Vesicular Zinc Modulates Cell Proliferation and Survival in the Developing Hippocampus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Tissue Preparation
2.4. BrdU Immunohistochemistry
2.5. Double-Label Immunofluorescence
2.6. Microscopy and Cell Quantification
2.7. Statistical Analysis
3. Results
3.1. Cell Proliferation in Mice Injected on P6, P14, and P28
3.2. Age Effects on Cell Proliferation in Mice Injected on P6, P14, and P28
3.3. Cell Survival in Mice Injected on P6, P14, and P28
3.4. Age Effects on Cell Survival in Mice Injected on P6, P14, and P28
3.5. Cell Proliferation and Survival in Male Mice Injected on P14
3.6. Neuronal Phenotype of Surviving Cells in Mice Injected on P6, P14, and P28
4. Discussion
4.1. Cell Proliferation in Mice Injected on P6, P14, and P28
4.1.1. Cell Proliferation in Mice Injected on P6
4.1.2. Cell Proliferation in Mice Injected on P14
4.1.3. Cell Proliferation in Mice Injected on P28
4.2. Cell Survival in Mice Injected on P6, P14, and P28
4.2.1. Cell Survival in Mice Injected on P6
4.2.2. Cell Survival in Mice Injected on P14
4.2.3. Cell Survival in Mice Injected on P28
4.3. Cell Proliferation and Survival in Male Mice Injected on P14
4.4. Age Effects on Cell Proliferation in Mice Injected on P6, P14, and P28
4.5. Age Effects on Cell Survival in Mice Injected on P6, P14, and P28
4.6. Neuronal Phenotype of Surviving Cells in Mice Injected on P6, P14, and P28
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Frederickson, C.J.; Suh, S.W.; Silva, D.; Frederickson, C.J.; Thompson, R.B. Importance of Zinc in the Central Nervous System: The Zinc-Containing Neuron. J. Nutr. 2000, 130, 1471S–1483S. [Google Scholar] [CrossRef] [Green Version]
- Takeda, A. Movement of Zinc and Its Functional Significance in the Brain. Brain Res. Rev. 2000, 34, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Frederickson, C.J.; Bush, A.I. Synaptically Released Zinc: Physiological Functions and Pathological Effects. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2001, 14, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Frederickson, C.J.; Koh, J.-Y.; Bush, A.I. The Neurobiology of Zinc in Health and Disease. Nat. Rev. Neurosci. 2005, 6, 449–462. [Google Scholar] [CrossRef]
- Martin, S.J.; Mazdai, G.; Strain, J.J.; Cotter, T.G.; Hannigan, B.M. Programmed Cell Death (Apoptosis) in Lymphoid and Myeloid Cell Lines during Zinc Deficiency. Clin. Exp. Immunol. 1991, 83, 338–343. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc: An Overview. Nutr. Burbank Los Angel. Cty. Calif 1995, 11, 93–99. [Google Scholar]
- MacDonald, R.S. The Role of Zinc in Growth and Cell Proliferation. J. Nutr. 2000, 130, 1500S–1508S. [Google Scholar] [CrossRef] [Green Version]
- Fraker, P.J. Roles for Cell Death in Zinc Deficiency. J. Nutr. 2005, 135, 359–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, K.; Zhang, Y.; Niu, J.; Nie, Z.; Liu, Q.; Lv, C. Zinc Promotes Cell Apoptosis via Activating the Wnt-3a/β-Catenin Signaling Pathway in Osteosarcoma. J. Orthop. Surg. 2020, 15, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, R.B.; Chesters, J.K. The Effects of Early Zinc Deficiency on DNA and Protein Synthesis in the Rat. Br. J. Nutr. 1970, 24, 1053–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, A.S.; Beck, F.W.; Endre, L.; Handschu, W.; Kukuruga, M.; Kumar, G. Zinc Deficiency Affects Cell Cycle and Deoxythymidine Kinase Gene Expression in HUT-78 Cells. J. Lab. Clin. Med. 1996, 128, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Rink, L.; Haase, H. Zinc Homeostasis and Immunity. Trends Immunol. 2007, 28, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Grüngreiff, K.; Reinhold, D.; Wedemeyer, H. The Role of Zinc in Liver Cirrhosis. Ann. Hepatol. 2016, 15, 7–16. [Google Scholar] [CrossRef]
- Yasuda, H.; Yoshida, K.; Yasuda, Y.; Tsutsui, T. Infantile Zinc Deficiency: Association with Autism Spectrum Disorders. Sci. Rep. 2011, 1, 129. [Google Scholar] [CrossRef] [Green Version]
- Grabrucker, A.M. A Role for Synaptic Zinc in ProSAP/Shank PSD Scaffold Malformation in Autism Spectrum Disorders. Dev. Neurobiol. 2014, 74, 136–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabrucker, S.; Jannetti, L.; Eckert, M.; Gaub, S.; Chhabra, R.; Pfaender, S.; Mangus, K.; Reddy, P.P.; Rankovic, V.; Schmeisser, M.J.; et al. Zinc Deficiency Dysregulates the Synaptic ProSAP/Shank Scaffold and Might Contribute to Autism Spectrum Disorders. Brain J. Neurol. 2014, 137, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Yoo, M.H.; Kim, T.-Y.; Yoon, Y.H.; Koh, J.-Y. Autism Phenotypes in ZnT3 Null Mice: Involvement of Zinc Dyshomeostasis, MMP-9 Activation and BDNF Upregulation. Sci. Rep. 2016, 6, 28548. [Google Scholar] [CrossRef] [Green Version]
- Swardfager, W.; Herrmann, N.; Mazereeuw, G.; Goldberger, K.; Harimoto, T.; Lanctôt, K.L. Zinc in Depression: A Meta-Analysis. Biol. Psychiatry 2013, 74, 872–878. [Google Scholar] [CrossRef]
- Nakamura, M.; Miura, A.; Nagahata, T.; Shibata, Y.; Okada, E.; Ojima, T. Low Zinc, Copper, and Manganese Intake Is Associated with Depression and Anxiety Symptoms in the Japanese Working Population: Findings from the Eating Habit and Well-Being Study. Nutrients 2019, 11, 847. [Google Scholar] [CrossRef] [Green Version]
- Burnet, F.M. A Possible Role of Zinc in the Pathology of Dementia. Lancet Lond. Engl. 1981, 1, 186–188. [Google Scholar] [CrossRef]
- Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D. Copper, Zinc and Iron in Neurodegenerative Diseases (Alzheimer’s, Parkinson’s and Prion Diseases). Coord. Chem. Rev. 2012, 256, 2129–2141. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, C.; Dyck, R.; Cynader, M. Enrichment of Glutamate in Zinc-Containing Terminals of the Cat Visual Cortex. Neuroreport 1992, 3, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Slomianka, L. Neurons of Origin of Zinc-Containing Pathways and the Distribution of Zinc-Containing Boutons in the Hippocampal Region of the Rat. Neuroscience 1992, 48, 325–352. [Google Scholar] [CrossRef] [PubMed]
- Sindreu, C.B.; Varoqui, H.; Erickson, J.D.; Pérez-Clausell, J. Boutons Containing Vesicular Zinc Define a Subpopulation of Synapses with Low AMPAR Content in Rat Hippocampus. Cereb. Cortex 2003, 13, 823–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Clausell, J.; Danscher, G. Intravesicular Localization of Zinc in Rat Telencephalic Boutons. A Histochemical Study. Brain Res. 1985, 337, 91–98. [Google Scholar] [CrossRef] [PubMed]
- McAllister, B.B.; Dyck, R.H. Zinc Transporter 3 (ZnT3) and Vesicular Zinc in Central Nervous System Function. Neurosci. Biobehav. Rev. 2017, 80, 329–350. [Google Scholar] [CrossRef]
- Palmiter, R.D.; Cole, T.B.; Quaife, C.J.; Findley, S.D. ZnT-3, a Putative Transporter of Zinc into Synaptic Vesicles. Proc. Natl. Acad. Sci. USA 1996, 93, 14934–14939. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, H.J.; Cole, T.B.; Born, D.E.; Schwartzkroin, P.A.; Palmiter, R.D. Ultrastructural Localization of Zinc Transporter-3 (ZnT-3) to Synaptic Vesicle Membranes within Mossy Fiber Boutons in the Hippocampus of Mouse and Monkey. Proc. Natl. Acad. Sci. USA 1997, 94, 12676–12681. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.B.; Wenzel, H.J.; Kafer, K.E.; Schwartzkroin, P.A.; Palmiter, R.D. Elimination of Zinc from Synaptic Vesicles in the Intact Mouse Brain by Disruption of the ZnT3 Gene. Proc. Natl. Acad. Sci. USA 1999, 96, 1716–1721. [Google Scholar] [CrossRef] [Green Version]
- Altman, J. Are New Neurons Formed in the Brains of Adult Mammals? Science 1962, 135, 1127–1128. [Google Scholar] [CrossRef] [Green Version]
- Altman, J. Autoradiographic Investigation of Cell Proliferation in the Brains of Rats and Cats. Anat. Rec. 1963, 145, 573–591. [Google Scholar] [CrossRef]
- Altman, J.; Das, G.D. Autoradiographic and Histological Evidence of Postnatal Hippocampal Neurogenesis in Rats. J. Comp. Neurol. 1965, 124, 319–335. [Google Scholar] [CrossRef]
- Martel, G.; Hevi, C.; Friebely, O.; Baybutt, T.; Shumyatsky, G.P. Zinc Transporter 3 Is Involved in Learned Fear and Extinction, but Not in Innate Fear. Learn. Mem. 2010, 17, 582–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martel, G.; Hevi, C.; Kane-Goldsmith, N.; Shumyatsky, G.P. Zinc Transporter ZnT3 Is Involved in Memory Dependent on the Hippocampus and Perirhinal Cortex. Behav. Brain Res. 2011, 223, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.Y.; Hong, D.K.; Jeong, J.H.; Lee, B.E.; Koh, J.-Y.; Suh, S.W. Zinc Transporter 3 Modulates Cell Proliferation and Neuronal Differentiation in the Adult Hippocampus. Stem Cells Dayt. Ohio 2020, 38, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.W.; Won, S.J.; Hamby, A.M.; Yoo, B.H.; Fan, Y.; Sheline, C.T.; Tamano, H.; Takeda, A.; Liu, J. Decreased Brain Zinc Availability Reduces Hippocampal Neurogenesis in Mice and Rats. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2009, 29, 1579–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempermann, G.; Kuhn, H.G.; Gage, F.H. More Hippocampal Neurons in Adult Mice Living in an Enriched Environment. Nature 1997, 386, 493–495. [Google Scholar] [CrossRef]
- Kempermann, G.; Kuhn, H.G.; Gage, F.H. Experience-Induced Neurogenesis in the Senescent Dentate Gyrus. J. Neurosci. Off. J. Soc. Neurosci. 1998, 18, 3206–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, M.; Perfilieva, E.; Johansson, U.; Orwar, O.; Eriksson, P.S. Enriched Environment Increases Neurogenesis in the Adult Rat Dentate Gyrus and Improves Spatial Memory. J. Neurobiol. 1999, 39, 569–578. [Google Scholar] [CrossRef]
- Woodcock, E.A.; Richardson, R. Effects of Environmental Enrichment on Rate of Contextual Processing and Discriminative Ability in Adult Rats. Neurobiol. Learn. Mem. 2000, 73, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Slater, A.M.; Cao, L. A Protocol for Housing Mice in an Enriched Environment. J. Vis. Exp. 2015, 100, e52874. [Google Scholar] [CrossRef] [Green Version]
- Chrusch, M. The Role of Synaptic Zinc in Experience-Dependent Plasticity. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2015. [Google Scholar]
- Fosmire, G.J.; al-Ubaidi, Y.Y.; Sandstead, H.H. Some Effects of Postnatal Zinc Deficiency on Developing Rat Brain. Pediatr. Res. 1975, 9, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Buell, S.J.; Fosmire, G.J.; Ollerich, D.A.; Sandstead, H.H. Effects of Postnatal Zinc Deficiency on Cerebellar and Hippocampal Development in the Rat. Exp. Neurol. 1977, 55, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.D.; Bian, W.; Kong, L.W.; Zhao, F.J.; Guo, J.S.; Jing, N.H. Maternal Zinc Deficiency Impairs Brain Nestin Expression in Prenatal and Postnatal Mice. Cell Res. 2001, 11, 135–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamo, A.M.; Liu, X.; Mathieu, P.; Nuttall, J.R.; Supasai, S.; Oteiza, P.I. Early Developmental Marginal Zinc Deficiency Affects Neurogenesis Decreasing Neuronal Number and Altering Neuronal Specification in the Adult Rat Brain. Front. Cell. Neurosci. 2019, 13, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvergsten, C.L.; Fosmire, G.J.; Ollerich, D.A.; Sandstead, H.H. Alterations in the Postnatal Development of the Cerebellar Cortex Due to Zinc Deficiency. I. Impaired Acquisition of Granule Cells. Brain Res. 1983, 271, 217–226. [Google Scholar] [CrossRef]
- Dvergsten, C.L.; Fosmire, G.J.; Ollerich, D.A.; Sandstead, H.H. Alterations in the Postnatal Development of the Cerebellar Cortex Due to Zinc Deficiency. II. Impaired Maturation of Purkinje Cells. Brain Res. 1984, 318, 11–20. [Google Scholar] [CrossRef]
- Dvergsten, C.L.; Johnson, L.A.; Sandstead, H.H. Alterations in the Postnatal Development of the Cerebellar Cortex Due to Zinc Deficiency. III. Impaired Dendritic Differentiation of Basket and Stellate Cells. Brain Res. 1984, 318, 21–26. [Google Scholar] [CrossRef]
- Halas, E.S.; Heinrich, M.D.; Sandstead, H.H. Long Term Memory Deficits in Adult Rats Due to Postnatal Malnutrition. Physiol. Behav. 1979, 22, 991–997. [Google Scholar] [CrossRef]
- Halas, E.S.; Eberhardt, M.J.; Diers, M.A.; Sandstead, H.H. Learning and Memory Impairment in Adult Rats Due to Severe Zinc Deficiency during Lactation. Physiol. Behav. 1983, 30, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Halas, E.S.; Hunt, C.D.; Eberhardt, M.J. Learning and Memory Disabilities in Young Adult Rats from Mildly Zinc Deficient Dams. Physiol. Behav. 1986, 37, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Sandstead, H.H.; Fosmire, G.J.; Halas, E.S.; Jacob, R.A.; Strobel, D.A.; Marks, E.O. Zinc Deficiency: Effects on Brain and Behavior of Rats and Rhesus Monkeys. Teratology 1977, 16, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Thackray, S.E.; McAllister, B.B.; Dyck, R.H. Behavioral Characterization of Female Zinc Transporter 3 (ZnT3) Knockout Mice. Behav. Brain Res. 2017, 321, 36–49. [Google Scholar] [CrossRef]
- Yagi, S.; Galea, L.A.M. Sex Differences in Hippocampal Cognition and Neurogenesis. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2019, 44, 200–213. [Google Scholar] [CrossRef] [Green Version]
- Yagi, S.; Splinter, J.E.J.; Tai, D.; Wong, S.; Wen, Y.; Galea, L.A.M. Sex Differences in Maturation and Attrition of Adult Neurogenesis in the Hippocampus. eNeuro 2020, 7, ENEURO.0468-19.2020. [Google Scholar] [CrossRef]
- Kuhn, H.G.; Dickinson-Anson, H.; Gage, F.H. Neurogenesis in the Dentate Gyrus of the Adult Rat: Age-Related Decrease of Neuronal Progenitor Proliferation. J. Neurosci. Off. J. Soc. Neurosci. 1996, 16, 2027–2033. [Google Scholar] [CrossRef] [Green Version]
- Valente, T.; Auladell, C. Developmental Expression of ZnT3 in Mouse Brain: Correlation between the Vesicular Zinc Transporter Protein and Chelatable Vesicular Zinc (CVZ) Cells. Glial and Neuronal CVZ Cells Interact. Mol. Cell. Neurosci. 2002, 21, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Valente, T.; Auladell, C.; Pérez-Clausell, J. Postnatal Development of Zinc-Rich Terminal Fields in the Brain of the Rat. Exp. Neurol. 2002, 174, 215–229. [Google Scholar] [CrossRef]
- Altman, J. Autoradiographic and Histological Studies of Postnatal Neurogenesis. IV. Cell Proliferation and Migration in the Anterior Forebrain, with Special Reference to Persisting Neurogenesis in the Olfactory Bulb. J. Comp. Neurol. 1969, 137, 433–457. [Google Scholar] [CrossRef]
- Lois, C.; Alvarez-Buylla, A. Long-Distance Neuronal Migration in the Adult Mammalian Brain. Science 1994, 264, 1145–1148. [Google Scholar] [CrossRef]
- Scott, G.A.; Terstege, D.J.; Vu, A.P.; Law, S.; Evans, A.; Epp, J.R. Disrupted Neurogenesis in Germ-Free Mice: Effects of Age and Sex. Front. Cell Dev. Biol. 2020, 8, 407. [Google Scholar] [CrossRef] [PubMed]
- McAllister, B.B.; Pochakom, A.; Fu, S.; Dyck, R.H. Effects of Social Defeat Stress and Fluoxetine Treatment on Neurogenesis and Behavior in Mice That Lack Zinc Transporter 3 (ZnT3) and Vesicular Zinc. Hippocampus 2020, 30, 623–637. [Google Scholar] [CrossRef]
- Gundersen, H.J.; Bagger, P.; Bendtsen, T.F.; Evans, S.M.; Korbo, L.; Marcussen, N.; Møller, A.; Nielsen, K.; Nyengaard, J.R.; Pakkenberg, B. The New Stereological Tools: Disector, Fractionator, Nucleator and Point Sampled Intercepts and Their Use in Pathological Research and Diagnosis. APMIS Acta Pathol. Microbiol. Immunol. Scand. 1988, 96, 857–881. [Google Scholar] [CrossRef] [PubMed]
- Horner, P.J.; Power, A.E.; Kempermann, G.; Kuhn, H.G.; Palmer, T.D.; Winkler, J.; Thal, L.J.; Gage, F.H. Proliferation and Differentiation of Progenitor Cells throughout the Intact Adult Rat Spinal Cord. J. Neurosci. Off. J. Soc. Neurosci. 2000, 20, 2218–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altman, J.; Bayer, S.A. Migration and Distribution of Two Populations of Hippocampal Granule Cell Precursors during the Perinatal and Postnatal Periods. J. Comp. Neurol. 1990, 301, 365–381. [Google Scholar] [CrossRef]
- Li, G.; Pleasure, S.J. Morphogenesis of the Dentate Gyrus: What We Are Learning from Mouse Mutants. Dev. Neurosci. 2005, 27, 93–99. [Google Scholar] [CrossRef]
- Nicola, Z.; Fabel, K.; Kempermann, G. Development of the Adult Neurogenic Niche in the Hippocampus of Mice. Front. Neuroanat. 2015, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Spanswick, S.C. Adrenalectomy-Induced Neuronal Degeneration: Development of a Novel Animal Model of Cognitive Dysfuntion and Neurogenic Treatment Strategies. Ph.D. Thesis, University of Lethbridge, Dept. of Neuroscience, Lethbridge, Australia, 2010. [Google Scholar]
- Rakai, B.D.; Chrusch, M.J.; Spanswick, S.C.; Dyck, R.H.; Antle, M.C. Survival of Adult Generated Hippocampal Neurons Is Altered in Circadian Arrhythmic Mice. PLoS ONE 2014, 9, e99527. [Google Scholar] [CrossRef] [PubMed]
- Bond, A.M.; Ming, G.-L.; Song, H. What Is the Relationship Between Hippocampal Neurogenesis Across Different Stages of the Lifespan? Front. Neurosci. 2022, 16, 891713. [Google Scholar] [CrossRef] [PubMed]
- Salgueiro, M.J.; Zubillaga, M.B.; Lysionek, A.E.; Caro, R.A.; Weill, R.; Boccio, J.R. The Role of Zinc in the Growth and Development of Children. Nutr. Burbank Los Angel. Cty. Calif 2002, 18, 510–519. [Google Scholar] [CrossRef]
- Nuttall, J.R.; Oteiza, P.I. Zinc and the ERK Kinases in the Developing Brain. Neurotox. Res. 2012, 21, 128–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courchesne, E.; Pramparo, T.; Gazestani, V.H.; Lombardo, M.V.; Pierce, K.; Lewis, N.E. The ASD Living Biology: From Cell Proliferation to Clinical Phenotype. Mol. Psychiatry 2019, 24, 88–107. [Google Scholar] [CrossRef] [Green Version]
- Floris, D.L.; Lai, M.-C.; Nath, T.; Milham, M.P.; Di Martino, A. Network-Specific Sex Differentiation of Intrinsic Brain Function in Males with Autism. Mol. Autism 2018, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Boon, J. Experience-Dependent Modulation of Adult Hippocampal Neurogenesis in Female Mice. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2016. [Google Scholar]
- Siddiqui, A.; Romeo, R.D. Sex Differences and Similarities in Hippocampal Cellular Proliferation and the Number of Immature Neurons during Adolescence in Rats. Dev. Neurosci. 2019, 41, 132–138. [Google Scholar] [CrossRef]
- Tatar, C.; Bessert, D.; Tse, H.; Skoff, R.P. Determinants of Central Nervous System Adult Neurogenesis Are Sex, Hormones, Mouse Strain, Age, and Brain Region. Glia 2013, 61, 192–209. [Google Scholar] [CrossRef]
- Lagace, D.C.; Fischer, S.J.; Eisch, A.J. Gender and Endogenous Levels of Estradiol Do Not Influence Adult Hippocampal Neurogenesis in Mice. Hippocampus 2007, 17, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, W.-Y.; Chen, L.-H.; Cherng, C.G.; Tsai, Y.-N.; Yu, L. Sex Differences and the Modulating Effects of Gonadal Hormones on Basal and the Stressor-Decreased Newly Proliferative Cells and Neuroblasts in Dentate Gyrus. Psychoneuroendocrinology 2014, 42, 24–47. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, J.-H.; Hong, S.H.; Lee, J.Y.; Cherny, R.A.; Bush, A.I.; Palmiter, R.D.; Koh, J.-Y. Estrogen Decreases Zinc Transporter 3 Expression and Synaptic Vesicle Zinc Levels in Mouse Brain. J. Biol. Chem. 2004, 279, 8602–8607. [Google Scholar] [CrossRef] [Green Version]
- Corniola, R.S.; Tassabehji, N.M.; Hare, J.; Sharma, G.; Levenson, C.W. Zinc Deficiency Impairs Neuronal Precursor Cell Proliferation and Induces Apoptosis via P53-Mediated Mechanisms. Brain Res. 2008, 1237, 52–61. [Google Scholar] [CrossRef]
- Adamo, A.M.; Zago, M.P.; Mackenzie, G.G.; Aimo, L.; Keen, C.L.; Keenan, A.; Oteiza, P.I. The Role of Zinc in the Modulation of Neuronal Proliferation and Apoptosis. Neurotox. Res. 2010, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Steller, H. Mechanisms and Genes of Cellular Suicide. Science 1995, 267, 1445–1449. [Google Scholar] [CrossRef]
- Kim, W.R.; Sun, W. Programmed Cell Death during Postnatal Development of the Rodent Nervous System. Dev. Growth Differ. 2011, 53, 225–235. [Google Scholar] [CrossRef]
- Cardozo, P.L.; de Lima, I.B.Q.; Maciel, E.M.A.; Silva, N.C.; Dobransky, T.; Ribeiro, F.M. Synaptic Elimination in Neurological Disorders. Curr. Neuropharmacol. 2019, 17, 1071–1095. [Google Scholar] [CrossRef] [PubMed]
- Levenson, C.W.; Morris, D. Zinc and Neurogenesis: Making New Neurons from Development to Adulthood. Adv. Nutr. Bethesda Md 2011, 2, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.S. Recalibrating the Relevance of Adult Neurogenesis. Trends Neurosci. 2019, 42, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Cahill, S.P.; Yu, R.Q.; Green, D.; Todorova, E.V.; Snyder, J.S. Early Survival and Delayed Death of Developmentally-Born Dentate Gyrus Neurons. Hippocampus 2017, 27, 1155–1167. [Google Scholar] [CrossRef]
- Sahay, A.; Scobie, K.N.; Hill, A.S.; O’Carroll, C.M.; Kheirbek, M.A.; Burghardt, N.S.; Fenton, A.A.; Dranovsky, A.; Hen, R. Increasing Adult Hippocampal Neurogenesis Is Sufficient to Improve Pattern Separation. Nature 2011, 472, 466–470. [Google Scholar] [CrossRef] [Green Version]
- Ciric, T.; Cahill, S.P.; Snyder, J.S. Dentate Gyrus Neurons That Are Born at the Peak of Development, but Not before or after, Die in Adulthood. Brain Behav. 2019, 9, e01435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Praag, H.; Kempermann, G.; Gage, F.H. Running Increases Cell Proliferation and Neurogenesis in the Adult Mouse Dentate Gyrus. Nat. Neurosci. 1999, 2, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Bondolfi, L.; Ermini, F.; Long, J.M.; Ingram, D.K.; Jucker, M. Impact of Age and Caloric Restriction on Neurogenesis in the Dentate Gyrus of C57BL/6 Mice. Neurobiol. Aging 2004, 25, 333–340. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, S.; Cho, A.T.; Spanswick, S.C.; Dyck, R.H. Vesicular Zinc Modulates Cell Proliferation and Survival in the Developing Hippocampus. Cells 2023, 12, 880. https://doi.org/10.3390/cells12060880
Fu S, Cho AT, Spanswick SC, Dyck RH. Vesicular Zinc Modulates Cell Proliferation and Survival in the Developing Hippocampus. Cells. 2023; 12(6):880. https://doi.org/10.3390/cells12060880
Chicago/Turabian StyleFu, Selena, Ashley T. Cho, Simon C. Spanswick, and Richard H. Dyck. 2023. "Vesicular Zinc Modulates Cell Proliferation and Survival in the Developing Hippocampus" Cells 12, no. 6: 880. https://doi.org/10.3390/cells12060880
APA StyleFu, S., Cho, A. T., Spanswick, S. C., & Dyck, R. H. (2023). Vesicular Zinc Modulates Cell Proliferation and Survival in the Developing Hippocampus. Cells, 12(6), 880. https://doi.org/10.3390/cells12060880