A Killer Disarmed: Natural Killer Cell Impairment in Myelodysplastic Syndrome
Abstract
:1. Introduction
2. NK Cells in MDS
3. The Tumor Microenvironment in MDS
4. NK Cell Immunotherapy in MDS
Approach/Treatment | Trial Phase | Status | Patient Numbers | Trial Identifier | References |
---|---|---|---|---|---|
Adoptive NK cell immunotherapy | |||||
+cytokine stimulation with IL-2/-15/CIML | Phase I | Completed | 26 | NCT01385423 | [96] |
Ongoing | 76 | NCT05400122, NCT02890758, NCT04024761 | [92,93] | ||
Phase II | Completed | 17 | NCT02395822 | [96] | |
Phase I/II | Terminated | 89 | NCT01898793 | [97,98,99] | |
+expanded K562-mbIL21 | Phase I | Ongoing | 30 | NCT04220684 | [100,101,102,103,104,105] |
+CAR NK cells | Phase I | Ongoing | 90 | NCT04623944 | [120,121,122] |
Phase I/II | Ongoing | 94 | NCT05092451 | ||
In vivo NK cell activation | |||||
BiKE/TriKE | Phase I/II | Terminated | 12 | NCT03214666 | [23,123,124] |
INB16 priming | Phase I | Ongoing | 12 | EudraCT 2019-004820-40 | [125,126,127,128,129,130] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corey, S.J.; Minden, M.D.; Barber, D.L.; Kantarjian, H.; Wang, J.C.Y.; Schimmer, A.D. Myelodysplastic Syndromes: The Complexity of Stem-Cell Diseases. Nat. Rev. Cancer 2007, 7, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Bejar, R.; Stevenson, K.; Abdel-Wahab, O.; Galili, N.; Nilsson, B.; Garcia-Manero, G.; Kantarjian, H.; Raza, A.; Levine, R.L.; Neuberg, D.; et al. Clinical Effect of Point Mutations in Myelodysplastic Syndromes. N. Engl. J. Med. 2011, 364, 2496–2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaemmanuil, E.; Gerstung, M.; Malcovati, L.; Tauro, S.; Gundem, G.; Van Loo, P.; Yoon, C.J.; Ellis, P.; Wedge, D.C.; Pellagatti, A.; et al. Clinical and Biological Implications of Driver Mutations in Myelodysplastic Syndromes. Blood 2013, 122, 3616–3627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takizawa, H.; Manz, M.G. Impact of Inflammation on Early Hematopoiesis and the Microenvironment. Int. J. Hematol. 2017, 106, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, C.; Campisi, J. Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef]
- Koschmieder, S.; Mughal, T.I.; Hasselbalch, H.C.; Barosi, G.; Valent, P.; Kiladjian, J.-J.; Jeryczynski, G.; Gisslinger, H.; Jutzi, J.S.; Pahl, H.L.; et al. Myeloproliferative Neoplasms and Inflammation: Whether to Target the Malignant Clone or the Inflammatory Process or Both. Leukemia 2016, 30, 1018–1024. [Google Scholar] [CrossRef]
- Aggarwal, S.; van de Loosdrecht, A.A.; Alhan, C.; Ossenkoppele, G.J.; Westers, T.M.; Bontkes, H.J. Role of Immune Responses in the Pathogenesis of Low-Risk MDS and High-Risk MDS: Implications for Immunotherapy. Br. J. Haematol. 2011, 153, 568–581. [Google Scholar] [CrossRef]
- Kotsianidis, I.; Bouchliou, I.; Nakou, E.; Spanoudakis, E.; Margaritis, D.; Christophoridou, A.V.; Anastasiades, A.; Tsigalou, C.; Bourikas, G.; Karadimitris, A.; et al. Kinetics, Function and Bone Marrow Trafficking of CD4+ CD25+FOXP3+ Regulatory T Cells in Myelodysplastic Syndromes (MDS). Leukemia 2009, 23, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Germing, U.; Strupp, C.; Kuendgen, A.; Isa, S.; Knipp, S.; Hildebrandt, B.; Giagounidis, A.; Aul, C.; Gattermann, N.; Haas, R. Prospective Validation of the WHO Proposals for the Classification of Myelodysplastic Syndromes. Haematologica 2006, 91, 1596–1604. [Google Scholar] [CrossRef]
- Breccia, M.; Latagliata, R.; Cannella, L.; Carmosino, I.; Santopietro, M.; Loglisci, G.; Federico, V.; Alimena, G. Refractory Cytopenia with Unilineage Dysplasia: Analysis of Prognostic Factors and Survival in 126 Patients. Leuk Lymphoma 2010, 51, 783–788. [Google Scholar] [CrossRef]
- Greenberg, P.; Cox, C.; LeBeau, M.M.; Fenaux, P.; Morel, P.; Sanz, G.; Sanz, M.; Vallespi, T.; Hamblin, T.; Oscier, D.; et al. International Scoring System for Evaluating Prognosis in Myelodysplastic Syndromes. Blood 1997, 89, 2079–2088. [Google Scholar] [CrossRef] [PubMed]
- Nachtkamp, K.; Kündgen, A.; Strupp, C.; Giagounidis, A.; Kobbe, G.; Gattermann, N.; Haas, R.; Germing, U. Impact on Survival of Different Treatments for Myelodysplastic Syndromes (MDS). Leuk Res. 2009, 33, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Chandhok, N.S.; Boddu, P.C.; Gore, S.D.; Prebet, T. What Are the Most Promising New Agents in Myelodysplastic Syndromes? Curr. Opin. Hematol. 2019, 26, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Briercheck, E.L.; Freud, A.G.; Caligiuri, M.A. Human Natural Killer Cell Development. Nat. Kill. Cells Basic Sci. Clin. Appl. 2009, 214, 113–122. [Google Scholar] [CrossRef]
- Crinier, A.; Milpied, P.; Escalière, B.; Piperoglou, C.; Galluso, J.; Balsamo, A.; Spinelli, L.; Cervera-Marzal, I.; Ebbo, M.; Girard-Madoux, M. High-Dimensional Single-Cell Analysis Identifies Organ-Specific Signatures and Conserved NK Cell Subsets in Humans and Mice. Immunity 2018, 49, 971–986. [Google Scholar] [CrossRef] [Green Version]
- di Vito, C.; Mikulak, J.; Mavilio, D. On the Way to Become a Natural Killer Cell. Front. Immunol. 2019, 10, 1–15. [Google Scholar] [CrossRef]
- Spits, H.; Artis, D.; Colonna, M.; Diefenbach, A.; di Santo, J.P.; Eberl, G.; Koyasu, S.; Locksley, R.M.; McKenzie, A.N.J.; Mebius, R.E.; et al. Innate Lymphoid Cells—A Proposal for Uniform Nomenclature. Nat. Rev. Immunol. 2013, 13, 145–149. [Google Scholar] [CrossRef]
- Fauriat, C.; Long, E.O.; Ljunggren, H.-G.; Bryceson, Y.T. Regulation of Human NK-Cell Cytokine and Chemokine Production by Target Cell Recognition. Blood 2010, 115, 2167–2176. [Google Scholar] [CrossRef] [Green Version]
- Kiladjian, J.-J.; Bourgeois, E.; Lobe, I.; Braun, T.; Visentin, G.; Bourhis, J.-H.; Fenaux, P.; Chouaib, S.; Caignard, A. Cytolytic Function and Survival of Natural Killer Cells Are Severely Altered in Myelodysplastic Syndromes. Leukemia 2006, 20, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Epling-Burnette, P.K.; Zhong, B.; Salih, H.R.; Wei, S.; Bai, F.; Boulware, D.; List, A.F.; Painter, J.S.; Moscinski, L.; Rollison, D.E.; et al. Reduced Natural Killer (NK) Function Associated with High-Risk Myelodysplastic Syndrome (MDS) and Reduced Expression of Activating NK Receptors. Blood 2007, 109, 4816–4824. [Google Scholar] [CrossRef]
- Carlsten, M.; Baumann, B.C.; Simonsson, M.; Jädersten, M.; Forsblom, A.-M.; Hammarstedt, C.; Bryceson, Y.T.; Ljunggren, H.-G.; Hellström-Lindberg, E.; Malmberg, K.-J. Reduced DNAM-1 Expression on Bone Marrow NK Cells Associated with Impaired Killing of CD34+ Blasts in Myelodysplastic Syndrome. Leukemia 2010, 24, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, M.; Manser, A.R.; Fröbel, J.; Kündgen, A.; Zhao, X.; Schönberg, K.; Germing, U.; Haas, R.; Gattermann, N.; Uhrberg, M. Impaired Cytotoxicity Associated with Defective Natural Killer Cell Differentiation in Myelodysplastic Syndromes. Haematologica 2015, 100, 643–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleason, M.K.; Ross, J.A.; Warlick, E.D.; Lund, T.C.; Verneris, M.R.; Wiernik, A.; Spellman, S.; Haagenson, M.D.; Lenvik, A.J.; Litzow, M.R.; et al. CD16xCD33 Bispecific Killer Cell Engager (BiKE) Activates NK Cells against Primary MDS and MDSC CD33+ Targets. Blood 2014, 123, 3016–3026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montes, P.; Bernal, M.; Campo, L.N.; González-Ramírez, A.R.; Jiménez, P.; Garrido, P.; Jurado, M.; Garrido, F.; Ruiz-Cabello, F.; Hernández, F. Tumor Genetic Alterations and Features of the Immune Microenvironment Drive Myelodysplastic Syndrome Escape and Progression. Cancer Immunol. Immunother. 2019, 68, 2015–2027. [Google Scholar] [CrossRef]
- Parham, P. MHC Class I Molecules and Kirs in Human History, Health and Survival. Nat. Rev. Immunol. 2005, 5, 201–214. [Google Scholar] [CrossRef]
- Braud, V.M.; Allan, D.S.; O’Callaghan, C.A.; Söderström, K.; D’Andrea, A.; Ogg, G.S.; Lazetic, S.; Young, N.T.; Bell, J.I.; Phillips, J.H.; et al. HLA-E Binds to Natural Killer Cell Receptors CD94/NKG2A, B and C. Nature 1998, 391, 795–799. [Google Scholar] [CrossRef]
- Bjorkstrom, N.K.; Riese, P.; Heuts, F.; Andersson, S.; Fauriat, C.; Ivarsson, M.A.; Bjo, A.T.; Flodstro, M.; Michae, J.; Rottenberg, M.E.; et al. Expression Patterns of NKG2A, KIR, and CD57 Define a Process of CD56 Dim NK-Cell Differentiation Uncoupled from NK-Cell Education. Blood 2010, 116, 3853–3864. [Google Scholar] [CrossRef] [Green Version]
- Andersson, S.; Fauriat, C.; Malmberg, J.A.; Ljunggren, H.G.; Malmberg, K.J. KIR Acquisition Probabilities Are Independent of Self-HLA Class I Ligands and Increase with Cellular KIR Expression. Blood 2009, 114, 95–104. [Google Scholar] [CrossRef]
- Schönberg, K.; Sribar, M.; Enczmann, J.; Fischer, J.C.; Uhrberg, M. Analyses of HLA-C-Specific KIR Repertoires in Donors with Group a and B Haplotypes Suggest a Ligand-Instructed Model of NK Cell Receptor Acquisition. Blood 2011, 117, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Markasz, L.; Stuber, G.; Vanherberghen, B.; Flaberg, E.; Olah, E.; Carbone, E.; Eksborg, S.; Klein, E.; Skribek, H.; Szekely, L. Effect of Frequently Used Chemotherapeutic Drugs on the Cytotoxic Activity of Human Natural Killer Cells. Mol. Cancer 2007, 6, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Dauguet, N.; Récher, C.; Demur, C.; Fournié, J.-J.; Poupot, M.; Poupot, R. Pre-Eminence and Persistence of Immature Natural Killer Cells in Acute Myeloid Leukemia Patients in First Complete Remission. Am. J. Hematol. 2011, 86, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Najima, Y.; Yoshida, C.; Iriyama, N.; Fujisawa, S.; Wakita, H.; Chiba, S.; Okamoto, S.; Kawakami, K.; Takezako, N.; Kumagai, T.; et al. Regulatory T Cell Inhibition by Dasatinib Is Associated with Natural Killer Cell Differentiation and a Favorable Molecular Response—The Final Results of the D-First Study. Leuk. Res. 2018, 66, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Voskoboinik, I.; Smyth, M.J.; Trapani, J.A. Perforin-Mediated Target-Cell Death and Immune Homeostasis. Nat. Rev. Immunol. 2006, 6, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Screpanti, V.; Wallin, R.P.A.; Grandien, A.; Ljunggren, H.-G. Impact of FASL-Induced Apoptosis in the Elimination of Tumor Cells by NK Cells. Mol. Immunol. 2005, 42, 495–499. [Google Scholar] [CrossRef]
- Tsirogianni, M.; Grigoriou, E.; Kapsimalli, V.; Dagla, K.; Stamouli, M.; Gkirkas, K.; Konsta, E.; Karagiannidou, A.; Gkodopoulos, K.; Stavroulaki, G.; et al. Natural Killer Cell Cytotoxicity Is a Predictor of Outcome for Patients with High Risk Myelodysplastic Syndrome and Oligoblastic Acute Myeloid Leukemia Treated with Azacytidine. Leuk. Lymphoma 2019, 60, 2457–2463. [Google Scholar] [CrossRef]
- Imai, K.; Matsuyama, S.; Miyake, S.; Suga, K.; Nakachi, K. Natural Cytotoxic Activity of Peripheral-Blood Lymphocytes and Cancer Incidence: An 11-Year Follow-up Study of a General Population. Lancet 2000, 356, 1795–1799. [Google Scholar] [CrossRef]
- Ma, L.; Ceuppens, J.; Kasran, A.; Delforge, M.; Boogaerts, M.; Vandenberghe, P. Immature and Mature Monocyte-Derived Dendritic Cells in Myelodysplastic Syndromes of Subtypes Refractory Anemia or Refractory Anemia with Ringed Sideroblasts Display an Altered Cytokine Profile. Leuk. Res. 2007, 31, 1373–1382. [Google Scholar] [CrossRef]
- Van Leeuwen-Kerkhoff, N.; Lundberg, K.; Westers, T.M.; Kordasti, S.; Bontkes, H.J.; Lindstedt, M.; de Gruijl, T.D.; van de Loosdrecht, A.A. Human Bone Marrow-Derived Myeloid Dendritic Cells Show an Immature Transcriptional and Functional Profile Compared to Their Peripheral Blood Counterparts and Separate from Slan+ Non-Classical Monocytes. Front. Immunol. 2018, 9, 1619. [Google Scholar] [CrossRef]
- Ferlazzo, G.; Moretta, L. Dendritic Cell Editing by Natural Killer Cells. Crit. Rev. Oncog. 2014, 19, 67–75. [Google Scholar] [CrossRef]
- Pruneri, G.; Bertolini, F.; Soligo, D.; Carboni, N.; Cortelezzi, A.; Ferrucci, P.F.; Buffa, R.; Lambertenghi-Deliliers, G.; Pezzella, F. Angiogenesis in Myelodysplastic Syndromes. Br. J. Cancer 1999, 81, 1398–1401. [Google Scholar] [CrossRef] [Green Version]
- Invernizzi, R.; Travaglino, E.; Della Porta, M.G.; Malcovati, L.; Gallì, A.; Bastia, R.; Ciola, M.; Ambaglio, I.; Boveri, E.; Rosti, V.; et al. Vascular Endothelial Growth Factor Overexpression in Myelodysplastic Syndrome Bone Marrow Cells: Biological and Clinical Implications. Leuk. Lymphoma 2017, 58, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.I.; Chen, H.L.; Girgis, K.R.; Cunningham, H.T.; Meny, G.M.; Nadaf, S.; Kavanaugh, D.; Carbone, D.P. Production of Vascular Endothelial Growth Factor by Human Tumors Inhibits the Functional Maturation of Dendritic Cells. Nat. Med. 1996, 2, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Terme, M.; Tartour, E.; Taieb, J. VEGFA/VEGFR2-Targeted Therapies Prevent the VEGFA-Induced Proliferation of Regulatory T Cells in Cancer. Oncoimmunology 2013, 2, e25156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kordasti, S.Y.; Ingram, W.; Hayden, J.; Darling, D.; Barber, L.; Afzali, B.; Lombardi, G.; Wlodarski, M.W.; Maciejewski, J.P.; Farzaneh, F.; et al. CD4+ CD25high Foxp3+ Regulatory T Cells in Myelodysplastic Syndrome (MDS). Blood 2007, 110, 847–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdi, W.; Ogawara, H.; Handa, H.; Tsukamoto, N.; Nojima, Y.; Murakami, H. Clinical Significance of Regulatory T Cells in Patients with Myelodysplastic Syndrome. Eur. J. Haematol. 2009, 82, 201–207. [Google Scholar] [CrossRef]
- Kahn, J.D.; Chamuleau, M.E.D.; Westers, T.M.; van de Ven, P.M.; van Dreunen, L.; van Spronsen, M.; Ossenkoppele, G.J.; van de Loosdrecht, A.A. Regulatory T Cells and Progenitor B Cells Are Independent Prognostic Predictors in Lower Risk Myelodysplastic Syndromes. Haematologica 2015, 100, e220–e222. [Google Scholar] [CrossRef] [Green Version]
- Dudina, G.A.; Donetskova, A.D.; Litvina, M.M.; Mitin, A.N.; Mitina, T.A.; Polyakov, S.A. Regulatory T Cells and Profile of FOXP3 Isoforms Expression in Peripheral Blood of Patients with Myelodysplastic Syndromes. Adv. Hematol. 2018, 2018, 8487403. [Google Scholar] [CrossRef] [Green Version]
- Giovazzino, A.; Leone, S.; Rubino, V.; Palatucci, A.T.; Cerciello, G.; Alfinito, F.; Pane, F.; Ruggiero, G.; Terrazzano, G. Reduced Regulatory T Cells (Treg) in Bone Marrow Preferentially Associate with the Expansion of Cytotoxic T Lymphocytes in Low Risk MDS Patients. Br. J. Haematol. 2019, 185, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Ghiringhelli, F.; Ménard, C.; Terme, M.; Flament, C.; Taieb, J.; Chaput, N.; Puig, P.E.; Novault, S.; Escudier, B.; Vivier, E.; et al. CD4+CD25+ Regulatory T Cells Inhibit Natural Killer Cell Functions in a Transforming Growth Factor–β–Dependent Manner. J. Exp. Med. 2005, 202, 1075–1085. [Google Scholar] [CrossRef]
- Szczepanski, M.J.; Szajnik, M.; Czystowska, M.; Mandapathil, M.; Strauss, L.; Welsh, A.; Foon, K.A.; Whiteside, T.L.; Boyiadzis, M. Increased Frequency and Suppression by Regulatory T Cells in Patients with Acute Myelogenous Leukemia. Clin. Cancer Res. 2009, 15, 3325–3332. [Google Scholar] [CrossRef] [Green Version]
- Hallett, W.H.D.; Ames, E.; Álvarez, M.; Barao, I.; Taylor, P.A.; Blazar, B.R.; Murphy, W.J. Combination Therapy Using IL-2 and Anti-CD25 Results in Augmented Natural Killer Cell-Mediated Antitumor Responses. Biol. Blood Marrow Transplant. 2008, 14, 1088–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Eksioglu, E.A.; Zhou, J.; Zhang, L.; Djeu, J.; Fortenbery, N.; Epling-Burnette, P.; van Bijnen, S.; Dolstra, H.; Cannon, J.; et al. Induction of Myelodysplasia by Myeloid-Derived Suppressor Cells. J. Clin. Investig. 2013, 123, 4595–4611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.J.; Fu, R.; Wang, H.Q.; Li, L.J.; Qu, W.; Liang, Y.; Wang, G.J.; Wang, X.M.; Wu, Y.H.; Liu, H.; et al. Increased Circulating of Myeloid-Derived Suppressor Cells in Myelodysplastic Syndrome. Chin. Med. J. 2013, 126, 2582–2584. [Google Scholar] [CrossRef] [PubMed]
- Kittang, A.O.; Kordasti, S.; Sand, K.E.; Costantini, B.; Kramer, A.M.; Perezabellan, P.; Seidl, T.; Rye, K.P.; Hagen, K.M.; Kulasekararaj, A.; et al. Expansion of Myeloid Derived Suppressor Cells Correlates with Number of T Regulatory Cells and Disease Progression in Myelodysplastic Syndrome. Oncoimmunology 2016, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, M.; Morita, Y.; Hanamoto, H.; Tatsumi, Y.; Maeda, Y.; Kanamaru, A. CD34+ Progenitors from MDS Patients Are Unresponsive to SDF-1, despite High Levels of SDF-1 in Bone Marrow Plasma. Leukemia 2004, 18, 1038–1040. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, G.A.; Parrinello, N.L.; Giallongo, C.; D’Amico, E.; Zanghì, A.; Puglisi, F.; Conticello, C.; Chiarenza, A.; Tibullo, D.; Raimondo, F.D.; et al. Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. Int. J. Mol. Sci. 2019, 20, 5459. [Google Scholar] [CrossRef] [Green Version]
- Lv, M.; Wang, K.; Huang, X. Myeloid-Derived Suppressor Cells in Hematological Malignancies: Friends or Foes. J. Hematol. Oncol. 2019, 12, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellqvist, U.H.; Brune, M.; Dahlgren, C.; Hellstrand, K. Natural Killer Cell Dysfunction and Apoptosis Induced by CML Cells: Role of Reactive Oxygen Species and Regulation by Histamine. Blood 2000, 96, 1961–1968. [Google Scholar] [CrossRef]
- Aurelius, J.; Martner, A.; Riise, R.E.; Romero, A.I.; Palmqvist, L.; Brune, M.; Hellstrand, K.; Thorén, F.B. Chronic Myeloid Leukemic Cells Trigger Poly (ADP-ribose) Polymerase-dependent Inactivation and Cell Death in Lymphocytes. J. Leukoc. Biol. 2013, 93, 155–160. [Google Scholar] [CrossRef]
- Aurelius, J.; Hallner, A.; Werlenius, O.; Riise, R.; Moüllgård, L.; Brune, M.; Hansson, M.; Martner, A.; Thorén, F.B.; Hellstrand, K. NOX2-dependent Immunosuppression in Chronic Myelomonocytic Leukemia. J. Leukoc. Biol. 2017, 102, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Ghoti, H.; Fibach, E.; Merkel, D.; Perez-Avraham, G.; Grisariu, S.; Rachmilewitz, E.A. Changes in Parameters of Oxidative Stress and Free Iron Biomarkers during Treatment with Deferasirox in Iron-Overloaded Patients with Myelodysplastic Syndromes. Haematologica 2010, 95, 1433–1434. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, E.; Cianciulli, P.; Finelli, C.; Mecucci, C.; Voso, M.T.; Tura, S. Unraveling the Mechanisms behind Iron Overload and Ineffective Hematopoiesis in Myelodysplastic Syndromes. Leuk. Res. 2017, 62, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Wang, C.; Jiang, H.; Wang, Y.; Liu, C.; Li, L.; Liu, H.; Shao, Z.; Fu, R. Iron Overload May Promote Alteration of NK Cells and Hematopoietic Stem/Progenitor Cells by JNK and P38 Pathway in Myelodysplastic Syndromes. Int. J. Hematol. 2017, 106, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Corradi, G.; Baldazzi, C.; Očadlíková, D.; Marconi, G.; Parisi, S.; Testoni, N.; Finelli, C.; Cavo, M.; Curti, A.; Ciciarello, M. Mesenchymal Stromal Cells from Myelodysplastic and Acute Myeloid Leukemia Patients Display in Vitro Reduced Proliferative Potential and Similar Capacity to Support Leukemia Cell Survival. Stem Cell Res. 2018, 9, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyh, S.; Öz, S.; Cadeddu, R.P.; Fröbel, J.; Brückner, B.; Kündgen, A.; Fenk, R.; Bruns, I.; Zilkens, C.; Hermsen, D.; et al. Insufficient Stromal Support in MDS Results from Molecular and Functional Deficits of Mesenchymal Stromal Cells. Leukemia 2013, 27, 1841–1851. [Google Scholar] [CrossRef] [Green Version]
- Poon, Z.; Dighe, N.; Venkatesan, S.S.; Cheung, A.M.S.; Fan, X.; Bari, S.; Hota, M.; Ghosh, S.; Hwang, W.Y.K. Bone Marrow MSCs in MDS: Contribution towards Dysfunctional Hematopoiesis and Potential Targets for Disease Response to Hypomethylating Therapy. Leukemia 2019, 33, 1487–1500. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Weinhold, S.; Brands, J.; Hejazi, M.; Degistirici, Ö.; Kögler, G.; Meisel, R.; Uhrberg, M. NK Cell Development in a Human Stem Cell Niche: KIR Expression Occurs Independently of the Presence of HLA Class i Ligands. Blood Adv. 2018, 2, 2452–2461. [Google Scholar] [CrossRef]
- Frias, A.M.; Porada, C.D.; Crapnell, K.B.; Cabral, J.M.S.; Zanjani, E.D.; Almeida-Porada, G. Generation of Functional Natural Killer and Dendritic Cells in a Human Stromal-Based Serum-Free Culture System Designed for Cord Blood Expansion. Exp. Hematol. 2008, 36, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.S.; McCullar, V. Human Natural Killer Cells with Polyclonal Lectin and Immunoglobulinlike Receptors Develop from Single Hematopoietic Stem Cells with Preferential Expression of NKG2A and KIR2DL2/L3/S2. Blood 2001, 98, 705–713. [Google Scholar] [CrossRef]
- Lopes, M.R.; Pereira, J.K.N.; de Melo Campos, P.; Machado-Neto, J.A.; Traina, F.; Saad, S.T.O.; Favaro, P. De Novo AML Exhibits Greater Microenvironment Dysregulation Compared to AML with Myelodysplasia-Related Changes. Sci. Rep. 2017, 7, 40707. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Miyazato, A.; Chen, G.; Kajigaya, S.; Young, N.S.; Maciejewski, J.P. Interferon-Gamma-Induced Gene Expression in CD34 Cells: Identification of Pathologic Cytokine-Specific Signature Profiles. Blood 2006, 107, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Kerbauy, D.B.; Deeg, H.J. Apoptosis and Antiapoptotic Mechanisms in the Progression of Myelodysplastic Syndrome. Exp. Hematol. 2007, 35, 1739–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, M.S.; Ghosh, S. Regulation of NF-ΚB by TNF Family Cytokines. Semin. Immunol. 2014, 26, 253–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerbauy, D.M.B.; Lesnikov, V.; Abbasi, N.; Seal, S.; Scott, B.; Deeg, H.J. NF-ΚB and FLIP in Arsenic Trioxide (ATO)-Induced Apoptosis in Myelodysplastic Syndromes (MDSs). Blood 2005, 106, 3917–3925. [Google Scholar] [CrossRef] [PubMed]
- Kagoya, Y.; Yoshimi, A.; Kataoka, K.; Nakagawa, M.; Kumano, K.; Arai, S.; Kobayashi, H.; Saito, T.; Iwakura, Y.; Kurokawa, M. Positive Feedback between NF-ΚB and TNF-α Promotes Leukemia-Initiating Cell Capacity. J. Clin. Investig. 2014, 124, 528–542. [Google Scholar] [CrossRef] [Green Version]
- Masala, E.; Valencia-Martinez, A.; Pillozzi, S.; Rondelli, T.; Brogi, A.; Sanna, A.; Gozzini, A.; Arcangeli, A.; Sbarba, P.D.; Santini, V. Severe Hypoxia Selects Hematopoietic Progenitors with Stem Cell Potential from Primary Myelodysplastic Syndrome Bone Marrow Cell Cultures. Oncotarget 2018, 9, 10561–10571. [Google Scholar] [CrossRef] [Green Version]
- Schinke, C.; Giricz, O.; Li, W.; Shastri, A.; Gordon, S.; Barreyro, L.; Bhagat, T.; Bhattacharyya, S.; Ramachandra, N.; Bartenstein, M.; et al. IL8-CXCR2 Pathway Inhibition as a Therapeutic Strategy against MDS and AML Stem Cells. Blood 2015, 125, 3144–3152. [Google Scholar] [CrossRef] [Green Version]
- Kuett, A.; Rieger, C.; Perathoner, D.; Herold, T.; Wagner, M.; Sironi, S.; Sotlar, K.; Horny, H.P.; Deniffel, C.; Drolle, H.; et al. IL-8 as Mediator in the Microenvironment-Leukaemia Network in Acute Myeloid Leukaemia. Sci. Rep. 2015, 5, 18411. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Nguyen, A.N.; Sohal, D.; Ying Ma, J.; Pahanish, P.; Gundabolu, K.; Hayman, J.; Chubak, A.; Mo, Y.; Bhagat, T.D.; et al. Inhibition of the TGF-Beta Receptor I Kinase Promotes Hematopoiesis in MDS. Blood 2008, 112, 3434–3443. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, T.D.; Zhou, L.; Sokol, L.; Kessel, R.; Caceres, G.; Gundabolu, K.; Tamari, R.; Gordon, S.; Mantzaris, I.; Jodlowski, T.; et al. MiR-21 Mediates Hematopoietic Suppression in MDS by Activating TGF-β Signaling. Blood 2013, 121, 2875–2881. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; McMahon, C.; Bhagat, T.; Alencar, C.; Yu, Y.; Fazzari, M.; Sohal, D.; Heuck, C.; Gundabolu, K.; Ng, C.; et al. Reduced SMAD7 Leads to Overactivation of TGF-Beta Signaling in MDS That Can Be Reversed by a Specific Inhibitor of TGF-Beta Receptor I Kinase. Cancer Res. 2011, 71, 955–963. [Google Scholar] [CrossRef] [Green Version]
- Geyh, S.; Rodríguez-Paredes, M.; Jäger, P.; Koch, A.; Bormann, F.; Gutekunst, J.; Zilkens, C.; Germing, U.; Kobbe, G.; Lyko, F.; et al. Transforming Growth Factor Β1-Mediated Functional Inhibition of Mesenchymal Stromal Cells in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Haematologica 2018, 103, 1462–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peddie, C.M.; Wolf, C.R.; McLellan, L.I.; Collins, A.R.; Bowen, D.T. Oxidative DNA Damage in CD34+ Myelodysplastic Cells Is Associated with Intracellular Redox Changes and Elevated Plasma Tumour Necrosis Factor-Alpha Concentration. Br. J. Haematol. 1997, 99, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Cortesão, E.; Oliveiros, B.; Alves, V.; Espadana, A.I.; Rito, L.; Magalhães, E.; Lobão, M.J.; Pereira, A.; Nascimento Costa, J.M.; et al. Oxidative Stress and Mitochondrial Dysfunction Play a Role in Myelodysplastic Syndrome Development, Diagnosis, and Prognosis: A Pilot Study. Free. Radic. Res. 2015, 49, 1081–1094. [Google Scholar] [CrossRef] [PubMed]
- Picou, F.; Vignon, C.; Debeissat, C.; Lachot, S.; Kosmider, O.; Gallay, N.; Foucault, A.; Estienne, M.H.; Ravalet, N.; Bene, M.C.; et al. Bone Marrow Oxidative Stress and Specific Antioxidant Signatures in Myelodysplastic Syndromes. Blood Adv. 2019, 3, 4271–4279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zambetti, N.A.; Bindels, E.M.J.; Kenswill, K.; Mylona, A.M.; Adisty, N.M.; Hoogenboezem, R.M.; Sanders, M.A.; Cremers, E.M.P.; Westers, T.M.; et al. Massive Parallel RNA Sequencing of Highly Purified Mesenchymal Elements in Low-Risk MDS Reveals Tissue-Context-Dependent Activation of Inflammatory Programs. Leukemia 2016, 30, 1938–1942. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.; Yoon, S.R.; Park, S.Y.; Kim, H.; Jung, S.J.; Kang, Y.L.; Lee, J.H.; Lee, J.H.; Kim, D.Y.; Lee, J.L.; et al. Donor-Derived Natural Killer Cell Infusion after Human Leukocyte Antigen–Haploidentical Hematopoietic Cell Transplantation in Patients with Refractory Acute Leukemia. Biol. Blood Marrow Transplant. 2016, 22, 2065–2076. [Google Scholar] [CrossRef] [Green Version]
- Sabry, M.; Lowdell, M.W. Killers at the Crossroads: The Use of Innate Immune Cells in Adoptive Cellular Therapy of Cancer. Stem Cells Transl. Med. 2020, 9, 974–984. [Google Scholar] [CrossRef]
- Bachanova, V.; Cooley, S.; Defor, T.E.; Verneris, M.R.; Zhang, B.; Mckenna, D.H.; Curtsinger, J.; Panoskaltsis-mortari, A.; Lewis, D.; Hippen, K.; et al. Clearance of Acute Myeloid Leukemia by Haploidentical Natural Killer Cells Is Improved Using IL-2 Diphtheria Toxin Fusion Protein. Blood 2014, 123, 3855–3863. [Google Scholar] [CrossRef]
- Ito, S.; Bollard, C.M.; Carlsten, M.; Melenhorst, J.J.; Biancotto, A.; Wang, E.; Chen, J.; Kotliarov, Y.; Cheung, F.; Xie, Z.; et al. Ultra-Low Dose Interleukin-2 Promotes Immune-Modulating Function of Regulatory T Cells and Natural Killer Cells in Healthy Volunteers. Mol. Ther. 2014, 22, 1388–1395. [Google Scholar] [CrossRef] [Green Version]
- Geller, M.A.; Cooley, S.; Judson, P.L.; Ghebre, R.; Carson, L.F.; Argenta, P.A.; Jonson, A.L.; Panoskaltsis-Mortari, A.; Curtsinger, J.; McKenna, D.; et al. A Phase II Study of Allogeneic Natural Killer Cell Therapy to Treat Patients with Recurrent Ovarian and Breast Cancer. Cytotherapy 2011, 13, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, M.; Bouchlaka, M.N.; Sckisel, G.D.; Sungur, C.M.; Chen, M.; Murphy, W.J. Increased Antitumor Effects Using IL-2 with Anti–TGF-β Reveals Competition between Mouse NK and CD8 T Cells. J. Immunol. 2014, 193, 1709–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, M.; Dunai, C.; Khuat, L.T.; Aguilar, E.G.; Barao, I.; Murphy, W.J. IL-2 and Anti-TGF-β Promote NK Cell Reconstitution and Anti-Tumor Effects after Syngeneic Hematopoietic Stem Cell Transplantation. Cancers 2020, 12, 3189. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Wei, H. Developmental and Functional Control of Natural Killer Cells by Cytokines. Front. Immunol. 2017, 8, 930. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Lundqvist, A. Immunomodulatory E Ff Ects of IL-2 and IL-15; Implications for Cancer Immunotherapy. Cancers 2020, 2, 3586. [Google Scholar] [CrossRef]
- Cooley, S.; He, F.; Bachanova, V.; Vercellotti, G.M.; Defor, T.E.; Curtsinger, J.M.; Robertson, P.; Grzywacz, B.; Conlon, K.C.; Waldmann, T.A.; et al. First-in-Human Trial of RhIL-15 and Haploidentical Natural Killer Cell Therapy for Advanced Acute Myeloid Leukemia. Blood Adv. 2019, 3, 1970–1980. [Google Scholar] [CrossRef]
- Cooper, M.A.; Elliott, J.M.; Keyel, P.A.; Yang, L.; Carrero, J.A.; Yokoyama, W.M. Cytokine-Induced Memory-like Natural Killer Cells. Proc. Natl. Acad. Sci. USA 2009, 106, 1915–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romee, R.; Schneider, S.E.; Leong, J.W.; Chase, J.M.; Keppel, C.R.; Sullivan, R.P.; Cooper, M.A.; Fehniger, T.A. Cytokine Activation Induces Human Memory-like NK Cells. Blood 2012, 120, 4751–4760. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Miller, M.; Stojanovic, A.; Garbi, N.; Cerwenka, A. Sustained Effector Function of IL-12/15/18-Preactivated NK Cells against Established Tumors. J. Exp. Med. 2012, 209, 2351–2365. [Google Scholar] [CrossRef]
- Fujisaki, H.; Kakuda, H.; Shimasaki, N.; Imai, C.; Ma, J.; Lockey, T.; Eldridge, P.; Leung, W.H.; Campana, D. Expansion of Highly Cytotoxic Human Natural Killer Cells for Cancer Cell Therapy. Cancer Res. 2009, 69, 4010–4017. [Google Scholar] [CrossRef] [Green Version]
- Imai, C.; Iwamoto, S.; Campana, D. Genetic Modification of Primary Natural Killer Cells Overcomes Inhibitory Signals and Induces Specific Killing of Leukemic Cells. Blood 2005, 106, 376–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisaki, H.; Kakuda, H.; Imai, C.; Mullighan, C.G.; Campana, D. Replicative Potential of Human Natural Killer Cells. Br. J. Haematol 2009, 145, 606–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciurea, S.O.; Schafer, J.R.; Bassett, R.; Denman, C.J.; Cao, K.; Willis, D.; Rondon, G.; Chen, J.; Soebbing, D.; Kaur, I.; et al. Phase 1 Clinical Trial Using MbIL21 Ex Vivo–Expanded Donor-Derived NK Cells after Haploidentical Transplantation. Blood 2017, 130, 1857–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denman, C.J.; Senyukov, V.V.; Somanchi, S.S.; Phatarpekar, P.V.; Kopp, L.M.; Johnson, J.L.; Singh, H.; Hurton, L.; Maiti, S.N.; Huls, M.H.; et al. Membrane-Bound IL-21 Promotes Sustained Ex Vivo Proliferation of Human Natural Killer Cells. PLoS ONE 2012, 7, e30264. [Google Scholar] [CrossRef]
- Vasu, S.; Bhatnagar, B.; Blachly, J.S.; Szuminski, N.; O’Donnell, L.; Lee, D.A. A Phase I Clinical Trial Testing the Safety of IL-21-Expanded, Off-the-Shelf, Third-Party Natural Killer Cells for Relapsed/Refractory Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood 2020, 136, 44. [Google Scholar] [CrossRef]
- Brentjens, R.J.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci. Transl. Med. 2013, 5, 177ra38. [Google Scholar] [CrossRef] [Green Version]
- Kochenderfer, J.N.; Wilson, W.H.; Janik, J.E.; Dudley, M.E.; Stetler-Stevenson, M.; Feldman, S.A.; Maric, I.; Raffeld, M.; Nathan, D.-A.N.; Lanier, B.J.; et al. Eradication of B-Lineage Cells and Regression of Lymphoma in a Patient Treated with Autologous T Cells Genetically Engineered to Recognize CD19. Blood 2010, 116, 4099–4102. [Google Scholar] [CrossRef]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, D.S.; Neeson, P.J.; Khot, A.; Peinert, S.; Tai, T.; Tainton, K.; Chen, K.; Shin, M.; Wall, D.M.; Hönemann, D.; et al. Persistence and Efficacy of Second Generation CAR T Cell against the LeY Antigen in Acute Myeloid Leukemia. Mol. Ther. 2013, 21, 2122–2129. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.S.; Wang, Y.; Lv, H.Y.; Han, Q.W.; Fan, H.; Guo, B.; Wang, L.L.; Han, W.D. Treatment of CD33-Directed Chimeric Antigen Receptor-Modified T Cells in One Patient with Relapsed and Refractory Acute Myeloid Leukemia. Mol. Ther. 2015, 23, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Baumeister, S.H.; Murad, J.; Werner, L.; Daley, H.; Trebeden-Negre, H.; Gicobi, J.K.; Schmucker, A.; Reder, J.; Sentman, C.L.; Gilham, D.E.; et al. Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunol. Res. 2019, 7, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gan, W.-T.; Hao, W.-G.; Wang, P.-F.; Li, Z.-Y.; Chang, L.-J. Successful Anti-CLL1 CAR T-Cell Therapy in Secondary Acute Myeloid Leukemia. Leukemia. Front. Oncol. 2020, 10, 685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, P.; Li, Z.; He, Y.; Gan, W.; Jiang, H. Anti-CLL1 Chimeric Antigen Receptor T-Cell Therapy in Children with Relapsed/Refractory Acute Myeloid Leukemia. Clin. Cancer Res. 2021, 27, 3549–3555. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric Antigen Receptor T-Cell Therapy-Assessment and Management of Toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Siegler, E.L.; Zhu, Y.; Wang, P.; Yang, L. Off-the-Shelf CAR-NK Cells for Cancer Immunotherapy. Cell Stem Cell 2018, 23, 160–161. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.; Dong, H.; Liang, Y.; Ham, J.D.; Rizwan, R.; Chen, J. CAR-NK Cells: A Promising Cellular Immunotherapy for Cancer. EBioMedicine 2020, 59, 102975. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, J.; Wu, C. CAR-NK for Tumor Immunotherapy: Clinical Transformation and Future Prospects. Cancer Lett. 2020, 472, 175–180. [Google Scholar] [CrossRef]
- Gurney, M.; O’dwyer, M.; Fracchiolla, S.; Onida, F. Realizing Innate Potential: CAR-NK Cell Therapies for Acute Myeloid Leukemia. Cancers 2020, 12, 1752. [Google Scholar] [CrossRef]
- Haubner, S.; Perna, F.; Köhnke, T.; Schmidt, C.; Berman, S.; Augsberger, C.; Schnorfeil, F.M.; Krupka, C.; Lichtenegger, F.S.; Liu, X.; et al. Coexpression Profile of Leukemic Stem Cell Markers for Combinatorial Targeted Therapy in AML. Leukemia 2019, 33, 64–74. [Google Scholar] [CrossRef]
- Tang, X.; Yang, L.; Li, Z.; Nalin, A.P.; Dai, H.; Xu, T.; Yin, J.; You, F.; Zhu, M.; Shen, W.; et al. First-in-Man Clinical Trial of CAR NK-92 Cells: Safety Test of CD33-CAR NK-92 Cells in Patients with Relapsed and Refractory Acute Myeloid Leukemia. Am. J. Cancer Res. 2018, 8, 1899. [Google Scholar]
- Sinha, C.; Seth, A.; Kahali, B.; Cunningham, L. Development and Evaluation of NK-CD123 CAR Against High Risk Acute Myeloid Leukemia. Biol. Blood Marrow Transplant. 2017, 23, S253. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Xie, G.; Liang, Y.; Dongjoo Ham, J.; Vergara, J.; Chen, J.; Ritz, J.; Romee, R. Engineered Memory-like NK Cars Targeting a Neoepitope Derived from Intracellular NPM1c Exhibit Potent Activity and Specificity Against Acute Myeloid Leukemia. Blood 2020, 136, 3–4. [Google Scholar] [CrossRef]
- Felices, M.; Sarhan, D.; Brandt, L.; Guldevall, K.; McElmurry, R.; Lenvik, A.; Chu, S.; Tolar, J.; Taras, E.; Spellman, S.R.; et al. CD16-IL15-CD33 Trispecific Killer Engager (TriKE) Overcomes Cancer-Induced Immune Suppression and Induces Natural Killer Cell-Mediated Control of MDS and AML Via Enhanced Killing Kinetics. Blood 2016, 128, 4291. [Google Scholar] [CrossRef]
- Sarhan, D.; Brandt, L.; Felices, M.; Guldevall, K.; Lenvik, T.; Hinderlie, P.; Curtsinger, J.; Warlick, E.; Spellman, S.R.; Blazar, B.R.; et al. 161533 TriKE Stimulates NK-Cell Function to Overcome Myeloid-Derived Suppressor Cells in MDS. Blood Adv. 2018, 2, 1459–1469. [Google Scholar] [CrossRef] [Green Version]
- Sabry, M.; Lowdell, M.W. Tumor-Primed NK Cells: Waiting for the Green Light. Front. Immunol. 2013, 4, 00408. [Google Scholar] [CrossRef] [Green Version]
- North, J.; Bakhsh, I.; Marden, C.; Pittman, H.; Addison, E.; Navarrete, C.; Anderson, R.; Lowdell, M.W. Tumor-Primed Human Natural Killer Cells Lyse NK-Resistant Tumor Targets: Evidence of a Two-Stage Process in Resting NK Cell Activation. J. Immunol. 2007, 178, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Sabry, M.; Tsirogianni, M.; Bakhsh, I.A.; North, J.; Sivakumaran, J.; Giannopoulos, K.; Anderson, R.; Mackinnon, S.; Lowdell, M.W. Leukemic Priming of Resting NK Cells Is Killer Ig-like Receptor Independent but Requires CD15-Mediated CD2 Ligation and Natural Cytotoxicity Receptors. J. Immunol. 2011, 187, 6227–6234. [Google Scholar] [CrossRef] [Green Version]
- Sabry, M.; Zubiak, A.; Hood, S.P.; Simmonds, P.; Arellano-Ballestero, H.; Cournoyer, E.; Mashar, M.; Graham Pockley, A.; Lowdell, M.W. Tumor- And Cytokine-Primed Human Natural Killer Cells Exhibit Distinct Phenotypic and Transcriptional Signatures. PLoS ONE 2018, 14, e0218674. [Google Scholar] [CrossRef] [Green Version]
- Kottaridis, P.D.; North, J.; Tsirogianni, M.; Marden, C.; Samuel, E.R.; Jide-Banwo, S.; Grace, S.; Lowdell, M.W. Two-Stage Priming of Allogeneic Natural Killer Cells for the Treatment of Patients with Acute Myeloid Leukemia: A Phase I Trial. PLoS ONE 2015, 10, e0123416. [Google Scholar] [CrossRef]
- Fehniger, T.A.; Miller, J.S.; Stuart, R.K.; Cooley, S.; Salhotra, A.; Curtsinger, J.; Westervelt, P.; DiPersio, J.F.; Hillman, T.M.; Silver, N.; et al. A Phase 1 Trial of CNDO-109–Activated Natural Killer Cells in Patients with High-Risk Acute Myeloid Leukemia. Biol. Blood Marrow Transplant. 2018, 24, 1581–1589. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arellano-Ballestero, H.; Sabry, M.; Lowdell, M.W. A Killer Disarmed: Natural Killer Cell Impairment in Myelodysplastic Syndrome. Cells 2023, 12, 633. https://doi.org/10.3390/cells12040633
Arellano-Ballestero H, Sabry M, Lowdell MW. A Killer Disarmed: Natural Killer Cell Impairment in Myelodysplastic Syndrome. Cells. 2023; 12(4):633. https://doi.org/10.3390/cells12040633
Chicago/Turabian StyleArellano-Ballestero, Helena, May Sabry, and Mark W. Lowdell. 2023. "A Killer Disarmed: Natural Killer Cell Impairment in Myelodysplastic Syndrome" Cells 12, no. 4: 633. https://doi.org/10.3390/cells12040633
APA StyleArellano-Ballestero, H., Sabry, M., & Lowdell, M. W. (2023). A Killer Disarmed: Natural Killer Cell Impairment in Myelodysplastic Syndrome. Cells, 12(4), 633. https://doi.org/10.3390/cells12040633