Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1
Abstract
:1. Introduction
1.1. Ack Family Kinases
1.2. Mechanism of Action
1.3. Emerging Roles in Signaling Pathways
1.3.1. Role of Ack1 in Neural Signaling Pathways
1.3.2. Role of Ack1 in Immune Signaling Pathways
1.4. Ack1 Substrates
1.5. Ack1 Involvement in Disease
1.5.1. Genomic Level
1.5.2. Transcriptional Level
1.5.3. Post-Transcriptional Level
1.6. Ack1-Mediated Drug Resistance
1.7. Domain Localization of Cancer-Associated Mutations
1.8. Ack1 Drug Development Efforts
2. Ack Domain Structure
2.1. SAM Domain
2.1.1. SAM Domain of Ack1: Structure and Function
2.1.2. Other Protein Kinases with SAM Domains
2.2. Kinase Domain
2.2.1. Structure of the Active vs. Inactive Ack1 KD
2.2.2. Ack1 KD in Comparison to Other TKs
2.3. SH3 Domain
2.3.1. Structural Features of the Ack1 SH3 Domain
2.3.2. Potential Roles for the Ack1 SH3 Domain
2.4. CRIB Domain
Structural Comparison of CRIB of PAK vs. Ack1
2.5. Clathrin-Binding Motif
Ack1-Mediated Regulation of EGFR Trafficking and Degradation
2.6. MHR
Modeling of Interactions between the Segment 1–2 of MHR and Ack1 KD
2.7. UBA
2.7.1. Role of Ack1-UBA in Protein Stability
2.7.2. AlphaFold Modeling of the Ack1 UBA Domain
2.7.3. UBA in AMPK-Related Kinases: Functional Comparison
3. Discussion
3.1. Unique Protein–Protein and Domain–Domain Interactions Governing Ack1
3.2. Outstanding Research Questions for Understanding Basic Biology of Ack1
3.3. Emerging Research Questions of Physiological Relevance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Lin, Q.; Guan, J.L.; Cerione, R.A. Activation of the Cdc42-associated tyrosine kinase-2 (ACK-2) by cell adhesion via integrin beta1. J. Biol. Chem. 1999, 274, 8524–8530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galisteo, M.L.; Yang, Y.; Ureña, J.; Schlessinger, J. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc. Natl. Acad. Sci. USA 2006, 103, 9796–9801. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, N.P.; Whang, Y.E.; Mohler, J.L.; Earp, H.S. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: Role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 2005, 65, 10514–10523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, K.; Lawrence, H.R.; Lawrence, N.J.; Mahajan, N.P. ACK1 tyrosine kinase interacts with histone demethylase KDM3A to regulate the mammary tumor oncogene HOXA1. J. Biol. Chem. 2014, 289, 28179–28191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mott, H.R.; Owen, D.; Nietlispach, D.; Lowe, P.N.; Manser, E.; Lim, L.; Laue, E.D. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature 1999, 399, 384–388. [Google Scholar] [CrossRef]
- Teo, M.; Tan, L.; Lim, L.; Manser, E. The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J. Biol. Chem. 2001, 276, 18392–18398. [Google Scholar] [CrossRef] [Green Version]
- Fox, M.; Crafter, C.; Owen, D. The non-receptor tyrosine kinase ACK: Regulatory mechanisms, signalling pathways and opportunities for attACKing cancer. Biochem. Soc. Trans. 2019, 47, 1715–1731. [Google Scholar] [CrossRef]
- Mahajan, K.; Mahajan, N.P. ACK1/TNK2 tyrosine kinase: Molecular signaling and evolving role in cancers. Oncogene 2015, 34, 4162–4167. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Pei, J.; Shuai, W.; Lin, C.; Feng, L.; Wang, Y.; Lin, F.; Ouyang, L.; Wang, G. Small Molecules Targeting Activated Cdc42-Associated Kinase 1 (ACK1/TNK2) for the Treatment of Cancers. J. Med. Chem. 2021, 64, 16328–16348. [Google Scholar] [CrossRef]
- Consortium, T.U. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2022, 51, D523–D531. [Google Scholar] [CrossRef]
- Hoehn, G.T.; Stokland, T.; Amin, S.; Ramírez, M.; Hawkins, A.L.; Griffin, C.A.; Small, D.; Civin, C.I. Tnk1: A novel intracellular tyrosine kinase gene isolated from human umbilical cord blood CD34+/Lin-/CD38- stem/progenitor cells. Oncogene 1996, 12, 903–913. [Google Scholar] [PubMed]
- Chan, T.Y.; Egbert, C.M.; Maxson, J.E.; Siddiqui, A.; Larsen, L.J.; Kohler, K.; Balasooriya, E.R.; Pennington, K.L.; Tsang, T.-M.; Frey, M.; et al. TNK1 is a ubiquitin-binding and 14-3-3-regulated kinase that can be targeted to block tumor growth. Nat. Commun. 2021, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Hoare, K.; Hoare, S.; Smith, O.M.; Kalmaz, G.; Small, D.; May, W.S. Kos1, a nonreceptor tyrosine kinase that suppresses Ras signaling. Oncogene 2003, 22, 3562–3577. [Google Scholar] [CrossRef] [Green Version]
- Nawarathnage, S.S.; Moody, J.; Bunn, D.; Towne, N.; Duokov, T. ELSAM accelerates crystallization of fused target proteins by stabilizing weak crystal contacts. Acta Crystallogr. Sect. A Found. Adv. 2021, 77, a46. [Google Scholar] [CrossRef]
- Hoare, S.; Hoare, K.; Reinhard, M.K.; Lee, Y.J.; Oh, S.P.; May, W.S. Tnk1/Kos1 knockout mice develop spontaneous tumors. Cancer Res. 2008, 68, 8723–8732. [Google Scholar] [CrossRef] [Green Version]
- Hopper, N.A.; Lee, J.H.; Sternberg, P.W. ARK-1 inhibits EGFR signaling in C. elegans. Mol. Cell 2000, 6, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.-F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef] [PubMed]
- Urena, J.M.; La Torre, A.; Martínez, A.; Lowenstein, E.; Franco, N.; Winsky-Sommerer, R.; Fontana, X.; Casaroli-Marano, R.; Ibáñez-Sabio, M.A.; Pascual, M.; et al. Expression, synaptic localization, and developmental regulation of Ack1/Pyk1, a cytoplasmic tyrosine kinase highly expressed in the developing and adult brain. J. Comp. Neurol. 2005, 490, 119–132. [Google Scholar] [PubMed]
- Grovdal, L.M.; Johannessen, L.E.; Rødland, M.S.; Madshus, I.H.; Stang, E. Dysregulation of Ack1 inhibits down-regulation of the EGF receptor. Exp. Cell Res. 2008, 314, 1292–1300. [Google Scholar] [CrossRef]
- Yang, W.N.; Lo, C.G.; Dispenza, T.; Cerione, R.A. The Cdc42 target ACK2 directly interacts with clathrin and influences clathrin assembly. J. Biol. Chem. 2001, 276, 17468–17473. [Google Scholar] [CrossRef] [Green Version]
- Burbelo, P.D.; Drechsel, D.; Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 1995, 270, 29071–29074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sem, K.P.; Zahedi, B.; Tan, I.; Deak, M.; Lim, L.; Harden, N. ACK family tyrosine kinase activity is a component of Dcdc42 signaling during dorsal closure in Drosophila melanogaster. Mol. Cell. Biol. 2002, 22, 3685–3697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, A.M. Dissecting the Function of Ack Family Kinases in Drosophila through Understanding Their Interactions with Dock and Cdc42. Ph.D. Thesis, Purdue University, West Lafayetta, IN, USA, 2014. [Google Scholar]
- Prieto-Echague, V.; Miller, W.T. Regulation of ack-family nonreceptor tyrosine kinases. J. Signal Transduct. 2011, 2011, 742372. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Lin, Q.; Gu, Y.; Childress, C.; Yang, W. Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol. Biol. Cell 2007, 18, 732–742. [Google Scholar] [CrossRef]
- Jose, A.M.; Kim, Y.A.; Leal-Ekman, S.; Hunter, C.P. Conserved tyrosine kinase promotes the import of silencing RNA into Caenorhabditis elegans cells. Proc. Natl. Acad. Sci. USA 2012, 109, 14520–14525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linseman, D.A.; Heidenreich, K.A.; Fisher, S.K. Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway. J. Biol. Chem. 2001, 276, 5622–5628. [Google Scholar] [CrossRef] [Green Version]
- Pao-Chun, L.; Chan, P.M.; Chan, W.; Manser, E.D. Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2: An analysis of ACK1 effects on Axl signaling. J. Biol. Chem. 2009, 284, 34954–34963. [Google Scholar] [CrossRef] [Green Version]
- La Torre, A.; Masdeu, M.D.M.; Cotrufo, T.; Moubarak, R.S.; del Río, J.A.; Comella, J.X.; Soriano, E.; Ureña, J.M. A role for the tyrosine kinase ACK1 in neurotrophin signaling and neuronal extension and branching. Cell Death Dis. 2013, 4, e602. [Google Scholar] [CrossRef] [Green Version]
- Lougheed, J.C.; Chen, R.-H.; Mak, P.; Stout, T.J. Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1. J. Biol. Chem. 2004, 279, 44039–44045. [Google Scholar] [CrossRef] [Green Version]
- Howlin, J.; Rosenkvist, J.; Andersson, T. TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells. Breast Cancer Res. 2008, 10, R36. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, W.; Sit, S.T.; Manser, E. The Cdc42-associated kinase ACK1 is not autoinhibited but requires Src for activation. Biochem. J. 2011, 435, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Kiyono, M.; Kato, J.; Kataoka, T.; Kaziro, Y.; Satoh, T. Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1. J. Biol. Chem. 2000, 275, 29788–29793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, E.C.; Grima, L.L.; Magill, P.J.; Bogacz, R.; Brown, P.; Walton, M.E. Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat. Neurosci. 2016, 19, 34–36. [Google Scholar] [CrossRef]
- Wu, S.; Bellve, K.D.; Fogarty, K.E.; Melikian, H.E. Ack1 is a dopamine transporter endocytic brake that rescues a trafficking-dysregulated ADHD coding variant. Proc. Natl. Acad. Sci. USA 2015, 112, 15480–15485. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Liu, Y.; Zhao, M.; Cao, K.; Ma, J.; Peng, S. Identification of downstream signaling cascades of ACK1 and prognostic classifiers in non-small cell lung cancer. Aging 2021, 13, 4482–4502. [Google Scholar] [CrossRef]
- Zhao, X.; Lv, C.; Chen, S.; Zhi, F. A role for the non-receptor tyrosine kinase ACK1 in TNF-alpha-mediated apoptosis and proliferation in human intestinal epithelial caco-2 cells. Cell Biol. Int. 2018, 42, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Zhang, X.; Liu, D.; Yang, Y.; Xiong, H.; Dong, G. ACK1 Contributes to the Pathogenesis of Inflammation and Autoimmunity by Promoting the Activation of TLR Signaling Pathways. Front. Immunol. 2022, 13, 864995. [Google Scholar] [CrossRef]
- Thaker, Y.R.; Recino, A.; Raab, M.; Jabeen, A.; Wallberg, M.; Fernandez, N.; Rudd, C.E. Activated Cdc42-associated kinase 1 (ACK1) binds the sterile alpha motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines. J. Biol. Chem. 2017, 292, 6281–6290. [Google Scholar] [CrossRef] [Green Version]
- Shim, E.K.; Jung, S.H.; Lee, J.R. Role of two adaptor molecules SLP-76 and LAT in the PI3K signaling pathway in activated T cells. J. Immunol. 2011, 186, 2926–2935. [Google Scholar] [CrossRef] [Green Version]
- Fang, N.; Motto, D.G.; Ross, S.E.; Koretzky, G.A. Tyrosines 113, 128, and 145 of SLP-76 are required for optimal augmentation of NFAT promoter activity. J. Immunol. 1996, 157, 3769–3773. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, K.; Mahajan, N.P. Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J. Cell. Physiol. 2010, 224, 327–333. [Google Scholar] [CrossRef] [Green Version]
- van der Horst, E.H.; Degenhardt, Y.Y.; Strelow, A.; Slavin, A.; Chinn, L.; Orf, J.; Rong, M.; Li, S.; See, L.-H.; Nguyen, K.Q.C.; et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc. Natl. Acad. Sci. USA 2005, 102, 15901–15906. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, X.; Li, L.; Han, B. Research Progress of the Functional Role of ACK1 in Breast Cancer. BioMed Res. Int. 2019, 2019, 1018034. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Li, G.; Yang, Z.; Cheng, S.; Zhang, W.; Feng, L.; Zhang, K. Identification of an ACK1/TNK2-based prognostic signature for colon cancer to predict survival and inflammatory landscapes. BMC Cancer 2022, 22, 84. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; He, Y.; Li, X.; Ma, Y.; Li, Y.; Kong, B.; Huang, P. Significant Gene Biomarker Tyrosine Kinase Non-receptor 2 Mediated Cell Proliferation and Invasion in Colon Cancer. Front. Genet. 2021, 12, 653657. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.H.; Huang, J.-Z.; Chen, M.; Zeng, M.; Zou, F.-Y.; Chen, D.; Yan, G.-R. Amplification of ACK1 promotes gastric tumorigenesis via ECD-dependent p53 ubiquitination degradation. Oncotarget 2017, 8, 12705–12716. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.H.; Huang, J.-Z.; Xu, M.-L.; Yu, G.; Yin, X.-F.; Chen, D.; Yan, G.-R. ACK1 promotes gastric cancer epithelial-mesenchymal transition and metastasis through AKT-POU2F1-ECD signalling. J. Pathol. 2015, 236, 175–185. [Google Scholar] [CrossRef]
- Prieto-Echague, V.; Gucwa, A.; Craddock, B.P.; Brown, D.A.; Miller, W.T. Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1. J. Biol. Chem. 2010, 285, 10605–10615. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Zen, Q.; Wang, X.; He, X.; Xie, Y.; Zhang, Z.; Li, H. ACK1 promotes hepatocellular carcinoma progression via downregulating WWOX and activating AKT signaling. Int. J. Oncol. 2015, 46, 2057–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, K.; Coppola, D.; Challa, S.; Fang, B.; Chen, Y.; Zhu, W.; Lopez, A.S.; Koomen, J.; Engelman, R.W.; Rivera, C.; et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS ONE 2010, 5, e9646. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Gu, H.; Zhao, X.; Huang, L.; Zhou, S.; Zhi, F. Involvement of Activated Cdc42 Kinase1 in Colitis and Colorectal Neoplasms. Med. Sci. Monit. 2016, 22, 4794–4802. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.L.; Chang, S.; Li, B.-Z.; Zhou, F.; Tan, X.-G.; Shi, S.-S.; Feng, X.-L.; He, J. Correlation study of the overexpression of activated Cdc42-associated kinase 1 and the stage and prognosis of esophageal squamous cell carcinoma. Zhonghua Yi Xue Za Zhi 2011, 91, 166–170. [Google Scholar] [PubMed]
- Hu, F.; Liu, H.; Xie, X.; Mei, J.; Wang, M. Activated cdc42-associated kinase is up-regulated in non-small-cell lung cancer and necessary for FGFR-mediated AKT activation. Mol. Carcinog. 2016, 55, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Z.; Zhang, Y.; Li, Y.; Liu, B.; Zhang, K. miR-24 represses metastasis of human osteosarcoma cells by targeting Ack1 via AKT/MMPs pathway. Biochem. Biophys. Res. Commun. 2017, 486, 211–217. [Google Scholar] [CrossRef]
- Maxson, J.E.; Abel, M.L.; Wang, J.; Deng, X.; Reckel, S.; Luty, S.B.; Sun, H.; Gorenstein, J.; Hughes, S.B.; Bottomly, D.; et al. Identification and Characterization of Tyrosine Kinase Nonreceptor 2 Mutations in Leukemia through Integration of Kinase Inhibitor Screening and Genomic Analysis. Cancer Res. 2016, 76, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Saddiq, M.Z.; Renuse, S.; Kelkar, D.S.; Barbhuiya, M.A.; Rojas, P.L.; Stearns, V.; Gabrielson, E.; Malla, P.; Sukumae, S.; et al. The non-receptor tyrosine kinase TNK2/ACK1 is a novel therapeutic target in triple negative breast cancer. Oncotarget 2017, 8, 2971–2983. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xu, T.; Liu, J.; Zang, S.; Gao, L.; Huang, A. Overexpression of activated Cdc42-associated kinase1 (Ack1) predicts tumor recurrence and poor survival in human hepatocellular carcinoma. Pathol. Res. Pract. 2014, 210, 787–792. [Google Scholar] [CrossRef]
- Hitomi, Y.; Heinzen, E.L.; Donatello, S.; Dahl, H.-H.; Damiano, J.A.; BSc, J.M.M.; Berkovic, S.F.; Scheffer, I.E.; Legros, B.; Rai, M.; et al. Mutations in TNK2 in severe autosomal recessive infantile onset epilepsy. Ann. Neurol. 2013, 74, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, T.; Mao, Q.; Lin, J.; Jia, J.; Li, S.; Xiong, W.; Lin, Y.; Liu, Z.; Liu, X.; et al. PDGFR-beta-activated ACK1-AKT signaling promotes glioma tumorigenesis. Int. J. Cancer 2015, 136, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, K.; Coppola, D.; Rawal, B.; Chen, Y.A.; Lawrence, H.R.; Engelman, R.W.; Lawrence, N.J.; Mahajan, N.P. Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer. J. Biol. Chem. 2012, 287, 22112–22122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelman, I.H. Androgen receptor activation in castration-recurrent prostate cancer: The role of Src-family and Ack1 tyrosine kinases. Int. J. Biol. Sci. 2014, 10, 620–626. [Google Scholar] [CrossRef]
- Mahajan, K.; Malla, P.; Lawrence, H.R.; Chen, Z.; Kumar-Sinha, C.; Malik, R.; Shukla, S.; Kim, J.; Coppola, D.; Lawrence, N.J.; et al. ACK1/TNK2 Regulates Histone H4 Tyr88-phosphorylation and AR Gene Expression in Castration-Resistant Prostate Cancer. Cancer Cell 2017, 31, 790–803.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, N.P.; Coppola, D.; Kim, J.; Lawrence, H.R.; Lawrence, N.J.; Mahajan, K. Blockade of ACK1/TNK2 To Squelch the Survival of Prostate Cancer Stem-like Cells. Sci. Rep. 2018, 8, 1954. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.H.; Cao, D.; Mahajan, N.P.; Andriole, G.L.; Mahajan, K. ACK1-AR and AR-HOXB13 signaling axes: Epigenetic regulation of lethal prostate cancers. NAR Cancer 2020, 2, zcaa018. [Google Scholar] [CrossRef]
- Furlow, B. Tyrosine kinase ACK1 promotes prostate tumorigenesis. Lancet Oncol. 2006, 7, 17. [Google Scholar] [CrossRef]
- Mahajan, N.P.; Liu, Y.; Majumder, S.; Warren, M.R.; Parker, C.E.; Mohler, J.L.; Earp, H.S.; Whang, Y.E. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc. Natl. Acad. Sci. USA 2007, 104, 8438–8443. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, K.; Challa, S.; Coppola, D.; Lawrence, H.; Luo, Y.; Gevariya, H.; Zhu, W.; Chen, Y.; Lawrence, N.J.; Mahajan, N.P. Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. Prostate 2010, 70, 1274–1285. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Njauw, C.-N.; Guhan, S.; Kumar, R.; Reddy, B.; Rajadurai, A.; Flaherty, K.; Tsao, H. Loss of ACK1 Upregulates EGFR and Mediates Resistance to BRAF Inhibition. J. Investig. Dermatol. 2021, 141, 1317–1324.e1. [Google Scholar] [CrossRef]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2018, 47, D941–D947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wellcome Sanger Institute. COSMIC, the Catalogue of Somatic Mutations in Cancer. Available online: https://cancer.sanger.ac.uk/ (accessed on 6 January 2023).
- Park, S.J.; Yoon, B.-H.; Kim, S.-Y. GENT2: An updated gene expression database for normal and tumor tissues. BMC Med. Genom. 2019, 12 (Suppl. 5), 101. [Google Scholar] [CrossRef] [PubMed]
- Maxson, J.E.; Gotlib, J.; Pollyea, D.A.; Fleischman, A.G.; Agarwal, A.; Eide, C.A.; Bottomly, D.; Wilmort, B.; McWeenay, S.K.; Tognon, C.E.; et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N. Engl. J. Med. 2013, 368, 1781–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonami, A.; Sattler, M.; Weisberg, E.; Liu, Q.; Zhang, J.; Patricelli, M.P.; Christie, A.L.; Saur, A.M.; Kohl, N.E.; Kung, A.L.; et al. Identification of novel therapeutic targets in acute leukemias with NRAS mutations using a pharmacologic approach. Blood 2015, 125, 3133–3143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.; Shin, I.; Ju, E.; Choi, S.; Hur, W.; Kim, H.; Hong, E.; Kim, N.D.; Choi, H.G.; Gray, N.S.; et al. First SAR Study for Overriding NRAS Mutant Driven Acute Myeloid Leukemia. J. Med. Chem. 2018, 61, 8353–8373. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.; Luty, S.B.; Maxson, J.E.; Eide, C.A.; Abel, M.L.; Togiai, C.; Nemecek, E.R.; Bottomly, D.; McWeeney, S.K.; Wilmot, B.; et al. Synthetic lethality of TNK2 inhibition in PTPN11-mutant leukemia. Sci. Signal 2018, 11, eaao5617. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, H.R.; Mahajan, K.; Luo, Y.; Zhang, D.; Tindall, N.; Huseyin, M.; Gevariya, H.; Kazi†, S.; Ozcan, S.; Mahajan, N.P.; et al. Development of novel ACK1/TNK2 inhibitors using a fragment-based approach. J. Med. Chem. 2015, 58, 2746–2763. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Wang, J.; Kleinberg, A.; Kadalbajoo, M.; Siu, K.W.; Cooke, A.; Bittner, M.A.; Yao, Y.; Thelemann, A.; Ji, Q.; et al. Discovery of potent, selective and orally bioavailable imidazo [1,5-a]pyrazine derived ACK1 inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 979–984. [Google Scholar] [CrossRef]
- Phatak, S.S.; Zhang, S. A novel multi-modal drug repurposing approach for identification of potent ACK1 inhibitors. Biocomputing 2013, 2013, 29–40. [Google Scholar]
- Shi, X.; Bowman, D.M.; Hapiak, V.M.; Lingerak, R.W.; Zheng, J.; Buck, M.; Wang, B.; Smith, A.W. SAM Domain Inhibits Oligomerization and Auto-Activation of EphA2 Kinase. Biophys. J. 2017, 112, 27a. [Google Scholar] [CrossRef] [Green Version]
- Di Pietro, S.M.; Cascio, D.; Feliciano, D.; Bowie, J.U.; Payne, G.S. Regulation of clathrin adaptor function in endocytosis: Novel role for the SAM domain. EMBO J. 2010, 29, 1033–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto-Echague, V.; Gucwa, A.; Brown, D.A.; Miller, W.T. Regulation of Ack1 localization and activity by the amino-terminal SAM domain. BMC Biochem. 2010, 11, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.; Wang, J.; Childress, C.; Sudol, M.; Carey, D.J.; Yang, W. HECT E3 ubiquitin ligase Nedd4-1 ubiquitinates ACK and regulates epidermal growth factor (EGF)-induced degradation of EGF receptor and ACK. Mol. Cell. Biol. 2010, 30, 1541–1554. [Google Scholar] [CrossRef] [Green Version]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2021, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Stapleton, D.; Balan, I.; Pawson, T.; Sicheri, F. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat. Struct. Biol. 1999, 6, 44–49. [Google Scholar]
- Kukuk, L.; Dingley, A.J.; Granzin, J.; Nagel-Steger, L.; Thiagarajan-Rosenkranz, P.; Ciupka, D.; Hänel, K.; Batra-Safferling, R.; Pacheco, V.; Stoldt, M.; et al. Structure of the SLy1 SAM homodimer reveals a new interface for SAM domain self-association. Sci. Rep. 2019, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shang, Y.; Li, J.; Chen, W.; Li, G.; Wan, J.; Liu, W.; Zhang, M. Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions. Elife 2018, 7, e35677. [Google Scholar] [CrossRef] [PubMed]
- Rajakulendran, T.; Sahmi, M.; Kurinov, I.; Tyers, M.; Therrien, M.; Sicheri, F. CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling. Proc. Natl. Acad. Sci. USA 2008, 105, 2836–2841. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Miller, W.T. The noncatalytic regions of the tyrosine kinase Tnk1 are important for activity and substrate specificity. J. Biol. Chem. 2022, 298, 298. [Google Scholar] [CrossRef]
- Liu, T.-C.; Huang, C.-J.; Chu, Y.-C.; Wei, C.-C.; Chou, C.-C.; Chou, M.-Y.; Chou, C.-K.; Yang, J.-J. Cloning and expression of ZAK, a mixed lineage kinase-like protein containing a leucine-zipper and a sterile-alpha motif. Biochem. Biophys Res. Commun. 2000, 274, 811–816. [Google Scholar] [CrossRef]
- Spielmann, M.; Kakar, N.; Tayebi, N.; Leettola, C.; Nürnberg, G.; Sowada, N.; Lupiáñez, D.G.; Harabula, I.; Flöttmann, R.; Horn, D.; et al. Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice. Genome Res. 2016, 26, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.S.; Kornev, A.P. Protein kinases: Evolution of dynamic regulatory proteins. Trends Biochem. Sci. 2011, 36, 65–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, F.; Pupko, T.; Paz, I.; Bell, R.E.; Bechor-Shental, D.; Martz, E.; Ben-Tal, N. ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 2003, 19, 163–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landau, M.; Mayrose, I.; Rosenberg, Y.; Glaser, F.; Martz, E.; Pupko, T.; Ben-Tal, N. ConSurf 2005: The projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 2005, 33, W299–W302. [Google Scholar] [CrossRef]
- Goldenberg, O.; Erez, E.; Nimrod, G.; Ben-Tal, N. The ConSurf-DB: Pre-calculated evolutionary conservation profiles of protein structures. Nucleic Acids Res. 2009, 37, D323–D327. [Google Scholar] [CrossRef]
- Ashkenazy, H.; Erez, E.; Martz, E.; Pupko, T.; Ben-Tal, N. ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010, 38, W529–W533. [Google Scholar] [CrossRef] [Green Version]
- Celniker, G.; Nimrod, G.; Ashkenazy, H.; Glaser, F.; Martz, E.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about Protein Function. Isr. J. Chem. 2013, 53, 199–206. [Google Scholar] [CrossRef]
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornev, A.P.; Taylor, S.S.; Eyck, L.F.T. A helix scaffold for the assembly of active protein kinases. Proc. Natl. Acad. Sci. USA 2008, 105, 14377–14382. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Kopecky, D.J.; Liu, J.; Liu, J.; Jaen, J.C.; Cardozo, M.G.; Sharma, R.; Walker, N.; Wesche, H.; Li, S.; et al. Synthesis and optimization of substituted furo [2,3-d]-pyrimidin-4-amines and 7H-pyrrolo [2,3-d]pyrimidin-4-amines as ACK1 inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 6212–6217. [Google Scholar] [CrossRef]
- Gajiwala, K.S.; Maegley, K.; Ferre, R.; He, Y.-A.; Yu, X. Ack1: Activation and regulation by allostery. PLoS ONE 2013, 8, e53994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meijer, L.; Thunnissen, A.M.; White, A.W.; Garnier, M.; Nikolic, M.; Tsai, L.H.; Walter, J.; Cleverly, K.E.; Salinas, P.C.; Wu, Y.-Z.; et al. Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent. Chem. Biol. 2000, 7, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, N.; Miller, W.T. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck. J. Biol. Chem. 2003, 278, 47713–47723. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gureasko, J.; Shen, K.; Cole, P.A.; Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006, 125, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs, E.; Zorn, J.A.; Huang, Y.; Barros, T.; Kuriyan, J. A structural perspective on the regulation of the epidermal growth factor receptor. Annu. Rev. Biochem. 2015, 84, 739–764. [Google Scholar] [CrossRef] [Green Version]
- Leon, B.C.; Tsigelny, I.; Adams, J.A. Electrostatic environment surrounding the activation loop phosphotyrosine in the oncoprotein v-Fps. Biochemistry 2001, 40, 10078–10086. [Google Scholar] [CrossRef]
- Neet, K.; Hunter, T. Vertebrate non-receptor protein-tyrosine kinase families. Genes Cells 1996, 1, 147–169. [Google Scholar] [CrossRef]
- Smith, K.M.; Yacobi, R.; Van Etten, R.A. Autoinhibition of Bcr-Abl through its SH3 domain. Mol. Cell 2003, 12, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, S.; Vundinti, B.R.; Shanmukhaiah, C.; Chakrabarti, P.; Ghosh, K. Evolution of BCR/ABL gene mutation in CML is time dependent and dependent on the pressure exerted by tyrosine kinase inhibitor. PLoS ONE 2015, 10, e0114828. [Google Scholar] [CrossRef] [Green Version]
- Levinson, N.M.; Visperas, P.R.; Kuriyan, J. The tyrosine kinase Csk dimerizes through Its SH3 domain. PLoS ONE 2009, 4, e7683. [Google Scholar] [CrossRef] [Green Version]
- Brian, B.F.T.; Sjaastad, F.V.; Freedman, T.S. SH3-domain mutations selectively disrupt Csk homodimerization or PTPN22 binding. Sci. Rep. 2022, 12, 5875. [Google Scholar] [CrossRef]
- Qiu, H.; Miller, W.T. Regulation of the nonreceptor tyrosine kinase Brk by autophosphorylation and by autoinhibition. J. Biol. Chem. 2002, 277, 34634–34641. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Miller, W.T. Role of the Brk SH3 domain in substrate recognition. Oncogene 2003, 23, 2216–2223. [Google Scholar] [CrossRef] [Green Version]
- Sudol, M. From Src Homology domains to other signaling modules: Proposal of the ‘protein recognition code’. Oncogene 1998, 17, 1469–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellicena, P.; Miller, W.T. Coupling kinase activation to substrate recognition in SRC-family tyrosine kinases. Front. Biosci. 2002, 7, d256–d267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oda, T.; Muramatsu, M.-A.; Isogai, T.; Masuho, Y.; Asano, S.; Yamashita, T. HSH2: A novel SH2 domain-containing adapter protein involved in tyrosine kinase signaling in hematopoietic cells. Biochem. Biophys. Res. Commun. 2001, 288, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Brignatz, C.E.A. Alternative Splicing Modulates Autoinhibition and SH3 Accessibility in the Src Kinase Fyn. Mol. Cell. Biol. 2009, 29, 6438–6448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawash, I.Y.; Kesavan, K.P.; Magee, A.I.; Geahlen, R.L.; Harrison, M.L. The Lck SH3 Domain Negatively Regulates Localization to Lipid Rafts through an Interaction with c-Cbl. J. Biol. Chem. 2001, 277, 5683–5691. [Google Scholar] [CrossRef] [Green Version]
- Denny, M.F.; Kaufman, H.C.; Chan, A.C.; Straus, D.B. The Lck SH3 Domain Is Required for Activation of the Mitogen-Activated Protein Kinase Pathway but Not the Initiation of T-Cell Antigen Receptor Signaling. J. Biol. Chem. 1999, 274, 5146–5152. [Google Scholar] [CrossRef] [Green Version]
- Kami, K.; Takeya, R.; Sumimoto, H.; Kohda, D. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pex13. EMBO J. 2002, 21, 4268–4276. [Google Scholar] [CrossRef] [Green Version]
- Bottger, G.; Barnett, P.; Klein, A.J.; Kragt, A.; Tabak, H.F.; Distel, B. Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol. Biol. Cell 2000, 11, 3963–3976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, T.; Kumasaka, T.; Ganbe, T.; Sato, T.; Miyazawa, K.; Kitamura, N.; Tanaka, N. Structural insight into modest binding of a non-PXXP ligand to the signal transducing adaptor molecule-2 Src homology 3 domain. J. Biol. Chem. 2003, 278, 48162–48168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, M.; Miyazawa, K.; Kitamura, N. A deubiquitinating enzyme UBPY interacts with the Src homology 3 domain of Hrs-binding protein via a novel binding motif PX(V/I)(D/N)RXXKP. J. Biol. Chem. 2000, 275, 37481–37487. [Google Scholar] [CrossRef] [Green Version]
- Moarefi, I.; Barnett, P.; Klein, A.J.; Kragt, A.; Tabak, H.F.; Distel, B. Activation of the Sire-family tyrosine kinase Hck by SH3 domain displacement. Nature 1997, 385, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gallo, K.A. Autoinhibition of mixed lineage kinase 3 through its Src homology 3 domain. J. Biol. Chem. 2001, 276, 45598–45603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuzawa, S.; Suzuki, N.N.; Fujioka, Y.; Ogura, K.; Sumimoto, H.; Inagaki, F. A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Genes Cells 2004, 9, 443–456. [Google Scholar] [CrossRef]
- Elliot-Smith, A.E.; Mott, H.R.; Lowe, P.N.; Laue, E.D.; Owen, D. Specificity determinants on Cdc42 for binding its effector protein ACK. Biochemistry 2005, 44, 12373–12383. [Google Scholar] [CrossRef]
- Kim, A.S.; Kakalis, L.T.; Abdul-Manan, N.; Liu, G.A.; Rosen, M.K. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 2000, 404, 151–158. [Google Scholar] [CrossRef]
- Lei, M.; Lu, W.; Meng, W.; Parrini, M.-C.; Eck, M.J.; Mayer, B.J.; Harrison, S.C. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 2000, 102, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, G.R.; Cerione, R.A. Flipping the switch: The structural basis for signaling through the CRIB motif. Cell 2000, 102, 403–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manser, E.; Leung, T.; Salihuddin, H.; Tan, L.; Lim, L. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature 1993, 363, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.J.; Kim, E.H.; Roy, A.; Kim, J.-H. Evidence for a novel mechanism of the PAK1 interaction with the Rho-GTPases Cdc42 and Rac. PLoS ONE 2013, 8, e71495. [Google Scholar] [CrossRef]
- Manser, E.; Leung, T.; Salihuddin, H.; Zhao, Z.-S.; Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994, 367, 40–46. [Google Scholar] [CrossRef]
- Morreale, A.; Venkatesan, M.; Mott, H.R.; Owen, D.; Nietlispach, D.; Lowe, P.N.; Laue, E.D. Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat. Struct. Biol. 2000, 7, 384–388. [Google Scholar]
- Owen, D.; Mott, H.R.; Laue, E.D.; Lowe, P.N. Residues in Cdc42 that specify binding to individual CRIB effector proteins. Biochemistry 2000, 39, 1243–1250. [Google Scholar] [CrossRef]
- Tetley, G.J.N.; Mott, H.R.; Cooley, R.N.; Owen, D. A dock and coalesce mechanism driven by hydrophobic interactions governs Cdc42 binding with its effector protein ACK. J. Biol. Chem. 2017, 292, 11361–11373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.; Cunningham, D.L.; Rappoport, J.Z.; Heath, J.K. The non-receptor tyrosine kinase Ack1 regulates the fate of activated EGFR by inducing trafficking to the p62/NBR1 pre-autophagosome. J. Cell Sci. 2014, 127 Pt 5, 994–1006. [Google Scholar] [CrossRef] [Green Version]
- Chua, B.T.; Lim, S.J.; Tham, S.C.; Poh, W.J.; Ullrich, A. Somatic mutation in the ACK1 ubiquitin association domain enhances oncogenic signaling through EGFR regulation in renal cancer derived cells. Mol. Oncol. 2010, 4, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Frosi, Y.; Anastasi, S.; Ballarò, C.; Varsano, G.; Castellani, L.; Maspero, E.; Polo, S.; Alemà, S.; Segatto, O. A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J. Cell Biol. 2010, 189, 557–571. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Pickin, K.A.; Bose, R.; Jura, N.; Cole, P.A.; Kuriyan, J. Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 2007, 450, 741–744. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Kim, N.; Ficarro, S.B.; Zhang, Y.; Lee, B.I.; Cho, A.; Kim, K.; Park, A.K.; Park, W.-Y.; Murray, B.A.; et al. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat. Struct. Mol. Biol. 2015, 22, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Kan, Y.; Miller, W.T. Activity of the nonreceptor tyrosine kinase Ack1 is regulated by tyrosine phosphorylation of its Mig6 homology region. FEBS Lett. 2022, 596, 2808–2820. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, K.; Bucher, P. The UBA domain: A sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 1996, 21, 172–173. [Google Scholar] [CrossRef]
- Lee, Y.; Chou, T.F.; Pittman, S.K.; Keith, A.L.; Razani, B.; Weihl, C.C. Keap1/Cullin3 Modulates p62/SQSTM1 Activity via UBA Domain Ubiquitination. Cell Rep. 2017, 19, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Shinde, U.; Ortolan, T.G.; Madura, K. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep 2001, 2, 933–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trempe, J.F.; Brown, N.R.; Lowe, E.D.; Gordon, C.; Campbell, I.D.; Noble, M.E.M.; Endicott, J.A. Mechanism of Lys48-linked polyubiquitin chain recognition by the Mud1 UBA domain. EMBO J. 2005, 24, 3178–3189. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, S.W.; Egbert, C.M.; Lopez-Palacios, T.; Chan, T.; Vaughan, A.; McCormack, K.; Andersen, J. A mechanism of TNK1 activation by C-terminal gene truncation in human lymphomas. FASEB J. 2022, 36. [Google Scholar] [CrossRef]
- Buchwald, M.; Pietschmann, K.; Brand, P.; Günther, A.; Mahajan, N.P.; Heinzel, T.; Krämer, O.H. SIAH ubiquitin ligases target the nonreceptor tyrosine kinase ACK1 for ubiquitinylation and proteasomal degradation. Oncogene 2013, 32, 4913–4920. [Google Scholar] [CrossRef] [Green Version]
- Isogai, S.; Morimoto, D.; Arita, K.; Unzai, S.; Tenno, T.; Hasegawa, J.; Sou, Y.S.; Komatsu, M.; Tanaka, K.; Shirakawa, M.; et al. Crystal structure of the ubiquitin-associated (UBA) domain of p62 and its interaction with ubiquitin. J. Biol. Chem. 2011, 286, 31864–31874. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Raasi, S.; Fushman, D. Affinity makes the difference: Nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. J. Mol. Biol. 2008, 377, 162–180. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.M.; Korzhnev, D.M.; Ceccarelli, D.F.; Briant, D.J.; Zarrine-Afsar, A.; Sicheri, F.; Kay, L.E.; Pawson, T. Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain. Proc. Natl. Acad. Sci. USA 2007, 104, 14336–14341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, A.; Nugoor, C.; Panneerselvam, S.; Mandelkow, E. Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J. 2010, 24, 1637–1648. [Google Scholar] [CrossRef]
- Bertolaet, B.L.; Clarke, D.J.; Wolff, M.; Watson, M.H.; Henze, M.; Divita, G.; Reed, S.I. UBA domains mediate protein-protein interactions between two DNA damage-inducible proteins. J. Mol. Biol. 2001, 313, 955–963. [Google Scholar] [CrossRef]
- Jaleel, M.; Villa, F.; Deak, M.; Toth, R.; Prescott, A.R.; Van Aalten, D.M.F.; Alessi, D.R. The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem. J. 2006, 394 Pt 3, 545–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.; Wang, J.; Childress, C.; Yang, W. The activation mechanism of ACK1 (activated Cdc42-associated tyrosine kinase 1). Biochem. J. 2012, 445, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Modzelewska, K.; Newman, L.P.; Desai, R.; Keely, P.J. Ack1 mediates Cdc42-dependent cell migration and signaling to p130Cas. J. Biol. Chem. 2006, 281, 37527–37535. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.; Tian, R.; Lee, Y.-F.; Sit, S.T.; Lim, L.; Manser, E. Down-regulation of active ACK1 is mediated by association with the E3 ubiquitin ligase Nedd4-2. J. Biol. Chem. 2009, 284, 8185–8194. [Google Scholar] [CrossRef] [Green Version]
- Satoh, T.; Kato, J.; Nishida, K.; Kaziro, Y. Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett. 1996, 386, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Yeow-Fong, L.; Lim, L.; Manser, E. SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1. FEBS Lett. 2005, 579, 5040–5048. [Google Scholar] [CrossRef] [Green Version]
- Kelley, L.C.; Weed, S.A. Cortactin is a substrate of activated Cdc42-associated kinase 1 (ACK1) during ligand-induced epidermal growth factor receptor downregulation. PLoS ONE 2012, 7, e44363. [Google Scholar] [CrossRef] [PubMed]
- Sridaran, D.; Chouhan, S.; Mahajan, K.; Renganathan, A.; Weimholt, C.; Bhagwat, S.; Reimers, M.; Kim, E.H.; Thakur, M.K.; Saeed, M.A.; et al. Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nat. Commun. 2022, 13, 6929. [Google Scholar] [CrossRef] [PubMed]
- Mahendrarajah, N.; Borisova, M.E.; Reichardt, S.; Godmann, M.; Sellmer, A.; Mahboobi, S.; Haitel, A.; Schmid, K.; Kenner, L.; Heinzel, T.; et al. HSP90 is necessary for the ACK1-dependent phosphorylation of STAT1 and STAT3. Cell. Signal. 2017, 39, 9–17. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, Y.; Paung, Y.; Seeliger, M.A.; Miller, W.T. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells 2023, 12, 900. https://doi.org/10.3390/cells12060900
Kan Y, Paung Y, Seeliger MA, Miller WT. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells. 2023; 12(6):900. https://doi.org/10.3390/cells12060900
Chicago/Turabian StyleKan, Yagmur, YiTing Paung, Markus A. Seeliger, and W. Todd Miller. 2023. "Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1" Cells 12, no. 6: 900. https://doi.org/10.3390/cells12060900
APA StyleKan, Y., Paung, Y., Seeliger, M. A., & Miller, W. T. (2023). Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells, 12(6), 900. https://doi.org/10.3390/cells12060900