Human Hematopoietic Stem/Progenitor Cells in Type One Diabetes Mellitus Treatment: Is There an Ideal Candidate?
Abstract
:1. Introduction
2. Hematopoietic Stem/Progenitor Cells for Cell Therapy
3. Hematopoietic Stem/Progenitor Cells in Clinical Trials
3.1. Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation
3.2. The Brazilian Study
3.3. The Polish Study
3.4. The Chinese Studies
3.5. The Mexican Study
4. Other Cell Therapy Approaches in Clinical Trials
5. The Profile of the Responder Patients
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004, 27 (Suppl. S1), S5–S10. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, K.M. Type 1 diabetes: Pathogenesis and prevention. Can. Med. Assoc. J. 2006, 175, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Hosseini Fard, H.; Ghojazadeh, M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect. 2020, 10, 98–115. [Google Scholar] [CrossRef]
- Xu, G.; Liu, B.; Sun, Y.; Du, Y.; Snetselaar, L.G.; Hu, F.B.; Bao, W. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: Population based study. BMJ 2018, 362, k1497. [Google Scholar] [CrossRef] [Green Version]
- Maahs, D.M.; West, N.A.; Lawrence, J.M.; Mayer-Davis, E.J. Epidemiology of type 1 diabetes. Endocrinol. Metab. Clin. N. Am. 2010, 39, 481–497. [Google Scholar] [CrossRef] [Green Version]
- Sousa, G.R.; Pober, D.; Galderisi, A.; Lv, H.; Yu, L.; Pereira, A.C.; Doria, A.; Kosiborod, M.; Lipes, M.A. Glycemic Control, Cardiac Autoimmunity, and Long-Term Risk of Cardiovascular Disease in Type 1 Diabetes Mellitus. Circulation 2019, 139, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Song, S.H. Complication characteristics between young-onset type 2 versus type 1 diabetes in a UK population. BMJ Open Diabetes Res. Care 2015, 3, e000044. [Google Scholar] [CrossRef] [Green Version]
- Dabelea, D.; Stafford, J.M.; Mayer-Davis, E.J.; D’Agostino, R., Jr.; Dolan, L.; Imperatore, G.; Linder, B.; Lawrence, J.M.; Marcovina, S.M.; Mottl, A.K.; et al. Association of Type 1 Diabetes vs Type 2 Diabetes Diagnosed During Childhood and Adolescence with Complications During Teenage Years and Young Adulthood. JAMA 2017, 317, 825–835. [Google Scholar] [CrossRef] [Green Version]
- Huo, L.; Harding, J.L.; Peeters, A.; Shaw, J.E.; Magliano, D.J. Life expectancy of type 1 diabetic patients during 1997–2010: A national Australian registry-based cohort study. Diabetologia 2016, 59, 1177–1185. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.K.; Kim, M.Y. What Affects Quality of Life for People with Type 1 Diabetes?: A Cross-Sectional Observational Study. Int. J. Environ. Res. Public Health 2021, 18, 7623. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, A.M.; Lakey, J.R.; Ryan, E.A.; Korbutt, G.S.; Toth, E.; Warnock, G.L.; Kneteman, N.M.; Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 2000, 343, 230–238. [Google Scholar] [CrossRef]
- Siminovitch, L.; McCulloch, E.A.; Till, J.E. The Distribution of Colony-Forming Cells among Spleen Colonies. J. Cell Comp. Physiol. 1963, 62, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, R.; Lu, J.; Pompili, V.J.; Das, H. Hematopoietic stem cells: Transcriptional regulation, ex vivo expansion and clinical application. Curr. Mol. Med. 2012, 12, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Fadini, G.P.; Rigato, M.; Cappellari, R.; Bonora, B.M.; Avogaro, A. Long-term Prediction of Cardiovascular Outcomes by Circulating CD34+ and CD34+CD133+ Stem Cells in Patients with Type 2 Diabetes. Diabetes Care 2017, 40, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Vinci, M.C.; Carulli, E.; Rurali, E.; Rinaldi, R.; Damiano, G.; Raucci, A.; Pompilio, G.; Genovese, S. The Long Telling Story of “Endothelial Progenitor Cells”: Where Are We at Now? Cells 2022, 12, 112. [Google Scholar] [CrossRef]
- Fina, L.; Molgaard, H.V.; Robertson, D.; Bradley, N.J.; Monaghan, P.; Delia, D.; Sutherland, D.R.; Baker, M.A.; Greaves, M.F. Expression of the CD34 gene in vascular endothelial cells. Blood 1990, 75, 2417–2426. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.S.; Ning, H.; Lin, G.; Lue, T.F. Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy 2012, 14, 1159–1163. [Google Scholar] [CrossRef] [Green Version]
- Blanpain, C.; Lowry, W.E.; Geoghegan, A.; Polak, L.; Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 2004, 118, 635–648. [Google Scholar] [CrossRef]
- Sidney, L.E.; Branch, M.J.; Dunphy, S.E.; Dua, H.S.; Hopkinson, A. Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells 2014, 32, 1380–1389. [Google Scholar] [CrossRef] [Green Version]
- Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; van der Zee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275, 964–967. [Google Scholar] [CrossRef]
- Vinci, M.C.; Gambini, E.; Bassetti, B.; Genovese, S.; Pompilio, G. When Good Guys Turn Bad: Bone Marrow’s and Hematopoietic Stem Cells’ Role in the Pathobiology of Diabetic Complications. Int. J. Mol. Sci. 2020, 21, 3864. [Google Scholar] [CrossRef]
- Basile, D.P.; Yoder, M.C. Circulating and tissue resident endothelial progenitor cells. J. Cell. Physiol. 2014, 229, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Pozzoli, O.; Vella, P.; Iaffaldano, G.; Parente, V.; Devanna, P.; Lacovich, M.; Lamia, C.L.; Fascio, U.; Longoni, D.; Cotelli, F.; et al. Endothelial fate and angiogenic properties of human CD34+ progenitor cells in zebrafish. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1589–1597. [Google Scholar] [CrossRef] [Green Version]
- Rigato, M.; Avogaro, A.; Fadini, G.P. Levels of Circulating Progenitor Cells, Cardiovascular Outcomes and Death: A Meta-Analysis of Prospective Observational Studies. Circ. Res. 2016, 118, 1930–1939. [Google Scholar] [CrossRef]
- Maruyama, S.; Taguchi, A.; Iwashima, S.; Ozaki, T.; Yasuda, K.; Kikuchi-Taura, A.; Soma, T.; Ishii, H.; Murohara, T.; Takahashi, H.; et al. Low circulating CD34+ cell count is associated with poor prognosis in chronic hemodialysis patients. Kidney Int. 2008, 74, 1603–1609. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, A.; Nakagomi, N.; Matsuyama, T.; Kikuchi-Taura, A.; Yoshikawa, H.; Kasahara, Y.; Hirose, H.; Moriwaki, H.; Nakagomi, T.; Soma, T.; et al. Circulating CD34-positive cells have prognostic value for neurologic function in patients with past cerebral infarction. J. Cereb. Blood Flow Metab. 2009, 29, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Craig, J.I.; Turner, M.L.; Parker, A.C. Peripheral blood stem cell transplantation. Blood Rev. 1992, 6, 59–67. [Google Scholar] [CrossRef]
- Muraro, P.A.; Douek, D.C.; Packer, A.; Chung, K.; Guenaga, F.J.; Cassiani-Ingoni, R.; Campbell, C.; Memon, S.; Nagle, J.W.; Hakim, F.T.; et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J. Exp. Med. 2005, 201, 805–816. [Google Scholar] [CrossRef]
- Voltarelli, J.C.; Couri, C.E.; Stracieri, A.B.; Oliveira, M.C.; Moraes, D.A.; Pieroni, F.; Coutinho, M.; Malmegrim, K.C.; Foss-Freitas, M.C.; Simões, B.P.; et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2007, 297, 1568–1576. [Google Scholar] [CrossRef] [Green Version]
- Burt, R.K.; Traynor, A.; Statkute, L.; Barr, W.G.; Rosa, R.; Schroeder, J.; Verda, L.; Krosnjar, N.; Quigley, K.; Yaung, K.; et al. Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematosus. JAMA 2006, 295, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Klychko, E.; Thorne, T.; Misener, S.; Schultz, K.M.; Millay, M.; Ito, A.; Liu, T.; Kamide, C.; Agrawal, H.; et al. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ. Res. 2011, 109, 724–728. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, A.; Iwasaki, H.; Kusano, K.; Murayama, T.; Oyamada, A.; Silver, M.; Hulbert, C.; Gavin, M.; Hanley, A.; Ma, H.; et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 2006, 114, 2163–2169. [Google Scholar] [CrossRef] [Green Version]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Karnieli, O.; Izhar-Prato, Y.; Bulvik, S.; Efrat, S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 2007, 25, 2837–2844. [Google Scholar] [CrossRef]
- Wan, X.X.; Zhang, D.Y.; Khan, M.A.; Zheng, S.Y.; Hu, X.M.; Zhang, Q.; Yang, R.H.; Xiong, K. Stem Cell Transplantation in the Treatment of Type 1 Diabetes Mellitus: From Insulin Replacement to Beta-Cell Replacement. Front. Endocrinol. 2022, 13, 859638. [Google Scholar] [CrossRef]
- Boumaza, I.; Srinivasan, S.; Witt, W.T.; Feghali-Bostwick, C.; Dai, Y.; Garcia-Ocana, A.; Feili-Hariri, M. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J. Autoimmun. 2009, 32, 33–42. [Google Scholar] [CrossRef]
- Gao, F.; Wu, D.Q.; Hu, Y.H.; Jin, G.X.; Li, G.D.; Sun, T.W.; Li, F.J. In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Transl. Res. 2008, 151, 293–302. [Google Scholar] [CrossRef]
- Chao, K.C.; Chao, K.F.; Fu, Y.S.; Liu, S.H. Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE 2008, 3, e1451. [Google Scholar] [CrossRef] [Green Version]
- Kroon, E.; Martinson, L.A.; Kadoya, K.; Bang, A.G.; Kelly, O.G.; Eliazer, S.; Young, H.; Richardson, M.; Smart, N.G.; Cunningham, J.; et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 2008, 26, 443–452. [Google Scholar] [CrossRef]
- Rezania, A.; Bruin, J.E.; Riedel, M.J.; Mojibian, M.; Asadi, A.; Xu, J.; Gauvin, R.; Narayan, K.; Karanu, F.; O’Neil, J.J.; et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 2012, 61, 2016–2029. [Google Scholar] [CrossRef] [Green Version]
- Basile, G.; Qadir, M.M.F.; Mauvais-Jarvis, F.; Vetere, A.; Shoba, V.; Modell, A.E.; Pastori, R.L.; Russ, H.A.; Wagner, B.K.; Dominguez-Bendala, J. Emerging diabetes therapies: Bringing back the β-cells. Mol. Metab. 2022, 60, 101477. [Google Scholar] [CrossRef]
- Kondo, Y.; Toyoda, T.; Inagaki, N.; Osafune, K. iPSC technology-based regenerative therapy for diabetes. J. Diabetes Investig. 2018, 9, 234–243. [Google Scholar] [CrossRef]
- El-Badawy, A.; El-Badri, N. Clinical Efficacy of Stem Cell Therapy for Diabetes Mellitus: A Meta-Analysis. PLoS ONE 2016, 11, e0151938. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, W.; Feng, B.; Cao, H. The Clinical Efficacy and Safety of Stem Cell Therapy for Diabetes Mellitus: A Systematic Review and Meta-Analysis. Aging Dis. 2020, 11, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Pires, I.G.S.; Silva, E.S.J.A.; de Melo Bisneto, A.V.; Passos, X.S.; Carneiro, C.C. Clinical efficacy of stem-cell therapy on diabetes mellitus: A systematic review and meta-analysis. Transpl. Immunol. 2022, 75, 101740. [Google Scholar] [CrossRef]
- Couri, C.E.; Oliveira, M.C.; Stracieri, A.B.; Moraes, D.A.; Pieroni, F.; Barros, G.M.; Madeira, M.I.; Malmegrim, K.C.; Foss-Freitas, M.C.; Simões, B.P.; et al. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2009, 301, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Snarski, E.; Milczarczyk, A.; Torosian, T.; Paluszewska, M.; Urbanowska, E.; Król, M.; Boguradzki, P.; Jedynasty, K.; Franek, E.; Wiktor-Jedrzejczak, W. Independence of exogenous insulin following immunoablation and stem cell reconstitution in newly diagnosed diabetes type I. Bone Marrow Transpl. 2011, 46, 562–566. [Google Scholar] [CrossRef] [Green Version]
- Snarski, E.; Milczarczyk, A.; Hałaburda, K.; Torosian, T.; Paluszewska, M.; Urbanowska, E.; Król, M.; Boguradzki, P.; Jedynasty, K.; Franek, E.; et al. Immunoablation and autologous hematopoietic stem cell transplantation in the treatment of new-onset type 1 diabetes mellitus: Long-term observations. Bone Marrow Transpl. 2016, 51, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Shen, S.; Ouyang, J.; Hu, Y.; Hu, L.; Cui, W.; Zhang, N.; Zhuge, Y.Z.; Chen, B.; Xu, J.; et al. Autologous hematopoietic stem cell transplantation modulates immunocompetent cells and improves β-cell function in Chinese patients with new onset of type 1 diabetes. J. Clin. Endocrinol. Metab. 2012, 97, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Hu, J.; Wang, W.; Li, L.; Tang, W.; Sun, S.; Cui, W.; Ye, L.; Zhang, Y.; Hong, J.; et al. Diabetic ketoacidosis at diagnosis influences complete remission after treatment with hematopoietic stem cell transplantation in adolescents with type 1 diabetes. Diabetes Care 2012, 35, 1413–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ye, L.; Hu, J.; Tang, W.; Liu, R.; Yang, M.; Hong, J.; Wang, W.; Ning, G.; Gu, W. Acute response of peripheral blood cell to autologous hematopoietic stem cell transplantation in type 1 diabetic patient. PLoS ONE 2012, 7, e31887. [Google Scholar] [CrossRef] [Green Version]
- Cantú-Rodríguez, O.G.; Lavalle-González, F.; Herrera-Rojas, M.; Jaime-Pérez, J.C.; Hawing-Zárate, J.; Gutiérrez-Aguirre, C.H.; Mancias-Guerra, C.; González-Llano, O.; Zapata-Garrido, A.; Villarreal-Pérez, J.Z.; et al. Long-Term Insulin Independence in Type 1 Diabetes Mellitus Using a Simplified Autologous Stem Cell Transplant. J. Clin. Endocrinol. Metab. 2016, 101, 2141–2148. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Miao, H.; Zhang, J.; Hu, J.; Zhou, W.; Gu, W.; Wang, W.; Ning, G. Clinical benefits of autologous haematopoietic stem cell transplantation in type 1 diabetes patients. Diabetes Metab. 2018, 44, 341–345. [Google Scholar] [CrossRef]
- Kim, S.J.; Nian, C.; Doudet, D.J.; McIntosh, C.H. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes 2009, 58, 641–651. [Google Scholar] [CrossRef] [Green Version]
- Ludvigsson, J.; Heding, L.; Liedén, G.; Marner, B.; Lernmark, A. Plasmapheresis in the initial treatment of insulin-dependent diabetes mellitus in children. Br. Med. J. (Clin. Res. Ed.) 1983, 286, 176–178. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, H.; Nagafuji, K.; Horiuchi, T.; Mitoma, H.; Niiro, H.; Arinobu, Y.; Inoue, Y.; To, K.; Miyamoto, T.; Iwasaki, H.; et al. Analysis of immune reconstitution after autologous CD34+ stem/progenitor cell transplantation for systemic sclerosis: Predominant reconstitution of Th1 CD4+ T cells. Rheumatology 2011, 50, 944–952. [Google Scholar] [CrossRef] [Green Version]
- D’Addio, F.; Valderrama Vasquez, A.; Ben Nasr, M.; Franek, E.; Zhu, D.; Li, L.; Ning, G.; Snarski, E.; Fiorina, P. Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: A multicenter analysis. Diabetes 2014, 63, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Li, L.; Wan, B.; Yang, M.; Hong, J.; Gu, W.; Wang, W.; Ning, G. Immune response after autologous hematopoietic stem cell transplantation in type 1 diabetes mellitus. Stem Cell Res. Ther. 2017, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Mesples, A.; Majeed, N.; Zhang, Y.; Hu, X. Early immunotherapy using autologous adult stem cells reversed the effect of anti-pancreatic islets in recently diagnosed type 1 diabetes mellitus: Preliminary results. Med. Sci. Monit. 2013, 19, 852–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannopoulou, E.Z.; Puff, R.; Beyerlein, A.; von Luettichau, I.; Boerschmann, H.; Schatz, D.; Atkinson, M.; Haller, M.J.; Egger, D.; Burdach, S.; et al. Effect of a single autologous cord blood infusion on beta-cell and immune function in children with new onset type 1 diabetes: A non-randomized, controlled trial. Pediatr. Diabetes 2014, 15, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Haller, M.J.; Wasserfall, C.H.; Hulme, M.A.; Cintron, M.; Brusko, T.M.; McGrail, K.M.; Sumrall, T.M.; Wingard, J.R.; Theriaque, D.W.; Shuster, J.J.; et al. Autologous umbilical cord blood transfusion in young children with type 1 diabetes fails to preserve C-peptide. Diabetes Care 2011, 34, 2567–2569. [Google Scholar] [CrossRef] [Green Version]
- Haller, M.J.; Wasserfall, C.H.; Hulme, M.A.; Cintron, M.; Brusko, T.M.; McGrail, K.M.; Wingard, J.R.; Theriaque, D.W.; Shuster, J.J.; Ferguson, R.J.; et al. Autologous umbilical cord blood infusion followed by oral docosahexaenoic acid and vitamin D supplementation for C-peptide preservation in children with Type 1 diabetes. Biol. Blood Marrow Transpl. 2013, 19, 1126–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haller, M.J.; Wasserfall, C.H.; McGrail, K.M.; Cintron, M.; Brusko, T.M.; Wingard, J.R.; Kelly, S.S.; Shuster, J.J.; Atkinson, M.A.; Schatz, D.A. Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care 2009, 32, 2041–2046. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Shen, S.M.; Ling, Q.; Wang, B.; Li, L.R.; Zhang, W.; Qu, D.D.; Bi, Y.; Zhu, D.L. One repeated transplantation of allogeneic umbilical cord mesenchymal stromal cells in type 1 diabetes: An open parallel controlled clinical study. Stem Cell Res. Ther. 2021, 12, 340. [Google Scholar] [CrossRef]
- Cai, J.; Wu, Z.; Xu, X.; Liao, L.; Chen, J.; Huang, L.; Wu, W.; Luo, F.; Wu, C.; Pugliese, A.; et al. Umbilical Cord Mesenchymal Stromal Cell with Autologous Bone Marrow Cell Transplantation in Established Type 1 Diabetes: A Pilot Randomized Controlled Open-Label Clinical Study to Assess Safety and Impact on Insulin Secretion. Diabetes Care 2016, 39, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Yu, X.; Wang, Z.; Wang, F.; Wang, L.; Gao, H.; Chen, Y.; Zhao, W.; Jia, Z.; Yan, S.; et al. Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr. J. 2013, 60, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.M.; Kassem, D.H. Therapeutic Potential of Wharton’s Jelly Mesenchymal Stem Cells for Diabetes: Achievements and Challenges. Front. Cell Dev. Biol. 2020, 8, 16. [Google Scholar] [CrossRef]
- Maryam, G.; Ramin, H.; Mahsa, A.; Abbas-Ali, K.; Babak, A.; Hamidreza, A.; Parviz, H.; Ali Mohammad, S.; Bagher, L. The Effect of Fetal Liver-Derived Cell Suspension Allotransplantation on Patients with Diabetes: First Year of Follow-up. Acta Med. Iran. 1970, 50, 541–546. [Google Scholar]
- Maryam, G.; Farzaneh, A.; Ali, T.; Ramin, H.; Camelia, R.; Bagher, L. Insulin Independence after Fetal Liver-Derived Cell Suspension Allotransplantation in Patients with Type 1 Diabetes: A Pilot Study. Iran. J. Public Health 2015, 44, 27–35. [Google Scholar]
- Ali, T.; Ensieh, N.E.; Maryam, G.; Farideh, R.; Moham madreza, A.; Bagher, L.; Ramin, H. Application of Allotransplantation of Fetal Liver-derived Stem-Cells for Treatment of Type 1 Diabetes: A Single-arm, Phase 3 Clinical Trial. Iran. J. Public Health 2015, 44, 36–41. [Google Scholar]
- Carlsson, P.O.; Schwarcz, E.; Korsgren, O.; Le Blanc, K. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes 2015, 64, 587–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanikar, A.V.; Dave, S.D.; Thakkar, U.G.; Trivedi, H.L. Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: A novel therapy for insulin-dependent diabetes mellitus. Stem Cells Int. 2010, 2010, 582382. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, U.G.; Trivedi, H.L.; Vanikar, A.V.; Dave, S.D. Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy 2015, 17, 940–947. [Google Scholar] [CrossRef]
- Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol. 2021, 17, 150–161. [Google Scholar] [CrossRef]
- Kang, E.M.; Zickler, P.P.; Burns, S.; Langemeijer, S.M.; Brenner, S.; Phang, O.A.; Patterson, N.; Harlan, D.; Tisdale, J.F. Hematopoietic stem cell transplantation prevents diabetes in NOD mice but does not contribute to significant islet cell regeneration once disease is established. Exp. Hematol. 2005, 33, 699–705. [Google Scholar] [CrossRef]
- Dayan, C.M.; Besser, R.E.J.; Oram, R.A.; Hagopian, W.; Vatish, M.; Bendor-Samuel, O.; Snape, M.D.; Todd, J.A. Preventing type 1 diabetes in childhood. Science 2021, 373, 506–510. [Google Scholar] [CrossRef]
Study | Population | Study Design | Outcomes | Adverse Events |
---|---|---|---|---|
[31,48] | Twenty-three pts (12–35 y.o.), diagnosis of T1DM within the previous 6 weeks. Only 1 DKA patient. | Phase I/II open-label clinical trial. Immune ablation with cyclophosphamide and ATG, followed by i.v. infusion of autologous CD34+ cells (10.52 × 106 cells/kg) and GCSF. | Most pts showed a reduction in HbA1c levels and an increase in C-peptide levels after treatment. Twenty pts experienced IID (12 until the end of follow-up, up to 4 yrs). | Bilateral nosocomial pneumonia (2 pts), posttransplant oligospermia (9 pts), Graves’ disease (1 pt), transient hypergonadotropic hypogonadism (1 pt), autoimmune hypothyroidism (1 pt). |
[49,50] | Twenty-four pts (12–35 y.o.), diagnosis of T1DM within the previous 6 weeks, sustained endogenous secretion of insulin and WHO performance status ≤ 2. No history of DKA. | Phase II open-label clinical trial. Preliminary plasmapheresis, then immune ablation with cyclophosphamide and ATG, followed by i.v. infusion of autologous CD34+ cells (4.19 × 106 cells/kg) and GCSF. | General reduction in HbA1c levels and increase in C-peptide levels after treatment. Twenty pts achieved IID insulin (4 until the end of follow-up, up to 80 mo). | ATG-related skin reaction/vasculitis (4 pts), neutropenic fever (12 pts), sepsis (4 pts, out of which 1 was fatal). |
[51] | Thirteen pts (<25 y.o.) symptom insurgence within 12 months and positive for at least 1 between GADA, IA-2A, ICA, IAA. | Open-label study. Immune ablation with cyclophosphamide and ATG, followed by i.v. infusion of autologous CD34+ cells (2.05–9.60 × 106/kg) and GCSF. | Eleven pts exhibited increased levels of C-peptide and required a significantly reduced dose of insulin after AHST, 3 of which achieved and maintained IID for 7 months, more than 3, or 4 y, respectively. HbA1c levels normalized in 7/8 pts. | Mild side effects (cytotoxic drug-related nausea, vomiting, fever, alopecia), 1 case of sub-clinical hypothyroidism. |
[52] | Twenty-eight pts (14–27 y.o.), recent diagnosis of T1DM with time from symptom onset to AHST 4–26 weeks. | Phase II open-label clinical trial. Immune ablation with cyclophosphamide and ATG, followed by i.v. infusion of autologous CD34+ cells. | Fifteen pts achieved IID (7 relapsed). General decrease in HbA1c and GADA and increase in C-peptide levels. | Most patients experienced febrile neutropenia, nausea, vomiting, alopecia, bone marrow suppression, Graves’ disease (1 pt), hypothyroidism (1 pt). |
[53] | Nine pts (15–25 y.o.) diagnosed with T1DM within 6 months and GADA positivity. No DKA. | Open-label study. Immune ablation with cyclophosphamide and ATG, followed by infusion via peripheral vein of autologous CD34+ cells. | Six pts achieved IID with increase in C-peptide levels. HbA1c and GADA levels dropped in 8 pts. | Staphylococcus and streptococcus infection (4 pts), vulvovaginal candidiasis (1 pt). |
[54] | Sixteen pts (8–25 y.o.) diagnosed with T1DM within 3 months and GADA positivity. | Open-label study. Immune ablation with cyclophosphamide and ATG, followed by infusion via peripheral vein of autologous CD34+ cells (mean 11.5 × 106/kg). | Reduction in HbA1c levels and insulin dose in 13 patients, 7 of which achieved IID. General reduction in GADA titres. | Mild side effects (nausea, vomiting, fe-ver, alopecia), neutropenic fever (4 pts), haemorrhagic cystitis (1 pt). |
[55] | Forty pts (14–27 y.o.), recent diagnosis of T1DM with time from symptom onset to AHST 4–26 weeks. | Phase II, parallel-assignment, non-randomized clinical trial. Treatment group pts underwent immune ablation with cyclophosphamide and ATG, followed by i.v. infusion of autologous CD34+ cells. Control group pts received regular insulin therapy. | Increase in C-peptide levels in treatment group and decline in control group at 48 mo. Comparable reduction in HbA1c levels in both groups. Fourteen pts in treatment group experienced IID (3 until the end of follow-up, up to 48 mo). One pt in control group experienced transient insulin independence for 7 mo. | Graves’ disease (2 pts on treatment, 1 pt in control group), autoimmune thyroid disease (2 pts in control group). |
Study | Population (n) | Male Sex (n) | Age (y) | Early Treatment * (n) | DKA History (n) | BMI (kg/m2) | IID (n) | IID > 12 Months (n) |
---|---|---|---|---|---|---|---|---|
[48] | 23 | 17 | 18.4 (4.6) | 23 | 1 | 19.7 (2.2) | 22 | 15 |
[50] | 23 † | 16 | 24.8 (4.6) | 24 | 0 | 20.8 (1.6) | 22 | 17 |
[52] | 28 | 14 | 17.6 (3.8) | 21 | 11 | 18.7 (1.9) | 15 | 8 |
[54] | 16 | 9 | 12.0 (2.6) | 16 | 3 | 19.6 (2.7) | 7 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carulli, E.; Pompilio, G.; Vinci, M.C. Human Hematopoietic Stem/Progenitor Cells in Type One Diabetes Mellitus Treatment: Is There an Ideal Candidate? Cells 2023, 12, 1054. https://doi.org/10.3390/cells12071054
Carulli E, Pompilio G, Vinci MC. Human Hematopoietic Stem/Progenitor Cells in Type One Diabetes Mellitus Treatment: Is There an Ideal Candidate? Cells. 2023; 12(7):1054. https://doi.org/10.3390/cells12071054
Chicago/Turabian StyleCarulli, Ermes, Giulio Pompilio, and Maria Cristina Vinci. 2023. "Human Hematopoietic Stem/Progenitor Cells in Type One Diabetes Mellitus Treatment: Is There an Ideal Candidate?" Cells 12, no. 7: 1054. https://doi.org/10.3390/cells12071054
APA StyleCarulli, E., Pompilio, G., & Vinci, M. C. (2023). Human Hematopoietic Stem/Progenitor Cells in Type One Diabetes Mellitus Treatment: Is There an Ideal Candidate? Cells, 12(7), 1054. https://doi.org/10.3390/cells12071054