4. Comparison of the Growth of B. duncani Culture by VP-SFMA and HL-1 Medium with 20% FBS
3.5. Serum-Free Culture of B. duncani Maintains Virulence against Hamsters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krause, P.J. Human babesiosis. Int. J. Parasitol. 2019, 49, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Villatoro, T.; Karp, J.K. Transfusion-Transmitted Babesiosis. Arch. Pathol. Lab. Med. 2019, 143, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Vannier, E.G.; Diuk-Wasser, M.A.; Ben Mamoun, C.; Krause, P.J. Babesiosis. Infect. Dis. Clin. N. Am. 2015, 29, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.G.; Ristic, M. Babesia bovis: Continuous cultivation in a microaerophilous stationary phase culture. Science 1980, 207, 1218–1220. [Google Scholar] [CrossRef] [PubMed]
- Väyrynen, R.; Tuomi, J. Continuous in vitro cultivation of Babesia divergens. Acta Vet. Scand. 1982, 23, 471–472. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.A.A.; Millan, J.V.F.; Ueti, M.W.; Rojas-Martinez, C. Innovative Alternatives for Continuous In Vitro Culture of Babesia bigemina in Medium Free of Components of Animal Origin. Pathogens 2020, 9, 343. [Google Scholar] [CrossRef]
- Thomford, J.W.; Conrad, P.A.; Telford, S.R., III; Mathiesen, D.; Bowman, B.H.; Spielman, A.; Eberhard, M.L.; Herwaldt, B.L.; Quick, R.E.; Persing, D.H. Cultivation and Phylogenetic Characterization of a Newly Recognized Human Pathogenic Protozoan. J. Infect. Dis. 1994, 169, 1050–1056. [Google Scholar] [CrossRef]
- Holman, P.J.; Chieves, L.; Frerichs, W.M.; Olson, D.; Wagner, G.G. Babesia Equi Erythrocytic Stage Continuously Cultured in an Enriched Medium. J. Parasitol. 1994, 80, 232–236. [Google Scholar] [CrossRef]
- Holman, P.J.; Frerichs, W.M.; Chieves, L.; Wagner, G.G. Culture confirmation of the carrier status of Babesia caballi-infected horses. J. Clin. Microbiol. 1993, 31, 698–701. [Google Scholar] [CrossRef]
- McCormack, K.A.; Alhaboubi, A.; Pollard, D.A.; Fuller, L.; Holman, P.J. In vitro cultivation of Babesia duncani (Apicomplexa: Babesiidae), a zoonotic hemoprotozoan, using infected blood from Syrian hamsters (Mesocricetus auratus). Parasitol. Res. 2019, 118, 2409–2417. [Google Scholar] [CrossRef]
- Abraham, A.; Brasov, I.; Thekkiniath, J.; Kilian, N.; Lawres, L.; Gao, R.; DeBus, K.; He, L.; Yu, X.; Zhu, G.; et al. Establishment of a continuous in vitro culture of Babesia duncani in human erythrocytes reveals unusually high tolerance to recommended therapies. J. Biol. Chem. 2018, 293, 19974–19981. [Google Scholar] [CrossRef]
- White, S.M.; Constantin, P.E.; Claycomb, W.C. Cardiac physiology at the cellular level: Use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am. J. Physiol.-Heart C 2004, 286, H823–H829. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Pal, A.C.; Mamoun, C.B. An Alternative Culture Medium for Continuous In Vitro Propagation of the Human Pathogen Babesia duncani in Human Erythrocytes. Pathogens 2022, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- Schrevel, J.; Grellier, P.; Rigomer, D. New approaches in in vitro cultures of Plasmodium falciparum and Babesia divergens by using serum-free medium based on human high density lipoproteins. Mem. Do Inst. Oswaldo Cruz 1992, 87, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Grande, N.; Precigout, E.; Ancelin, M.L.; Moubri, K.; Carcy, B.; Lemesre, J.L.; Vial, H.; Gorenflot, A. Continuous in vitro culture of Babesia divergens in a serum-free medium. Parasitology 1997, 115, 81–89. [Google Scholar] [CrossRef]
- Schrevel, J.; Grellier, P.; Rigomer, D. Continuous in vitro cultivation of Babesia caballiin serum-free medium. Parasitol. Res. 1999, 85, 413–416. [Google Scholar]
- Ikadai, H.; Martin, M.D.; Nagasawa, H.; Fujisaki, K.; Suzuki, N.; Mikami, T.; Kudo, N.; Oyamada, T.; Igarashi, I. Analysis of a Growth-Promoting Factor forBabesia caballiCultivation. J. Parasitol. 2001, 87, 1484–1486. [Google Scholar] [CrossRef]
- Bork, S.; Okamura, M.; Matsuo, T.; Kumar, S.; Yokoyama, N.; Igarashi, I. Host serum modifies the drug susceptibility of Babesia bovis in vitro. Parasitology 2005, 130, 489–492. [Google Scholar] [CrossRef]
- Martinez, J.A.A.; Millan, J.V.F.; Ueti, M.W.; Rojas-Martinez, C. Establishment of Babesia bovis In Vitro Culture Using Medium Free of Animal Products. Pathogens 2021, 10, 770. [Google Scholar] [CrossRef]
- Van der Valk, J.; Brunner, D.; De Smet, K.; Svenningsen, A.F.; Honegger, P.; Knudsen, L.E.; Lindl, T.; Noraberg, J.; Price, A.; Scarino, M.L.; et al. Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods. Toxicol. Vitr. 2010, 24, 1053–1063. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Chen, F.; Jiang, W.; Luo, W.; Zhu, G.; Zhao, J.; He, L. Establishment of a Transient and Stable Transfection System for Babesia duncani Using a Homologous Recombination Strategy. Front Cell Infect. Microbiol. 2022, 12, 844498. [Google Scholar] [CrossRef] [PubMed]
- Trager, W.; Jensen, J.B. Human Malaria Parasites in Continuous Culture. Science 1976, 193, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Kocken, C.H.; Ozwara, H.; van der Wel, A.; Beetsma, A.L.; Mwenda, J.M.; Thomas, A.W. Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infect. Immun. 2002, 70, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Persing, D.H.; Herwaldt, B.L.; Glaser, C.; Lane, R.S.; Thomford, J.W.; Mathiesen, D.; Krause, P.J.; Phillip, D.F.; Conrad, P.A. Infection with a babesia-like organism in northern California. N. Engl. J. Med. 1995, 332, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Quick, R.E.; Herwaldt, B.L.; Thomford, J.W.; Garnett, M.E.; Eberhard, M.L.; Wilson, M.; Spach, D.H.; Dickerson, J.W.; Telford, S.R., III; Steingart, K.R.; et al. Babesiosis in Washington State: A new species of Babesia? Ann. Intern. Med. 1993, 119, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Da Costa-Silva, T.A.; da Silva Meira, C.; Frazzatti-Gallina, N.; Pereira-Chioccola, V.L. Toxoplasma gondii antigens: Recovery analysis of tachyzoites cultivated in Vero cell maintained in serum free medium. Exp. Parasitol. 2012, 130, 463–469. [Google Scholar] [CrossRef]
- Rojas-Martinez, C.; Rodriguez-Vivas, R.I.; Millan, J.V.F.; Viana, K.Y.A.; Ruiz, E.J.G.; Bautista-Garfias, C.R.; Lira-Amaya, J.J.; Polanco-Martinez, D.J.; Martinez, J.A.A. Babesia bigemina: Advances in continuous in vitro culture using serum-free medium supplemented with insulin, transferrin, selenite, and putrescine. Parasitol. Int. 2018, 67, 294–301. [Google Scholar] [CrossRef]
- Rojas-Martinez, C.; Rodriguez-Vivas, R.I.; Millan, J.V.F.; Viana, K.Y.A.; Ruiz, E.J.G.; Martinez, J.A.A. Putrescine: Essential factor for in vitro proliferation of Babesia bovis. Exp. Parasitol. 2017, 175, 79–84. [Google Scholar] [CrossRef]
- Muller, I.B.; Das Gupta, R.; Luersen, K.; Wrenger, C.; Walter, R.D. Assessing the polyamine metabolism of Plasmodium falciparum as chemotherapeutic target. Mol. Biochem. Parasitol. 2008, 160, 1–7. [Google Scholar] [CrossRef]
- Cook, T.; Roos, D.; Morada, M.; Zhu, G.; Keithly, J.S.; Feagin, J.E.; Wu, G.; Yarlett, N. Divergent polyamine metabolism in the Apicomplexa. Microbiology 2007, 153, 1123–1130. [Google Scholar] [CrossRef]
- Boitz, J.M.; Yates, P.A.; Kline, C.; Gaur, U.; Wilson, M.E.; Ullman, B.; Roberts, S.C. Leishmania donovani ornithine decarboxylase is indispensable for parasite survival in the mammalian host. Infect. Immun. 2009, 77, 756–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willert, E.K.; Phillips, M.A. Regulated expression of an essential allosteric activator of polyamine biosynthesis in African trypanosomes. PLoS Pathog. 2008, 4, e1000183. [Google Scholar] [CrossRef] [PubMed]
- Brayton, K.A.; Lau, A.O.; Herndon, D.R.; Hannick, L.; Kappmeyer, L.S.; Berens, S.J.; Bidwell, S.L.; Brown, W.C.; Crabtree, J.; Fadrosh, D.; et al. Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog. 2007, 3, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Serricchio, M.; Striepen, B.; Butikofer, P. Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans. Prog. Lipid. Res. 2013, 52, 488–512. [Google Scholar] [CrossRef]
- Mi-Ichi, F.; Kita, K.; Mitamura, T. Intraerythrocytic Plasmodium falciparum utilize a broad range of serum-derived fatty acids with limited modification for their growth. Parasitology 2006, 133, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Bisanz, C.; Bastien, O.; Grando, D.; Jouhet, J.; Marechal, E.; Cesbron-Delauw, M.F. Toxoplasma gondii acyl-lipid metabolism: De novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. Biochem. J. 2006, 394, 197–205. [Google Scholar] [CrossRef]
- Downie, M.J.; Kirk, K.; Mamoun, C.B. Purine salvage pathways in the intraerythrocytic malaria parasite Plasmodium falciparum. Eukaryot. Cell 2008, 7, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte-Luis, V.; Mota, M.M. Parasite Sensing of Host Nutrients and Environmental Cues. Cell Host. Microbe. 2018, 23, 749–758. [Google Scholar] [CrossRef]
- Augagneur, Y.; Jaubert, L.; Schiavoni, M.; Pachikara, N.; Garg, A.; Usmani-Brown, S.; Wesolowski, D.; Zeller, S.; Ghosal, A.; Cornillot, E.; et al. Identification and functional analysis of the primary pantothenate transporter, PfPAT, of the human malaria parasite Plasmodium falciparum. J. Biol. Chem. 2013, 288, 20558–20567. [Google Scholar] [CrossRef]
- Downie, M.J.; El Bissati, K.; Bobenchik, A.M.; Nic Lochlainn, L.; Amerik, A.; Zufferey, R.; Kirk, K.; Ben Mamoun, C. PfNT2, a permease of the equilibrative nucleoside transporter family in the endoplasmic reticulum of Plasmodium falciparum. J. Biol. Chem. 2010, 285, 20827–20833. [Google Scholar] [CrossRef]
- El Bissati, K.; Downie, M.J.; Kim, S.K.; Horowitz, M.; Carter, N.; Ullman, B.; Ben Mamoun, C. Genetic evidence for the essential role of PfNT1 in the transport and utilization of xanthine, guanine, guanosine and adenine by Plasmodium falciparum. Mol. Biochem. Parasitol. 2008, 161, 130–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Wang, S.; Li, D.; Zhang, Y.; Luo, W.; Zhao, J.; He, L. Continuous In Vitro Culture of Babesia duncani in a Serum-Free Medium. Cells 2023, 12, 482. https://doi.org/10.3390/cells12030482
Jiang W, Wang S, Li D, Zhang Y, Luo W, Zhao J, He L. Continuous In Vitro Culture of Babesia duncani in a Serum-Free Medium. Cells. 2023; 12(3):482. https://doi.org/10.3390/cells12030482
Chicago/Turabian StyleJiang, Weijun, Sen Wang, Dongfang Li, Yajun Zhang, Wanxin Luo, Junlong Zhao, and Lan He. 2023. "Continuous In Vitro Culture of Babesia duncani in a Serum-Free Medium" Cells 12, no. 3: 482. https://doi.org/10.3390/cells12030482
APA StyleJiang, W., Wang, S., Li, D., Zhang, Y., Luo, W., Zhao, J., & He, L. (2023). Continuous In Vitro Culture of Babesia duncani in a Serum-Free Medium. Cells, 12(3), 482. https://doi.org/10.3390/cells12030482