Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes
Abstract
:1. Introduction
2. Hemocyte Actions during Molting
3. Hemocytes Contribute to Surviving Severe Hypoxia
4. PPO Actions beyond Immunity
5. Hemocytes Produce Vitellogenin in a Rice Leafhopper
6. Drosophila Hemocytes Act in Cancer Recognition and Responses
7. Clearing Apoptotic Cells from CNS
8. Hemocytes Create Hematopoietic Niches
9. Hemocytes Produce and Transport the Lipoprotein, ApoLP-III
10. Hemocytes Transport Iron
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Lin, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Dunn, P.E.; Drake, D.R. Fate of bacteria injected into naïve and immunized larvae of the tobacco hornworm Manduca sexta. J. Invertebr. Pathol. 1993, 41, 77–85. [Google Scholar] [CrossRef]
- Miller, J.S.; Nguyen, T.; Stanley-Samuelson, D.W. Eicosanoids mediate insect nodulation response to bacterial infections. Proc. Natl. Acad. Sci. USA 1994, 91, 12418–12422. [Google Scholar] [CrossRef]
- Rizki, M.T.M. Alterations in the haemocyte population of Drosophila melanogaster. J. Morph. 1957, 100, 437–458. [Google Scholar] [CrossRef]
- Gillespie, J.P.; Kanost, M.R.; Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol. 1997, 42, 611–643. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, L.M.; Fang, Q.; Stanley, D.W.; Ye, G.Y. Cellular humoral immune interactions between Drosophila and its parasitoids. Insect Sci. 2021, 28, 1208–1227. [Google Scholar] [CrossRef]
- Lazzarro, B.P. Special issue on Insect Immunity. Insects. 2012. Available online: https://www.mdpi.com/journal/insects/special_issues/insect_immunity?view=abstract&listby=type (accessed on 10 December 2022).
- Kingsolver, M.B.; Hardy, R.W. Making connections in insect innate immunity. Proc. Natl. Acad. Sci. USA 2012, 109, 18639–18640. [Google Scholar] [CrossRef]
- Cooper, D.; Eleftherianos, I. Memory and specificity in the insect immune system; current perspectives and future challenges. Front. Immunol. 2017, 8, 539. [Google Scholar] [CrossRef]
- Stanley, D.; Kim, Y. Eicosanoid signaling in insects: From discovery to plant protection. Crit. Rev. Plant Sci. 2014, 33, 20–63. [Google Scholar] [CrossRef]
- Stanley, D.; Kim, Y. Insect prostaglandins and other eicosanoids: From molecular to physiological actions. Adv. Insect Physiol. 2019, 56, 283–343. [Google Scholar]
- Kim, Y.; Stanley, D. Eicosanoid signaling in insect immunology: New genes and unresolved issues. Genes 2021, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Moret, Y.; Schmid-Hempel, P. Survival for immunity: The price of immune system activation for bumblebee workers. Science 2000, 290, 1166–1168. [Google Scholar] [CrossRef] [PubMed]
- Bedick, J.C.; Pardy, R.L.; Howard, R.W.; Stanley, D.W. Insect cellular reactions to the lipopolysaccharide component of the bacterium Serratia marcescens are mediated by eicosanoids. J. Insect Physiol. 2000, 46, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ringbauer, J.A.; Goodman, C.L.; Reall, T.; Jiang, X.F.; Stanley, D. Prostaglandin-mediated recovery from bacteremia delays larval development in fall armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 2018, 97, e21444. [Google Scholar] [CrossRef]
- Ardia, D.R.; Gantz, J.E.; Schneider, B.C.; Strebel, S. Costs of immunity in insects: An induced immune response increases metabolic rate and decreases antimicrobial activity. Funct. Ecol. 2012, 26, 732–739. [Google Scholar] [CrossRef]
- Banerjee, U.; Girard, J.R.; Goins, L.M.; Spratford, C.M. Drosophila as a genetic model for hematopoiesis. Genetics 2019, 211, 367–417. [Google Scholar] [CrossRef]
- Mase, A.; Augsburger, J.; Brückner, K. Macrophages and their organ locations shape each other in development and homeostasis—A Drosophila perspective. Front. Cell Dev. Biol. 2021, 9, 630272. [Google Scholar] [CrossRef]
- Wigglesworth, V.B. The role of the haemocytes in the growth and moulting of an insect, Rhodnius prolixus (Hemiptera). J. Exp. Biol. 1955, 32, 649–663. [Google Scholar] [CrossRef]
- Wigglesworth, V.B. The haemocytes and connective tissue formation in an insect, Rhodnius prolixus (Hemiptera). Q. J. Microsc. Sci. 1956, 97, 89–98. [Google Scholar] [CrossRef]
- Ley, K.; Kansas, G.S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nature Rev. Immunol. 2004, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Okudaira, N.; Iwabuchi, K.; Fugo, H.; Nagai, T. Apoptosis and adhesion of hemocytes during molting stage of silkworm, Bombyx mori. Zool. Sci. 2006, 23, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Sass, M.; Kiss, A.; Locke, M. Integument and hemocyte peptides. J. Insect Physiol. 1994, 40, 407–421. [Google Scholar] [CrossRef]
- Csikos, G.; Molnar, K.; Borhegyi, N.H.; Sass, M. Localization of a cuticular protein during the postembryonal development of Manduca sexta. Acta Biolog. Hung. 2001, 52, 457–471. [Google Scholar]
- Huang, C.H.; Chon, K.Y.; Lei, K.F. Analysis of the internal hypoxic environment in solid tumor tissue using a folding paper system. ACS Appl. Mater. Interfaces 2021, 13, 33885–33893. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proc. Natl. Acad. Sci. USA 2005, 102, 10002–10005. [Google Scholar] [CrossRef] [PubMed]
- Rabalais, N.N.; Turner, R.E. Gulf of Mexico hypoxia: Past, Present and Future. Limnol. Oceanogr. Bull. 2019, 28, 117–124. [Google Scholar] [CrossRef]
- Holter, P. Concentrations of oxygen, carbon dioxide and methane in the air within dung pats. Pedobiologia 1991, 35, 381–386. [Google Scholar]
- Whipple, S.D.; Cavallaro, M.; Hoback, W.W. Immersion tolerance in dung beetles (Coleoptera: Scarabaeidae) differs among species but not behavioral groups. Coleopt. Bull. 2013, 67, 257–263. [Google Scholar] [CrossRef]
- Carvallaro, M.C.; Barnhart, M.C.; Hoback, W.W. Causes of rapid carrion beetle (Coleoptera: Silphidae) death in flooded pitfall traps, response to soil flooding, immersion tolerance, and swimming behavior. Environ. Entomol. 2017, 46, 362–368. [Google Scholar]
- Azad, P.; Zhou, D.; Russo, E.; Haddad, G.G. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS ONE 2009, 4, e5371. [Google Scholar] [CrossRef] [PubMed]
- Azad, P.; Ryu, J.; Haddad, G.G. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic. Biol. Med. 2011, 51, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Stanley, D.; Kim, Y. PGE2 induces oenocytoid cell lysis via a G protein- coupled receptor in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 2011, 57, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Zhang, Q.; Zhang, J.; Yang, B.; Wu, K.; Xie, W.; Luan, Y.X.; Ling, E. Insect prophenoloxidase: The view beyond immunity. Front. Physiol. 2014, 5, 252. [Google Scholar] [CrossRef]
- Shao, Q.; Yang, B.; Xu, Q.; Li, X.; Lu, Z.; Wang, C.; Huang, Y.; Söderhäll, K.; Ling, E. Hindgut innate immunity and regulation of fecal microbiota through melanization in insects. J. Biol. Chem. 2012, 287, 14270–14279. [Google Scholar] [CrossRef]
- An, S.; Dong, S.; Wang, Q.; Li, S.; Gilbert, L.I.; Stanley, D.; Song, Q. Insect neuropeptide bursicon homodimers induce innate immune and stress genes during molting by activating the NF-kB transcription factor Relish. PLoS ONE 2012, 7, e34510. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Dang, C.; Chang, X.; Fang, Q.; Stanley, D.; Ye, G. Rice dwarf virus infection alters green rice hopper host preference and feeding behavior. PLoS ONE 2018, 13, e0203364. [Google Scholar]
- Huo, Y.; Yu, Y.; Chen, L.; Li, Q.; Zhang, M.; Song, Z.; Chen, X.; Fang, R.; Zhang, L. Insect tissue-specific vitellogenin facilitates transmission of plant virus. PLoS Pathog. 2018, 14, e1006909. [Google Scholar] [CrossRef]
- Cardoso-Jaime, V.; Tikhe, C.V.; Dong, S.; Dimopoulos, G. The role of mosquito hemocytes in viral infections. Viruses 2022, 14, 2088. [Google Scholar] [CrossRef]
- Cheng, G.; Cox, J.; Wang, P.; Krishnan, M.N.; Dai, J.; Qian, F.; Anderson, J.F.; Fikrig, E. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile Virus infection of mosquitoes. Cell 2010, 142, 714–725. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, F.; Liu, J.; Xiao, X.; Zhang, S.; Qin, C.; Xiang, Y.; Wang, P.; Cheng, G. Transmission-blocking antibodies against mosquito C-type lectins for Dengue prevention. PLoS Pathog. 2014, 10, e1003931. [Google Scholar] [CrossRef] [PubMed]
- Mirzoyan, Z.; Sollazzo, M.; Allocca, M.; Valenza, A.M.; Grifoni, D.; Bellcosta, P. Drosophila melanogaster: A model organism to study cancer. Front. Genet. 2019, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Bilder, D. Epithelial polarity and proliferation control: Links from the Drosophila neoplastic tumor suppressors. Genes Dev. 2004, 18, 1909–1925. [Google Scholar] [CrossRef] [PubMed]
- Parisi, F.; Stefanatos, R.K.; Strathdee, K.; Yu, Y.; Vidal, M. Transformed epithelia trigger non-tissue-autonomous tumor suppressor response by adipocytes via activation of Toll and Eiger/TNF signaling. Cell Rep. 2014, 6, 855–867. [Google Scholar] [CrossRef]
- Araki, M.; Kurihara, M.; Kinoshita, S.; Awane, R.; Sato, T.; Ohkawa, Y.; Inoue, Y.H. Anti-tumour effects of antimicrobial peptides, components of the innate immune system, against haematopoietic tumours in Drosophila mxc mutants. Dis. Model. Mech. 2019, 12, dmm037721. [Google Scholar] [CrossRef]
- Parvy, J.P.; Yu, Y.; Dostalova, A.; Kondo, S.; Kurjan, A.; Bulet, P.; Lemaître, B.; Vidal, M.; Cordero, J.B. The antimicrobial peptide defensin cooperates with tumor necrosis factor to drive tumor cell death in Drosophila. eLife 2019, 8, e45061. [Google Scholar] [CrossRef]
- Roddie, H.G.; Armitage, E.L.; Coates, J.A.; Johnston, S.A.; Evans, I.R. Simu-dependent clearance of dying cells regulates macrophage function and inflammation resolution. PLoS Biol. 2019, 17, e2006741. [Google Scholar] [CrossRef]
- Freeman, M.R.; Doherty, J. Glial cell biology in Drosophila and vertebrates. Trends Neurosci. 2006, 29, 82–90. [Google Scholar] [CrossRef]
- Han, C.; Song, Y.; Xiao, H.; Wang, D.; Franc, N.C.; Jan, L.Y.; Jan, Y.N. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron 2013, 81, 544–560. [Google Scholar] [CrossRef]
- Martinez-Agosto, J.A.; Mikkola, H.K.A.; Hartenstein, V.; Banerjee, U. The hematopoietic stem cell and its niche: A comparative view. Genes Dev. 2022, 21, 3044–3060. [Google Scholar] [CrossRef]
- Csordás, G.; Grawe, F.; Uhlirova, M. Eater cooperates with multiplexin to drive the formation of hematopoietic compartments. eLife 2020, 9, e57297. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Je, H.J.; Park, S.Y.; Lee, I.H.; Jin, B.R.; Yun, H.K.; Yun, C.Y.; Han, Y.S.; Kang, Y.J.; Seo, S.J. Immune activation of apolipophorin-III and its distribution in hemocyte from Hyphantria cunea. Insect Biochem. Mol. Biol. 2004, 34, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Locke, M.; Nichol, H. Iron economy in insects: Transport, metabolism and storage. Annu. Rev. Entomol. 1992, 37, 195–215. [Google Scholar] [CrossRef]
- Locke, M. Apoferritin in the vacuolar system of insect hemocytes. Tissue Cell 1991, 23, 367–375. [Google Scholar] [CrossRef]
- Qia, L.; Gao, J.R.; Clark, J.M. Sequencing and characterization of a cDNA encoding a ferritin subunit of Colorado potato beetle, Leptinotarsa decemlineata. Arch. Insect Biochem. Physiol. 2005, 60, 140–150. [Google Scholar] [CrossRef]
- Pham, D.Q.-D.; Zhang, D.; Hufnagel, D.H.; Winzerling, J.J. Manduca sexta hemolymph ferritin: cDNA sequence and mRNA expression. Gene 1996, 172, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.Q.D.; Winzerling, J.J. Insect ferritins: Typical or atypical? Biochim. Biophys. Acta 2010, 1800, 824–833. [Google Scholar] [CrossRef]
- González-Morales, N.; Mendoza-Ortíz, M.Á.; Blowes, L.M.; Missirlis, F.; Riesgo-Escovar, J.R. Ferritin is required in multiple tissues during Drosophila melanogaster development. PLoS ONE 2015, 10, e0133499. [Google Scholar] [CrossRef] [PubMed]
- Pichon, R.; Pinaud, S.; Vignal, E.; Chaparro, C.; Pratlong, M.; Portet, A.; Duval, D.; Galinier, R.; Gourbal, B. Single cell RNA sequencing reveals hemocyte heterogeneity in Biomphalaria glabrata: Plasticity over diversity. Front. Immunol. 2022, 13, 956871. [Google Scholar] [CrossRef]
- Li, H.; Janssens, J.; De Waegeneer, M.; Kolluru, S.S.; Davie, K.; Gardeux, V.; Saelens, W.; David, F.P.; Brbić, M.; Spanier, K.; et al. Fly Call Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science 2022, 375, 991. [Google Scholar] [CrossRef]
- Dhahbi, A.B.; Cargui, Y.; Boulaaras, S.M.; Khalifa, S.B.; Koko, W.; Alresheedi, F. Mathematical modelling of the sterile insect technique using different release strategies. Math. Prob. Engin. 2020, 2020, 8896566. [Google Scholar]
Category | Physiological Functions | Model Insects | References |
---|---|---|---|
Immunity | Cellular immunity | Manduca sexta | [2] |
Phagocytosis | |||
Nodulation | |||
Encapsulation | |||
Humoral immunity | Drosophila melanogaster | [6] | |
Antimicrobial peptides | |||
Melanization | |||
Non-Immunity | Molting and development | Rhodnius prolixus | [20,21] |
Surviving severe hypoxia | Drosophila melanogaster | [33] | |
Phenoloxidase production | Bombyx mori | [36] | |
Vitellogenin production | Laodelphax striatellus | [38,39] | |
Recognition of cancer cells | Drosophila melanogaster | [45,46,47] | |
Clearing apoptotic cells | Drosophila melanogaster | [48,49] | |
Hematopoiesis | Drosophila melanogaster | [51,52] | |
Lipoprotein synthesis | Hyphantria cunea | [53] | |
Iron transport | Calpodes ethlius | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanley, D.; Haas, E.; Kim, Y. Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes. Cells 2023, 12, 599. https://doi.org/10.3390/cells12040599
Stanley D, Haas E, Kim Y. Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes. Cells. 2023; 12(4):599. https://doi.org/10.3390/cells12040599
Chicago/Turabian StyleStanley, David, Eric Haas, and Yonggyun Kim. 2023. "Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes" Cells 12, no. 4: 599. https://doi.org/10.3390/cells12040599
APA StyleStanley, D., Haas, E., & Kim, Y. (2023). Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes. Cells, 12(4), 599. https://doi.org/10.3390/cells12040599