Asthma: The Use of Animal Models and Their Translational Utility
Abstract
:1. Introduction
2. Inducible Animal Models of Asthma
2.1. Mice
Strain | Allergen | Sensitization | Exposure/Challenge | Pulmonary Inflammation | References |
---|---|---|---|---|---|
BALB/c | OVA | OVA (IP) on 7 alternate days | OVA aerosol for 8 consecutive days | Acute | [52,53] |
BALB/c | OVA | OVA (IP) on 7 alternate days | OVA (IT) on day 42 for 3 days, each 3 days apart | Acute | [54] |
BALB/c | OVA | OVA + AlOH3 (IP) on day 0 and OVA (IP) on day 10 | OVA aerosol on days 17 and 24 | Acute | [55] |
BALB/c | OVA | OVA + AlOH3 (IP) on days 0 and 5 | 2 × OVA inhalations, each 4 h apart on day 17 | Acute | [56] |
BALB/c | OVA | OVA + alum (IP) on days 0 and 14 | OVA (IN) on days 14, 25, 26, and 27 | Acute | [57] |
BALB/c | OVA | OVA + AlOH3 (IP) on days 0 and 14 | OVA aerosol on days 28–30 | Acute | [58,59] |
BALB/c | OVA | OVA/alum (IP) on days 0 and 12 | OVA aerosol on days 18–23 | Acute | [60,61,62] |
BALB/c | OVA | OVA + alum (IP) on days 0 and 14 | OVA aerosol on days 28–30 and 72 days after last challenge | Acute | [63] |
BALB/c | OVA + LPS | OVA-specific Th1 (IV) | Day 1 OVA (IN) daily for 4 days, last treatment day LPS (IN) | Acute | [49] |
BALB/c | OVA | OVA (IT) on day −1, day 0 Th17 retro-orbital | Day 1–3 daily OVA (IT) | Acute | [50] |
C57BL/6 | HDM | Der p 1 + AlOH3 (IP) on day 0 | HDM aerosol on day 14 for 7 consecutive days | Acute | [64] |
C57BL/6 | OVA + LPS | OVA + LPS (OP) on days 0 and 7 | OVA (OP) on days 14–16 | Acute | [65] |
A/J | Bla g 2 and Der f 1 | Ova + AlOH3 (IP) on days 0 and 7 | Allergen oro-tracheal on day 14 | Acute | [66] |
C57BL/6 | OVA | OVA-DCs (IT) on day 0 | OVA aerosol on day 14–20 | Acute | [67] |
CB.17 SCID | Dpt | Human PBMCs (IP) | Dpt aerosols 1×/day for 4 consecutive days starting day 14 | Acute | [46] |
NOD/SCID | HDM | Human PBMCs (IP) | Dpt (IT) on days 1, 3, 7 | Acute | [47] |
BALB/c | OVA | Ova + AlOH3 (IP) on days 0 and 5 | OVA aerosol 3 days/week, starting day 17, for 6 weeks | Chronic | [56] |
BALB/c | OVA | OVA + alum (IP) on days 7 and 21 | OVA exposure 3 days/week, for up to 8 weeks | Chronic | [68] |
BALB/c | OVA | OVA + alum (IP) on days 0 and 14 | OVA (IN) on days 14, 27, 28, 47, 61, and 73–75 | Chronic | [69] |
BALB/c | OVA | OVA + aluminum potassium sulphate (IP) on days 1 and 11 | OVA (IN) on days 11, 19, 20, 33, 34, 47, 48, 61, 62, 75, 76, 89, 90 | Chronic | [70] |
BALB/c | OVA | OVA + alum (IP) on days 0 and 12 | OVA aerosol on days 18–23 and then 3 days/week for up to 8 weeks starting on day 26 | Chronic | [62] |
BALB/c | OVA | OVA + alum (SC) on days 0, 7, 14, 21 | OVA (IN) on days 27, 29, 31, and then 2×/week for 3 months | Chronic | [71] |
BALB/c | HDM | NA | HDM (IN) 5 days/week for up to 7 weeks | Chronic | [27] |
BALB/c | HDM | NA | HDM (IN) 5 days/week for up to 5 weeks | Chronic | [28] |
2.2. Guinea Pigs
2.3. Rabbits
2.4. Sheep
2.5. Rats
2.6. Dogs
2.7. Nonhuman Primates
3. Naturally Occurring Animal Models of Asthma
3.1. Cats
3.2. Horses
4. Approach to Asthma Research
5. Conclusions
Animal | Stimuli | Predominant Cell Type, Immunopathology | Characteristics Shared with Human Asthma | Strengths | Limitations |
---|---|---|---|---|---|
Inducible Models | |||||
Mouse [17,18,19,37,275] | OVA +/− LPS, HDM, Cockroach, Alternaria alternata antigen, pollen | Eosinophils, Neutrophils Th2-high and Th2-low asthma models are available, depending on sensitization/challenge conditions | Bronchoconstriction Airway hyperresponsiveness Goblet cell hyperplasia/↑ Mucus production Airway smooth muscle hypertrophy Subepithelial fibrosis | Low cost Transgenic or gene-knockout strains Short gestation length Wide availability of mouse-specific reagents and assays | Lack of ability to model chronicity due to tolerance Limited/indirect measures of pulmonary function, generally requires anesthesia |
Guinea Pig [85,276] | OVA, HDM | Eosinophils, Neutrophils Th2-high asthma, IgE-mediated | Bronchoconstriction, Airway hyperresponsiveness, Goblet cell hyperplasia/↑ Mucus production Subepithelial fibrosis | Low cost | Neutrophils are the primary phagocytes within alveoli (vs. alveolar macrophages) Lack of ability to model chronicity due to tolerance |
Rabbit [122,123,277,278,279] | OVA, Alternaria tenuis antigen | Eosinophils Th2-high asthma, IgE-mediated | Bronchoconstriction, Airway hyperresponsiveness | Low cost | Sensitization can occur within 24 h of birth to optimize early and late airway responses Rabbits have heterophils instead of neutrophils |
Sheep [140,143,146,147,280,281,282,283,284] | HDM, Ascaris suum antigen | Eosinophils Th2-high asthma, IgE-mediated | Bronchoconstriction Airway hyperresponsiveness ↑ airway collagen deposition ↑ bronchial smooth muscle thickness Goblet cell hyperplasia/↑ Mucus production | Similar placental physiology to humans Body size and anatomy allow pulmonary function assessment in conscious animals and large BAL fluid volume/cell number Lifespan is amenable to modeling chronic asthma | Cost Limited species-specific assays and antibodies |
Rat [152,153,154] | OVA, HDM | Eosinophils Th2-high asthma, IgE-mediated | Bronchoconstriction, Airway hyperresponsiveness, Goblet cell hyperplasia/↑ Mucus production | Low cost Transgenic or gene-knockout strains Short gestation length Availability of rat-specific reagents and assays | Weak bronchoconstriction Require high levels of antigen exposure Limited/indirect measures of pulmonary function, generally requires anesthesia |
Dog [285] | Ascaris suum antigen, Ragweed antigen, Ozone | Neutrophils, Eosinophils IgE-mediated | Airway hyperresponsiveness | Relative low cost among other large animal models | Limited species-specific assays and antibodies Public concerns with laboratory testing on companion animals |
Nonhuman Primates [286,287,288] | Ozone, Ascaris suum antigen, HDM, Pollen, Tobacco smoke | Eosinophil Th2-high asthma, IgE-mediated | Bronchoconstriction Airway hyperresponsiveness ↑ Mucus production Subepithelial fibrosis | Upright, bipedal stance mirrors human posture to a greater extent than other quadruped species Greater overlap in airway transcriptome between rhesus macaques and humans Similarities in immune system compared to humans, many anti-human antibodies and reagents are cross-reactive with monkey antigens | Cost, Ethics of research involving nonhuman primates |
Naturally Occurring Models | |||||
Cat [205] | Dust/dust mites, Smoke (tobacco or fireplace), Pollen, Household chemicals | Eosinophils Th2-high asthma, IgE-mediated | Bronchoconstriction Airway remodeling | Indoor client-owned cats have similar environmental exposures to their owners Feline patients (no per diem fee) represent a recruitable population for testing novel therapeutics | Limited species-specific assays and antibodies |
Horse [289,290] | Organic dust, Lipopolysaccharide, Fungal spores (e.g., Aspergillus sp.), Pollen | Neutrophils, Mast cells, Eosinophils, Mixed Th2-low and Th2-high asthma | Bronchoconstriction Airway hyperresponsiveness Airway remodeling Mucus production Bronchial angiogenesis | Spontaneous disease with similar triggers Pulmonary function testing can be performed at rest and during exercise Repeated collection of airway samples (large volume/cell recovery) and flexible bronchoscopy and long lifespan enable extended longitudinal studies (years ) Equine patients (no per diem fee) represent a recruitable population for testing novel therapeutics | Cost Limited species-specific assays and antibodies |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2022. Available online: www.ginasthma.org (accessed on 22 September 2022).
- Haley, K.J.; Sunday, M.E.; Wiggs, B.R.; Kozakewich, H.P.; Reilly, J.J.; Mentzer, S.J.; Sugarbaker, D.J.; Doerschuk, C.M.; Drazen, J.M. Inflammatory cell distribution within and along asthmatic airways. Am. J. Respir. Crit. Care Med. 1998, 158, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.M.; Heinly, T.L.; Yates, S.W.; Lieberman, P.L. Asthma: The irreversible airways disease. J. Investig. Allergol. Clin. Immunol. 1997, 7, 566–571. [Google Scholar] [PubMed]
- Paré, P.D.; Roberts, C.R.; Bai, T.R.; Wiggs, B.J. The functional consequences of airway remodeling in asthma. Monaldi Arch. Chest Dis. 1997, 52, 589–596. [Google Scholar] [PubMed]
- Vignola, A.M.; Chanez, P.; Campbell, A.M.; Souques, F.; Lebel, B.; Enander, I.; Bousquet, J. Airway inflammation in mild intermittent and in persistent asthma. Am. J. Respir. Crit. Care Med. 1998, 157, 403–409. [Google Scholar] [CrossRef] [PubMed]
- McDowell, P.J.; Heaney, L.G. Different endotypes and phenotypes drive the heterogeneity in severe asthma. Allergy 2020, 75, 302–310. [Google Scholar] [CrossRef]
- Licari, A.; Castagnoli, R.; Brambilla, I.; Marseglia, A.; Tosca, M.A.; Marseglia, G.L.; Ciprandi, G. Asthma Endotyping and Biomarkers in Childhood Asthma. Pediatr. Allergy Immunol. Pulmonol. 2018, 31, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Schoettler, N.; Strek, M.E. Recent Advances in Severe Asthma: From Phenotypes to Personalized Medicine. Chest 2020, 157, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Papapostolou, N.; Makris, M. Allergic Asthma in the Era of Personalized Medicine. J. Pers. Med. 2022, 12, 1162. [Google Scholar] [CrossRef]
- Bates, J.H.; Rincon, M.; Irvin, C.G. Animal models of asthma. Am. J. Physiol. Cell. Mol. Physiol. 2009, 297, L401–L410. [Google Scholar] [CrossRef]
- Shin, Y.S.; Takeda, K.; Gelfand, E.W. Understanding asthma using animal models. Allergy Asthma Immunol. Res. 2009, 1, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Chapman, D.G.; Tully, J.E.; Nolin, J.D.; Janssen-Heininger, Y.M.; Irvin, C.G. Animal models of allergic airways disease: Where are we and where to next? J. Cell. Biochem. 2014, 115, 2055–2064. [Google Scholar] [CrossRef] [PubMed]
- Mullane, K.; Williams, M. Animal models of asthma: Reprise or reboot? Biochem. Pharm. 2014, 87, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Aun, M.V.; Bonamichi-Santos, R.; Arantes-Costa, F.M.; Kalil, J.; Giavina-Bianchi, P. Animal models of asthma: Utility and limitations. J. Asthma Allergy 2017, 10, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Kung, T.T.; Jones, H.; Adams, G.K., 3rd; Umland, S.P.; Kreutner, W.; Egan, R.W.; Chapman, R.W.; Watnick, A.S. Characterization of a murine model of allergic pulmonary inflammation. Int. Arch. Allergy Immunol. 1994, 105, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Brusselle, G.G.; Kips, J.C.; Tavernier, J.H.; van der Heyden, J.G.; Cuvelier, C.A.; Pauwels, R.A.; Bluethmann, H. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin. Exp. Allergy 1994, 24, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Gavett, S.H.; Chen, X.; Finkelman, F.; Wills-Karp, M. Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am. J. Respir. Cell Mol. Biol. 1994, 10, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Lukacs, N.W.; Strieter, R.M.; Chensue, S.W.; Kunkel, S.L. Interleukin-4-dependent pulmonary eosinophil infiltration in a murine model of asthma. Am. J. Respir. Cell Mol. Biol. 1994, 10, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, M.; Alessandrini, F.; Gilles, S.; Frank, U.; Oeder, S.; Hauser, M.; Ring, J.; Ferreira, F.; Ernst, D.; Winkler, J.B.; et al. Pollen-derived adenosine is a necessary cofactor for ragweed allergy. Allergy 2015, 70, 944–954. [Google Scholar] [CrossRef]
- Yee, M.C.; Nichols, H.L.; Polley, D.; Saifeddine, M.; Pal, K.; Lee, K.; Wilson, E.H.; Daines, M.O.; Hollenberg, M.D.; Boitano, S.; et al. Protease-activated receptor-2 signaling through β-arrestin-2 mediates Alternaria alkaline serine protease-induced airway inflammation. Am. J. Physiol. Cell. Mol. Physiol. 2018, 315, L1042–L1057. [Google Scholar] [CrossRef]
- Yasuda, Y.; Nagano, T.; Kobayashi, K.; Nishimura, Y. Group 2 Innate Lymphoid Cells and the House Dust Mite-Induced Asthma Mouse Model. Cells 2020, 9, 1178. [Google Scholar] [CrossRef] [PubMed]
- Arizmendi, N.G.; Abel, M.; Puttagunta, L.; Asaduzzaman, M.; Davidson, C.; Karimi, K.; Forsythe, P.; Vliagoftis, H. Mucosal exposure to cockroach extract induces allergic sensitization and allergic airway inflammation. Allergy Asthma Clin. Immunol. 2011, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Tjota, M.Y.; Hrusch, C.L.; Blaine, K.M.; Williams, J.W.; Barrett, N.A.; Sperling, A.I. Signaling through FcRγ-associated receptors on dendritic cells drives IL-33-dependent TH2-type responses. J. Allergy Clin. Immunol. 2014, 134, 706–713.e708. [Google Scholar] [CrossRef] [PubMed]
- Oeder, S.; Alessandrini, F.; Wirz, O.F.; Braun, A.; Wimmer, M.; Frank, U.; Hauser, M.; Durner, J.; Ferreira, F.; Ernst, D.; et al. Pollen-derived nonallergenic substances enhance Th2-induced IgE production in B cells. Allergy 2015, 70, 1450–1460. [Google Scholar] [CrossRef]
- McAllen, M.K.; Assem, E.S.; Maunsell, K. House-dust mite asthma. Results of challenge tests on five criteria with Dermatophagoides pteronyssinus. Br. Med. J. 1970, 2, 501–504. [Google Scholar] [CrossRef]
- Johnson, J.R.; Wiley, R.E.; Fattouh, R.; Swirski, F.K.; Gajewska, B.U.; Coyle, A.J.; Gutierrez-Ramos, J.C.; Ellis, R.; Inman, M.D.; Jordana, M. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am. J. Respir. Crit. Care Med. 2004, 169, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, K.; Hincks, J.S.; Walsh, R.; Wetterstrand, E.M.; Fidock, M.D.; Sreckovic, S.; Lamb, D.J.; Douglas, G.J.; Yeadon, M.; Perros-Huguet, C.; et al. Anti-inflammatory modulation of chronic airway inflammation in the murine house dust mite model. Pulm. Pharmacol. Ther. 2008, 21, 637–647. [Google Scholar] [CrossRef]
- Nials, A.T.; Uddin, S. Mouse models of allergic asthma: Acute and chronic allergen challenge. Dis. Model. Mech. 2008, 1, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Barends, M.; de Rond, L.G.; Dormans, J.; van Oosten, M.; Boelen, A.; Neijens, H.J.; Osterhaus, A.D.; Kimman, T.G. Respiratory syncytial virus, pneumonia virus of mice, and influenza A virus differently affect respiratory allergy in mice. Clin. Exp. Allergy 2004, 34, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Ravanetti, L.; Dijkhuis, A.; Sabogal Pineros, Y.S.; Bal, S.M.; Dierdorp, B.S.; Dekker, T.; Logiantara, A.; Adcock, I.M.; Rao, N.L.; Boon, L.; et al. An early innate response underlies severe influenza-induced exacerbations of asthma in a novel steroid-insensitive and anti-IL-5-responsive mouse model. Allergy 2017, 72, 737–753. [Google Scholar] [CrossRef] [PubMed]
- Doorley, L.A.; LeMessurier, K.S.; Iverson, A.R.; Palipane, M.; Samarasinghe, A.E. Humoral immune responses during asthma and influenza co-morbidity in mice. Immunobiology 2017, 222, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Mahmutovic Persson, I.; Menzel, M.; Ramu, S.; Cerps, S.; Akbarshahi, H.; Uller, L. IL-1β mediates lung neutrophilia and IL-33 expression in a mouse model of viral-induced asthma exacerbation. Respir. Res. 2018, 19, 16. [Google Scholar] [CrossRef] [PubMed]
- Kantor, D.B.; Stenquist, N.; McDonald, M.C.; Schultz, B.J.; Hauptman, M.; Smallwood, C.D.; Nelson, K.A.; Perzanowski, M.S.; Matsui, E.C.; Phipatanakul, W.; et al. Rhinovirus and serum IgE are associated with acute asthma exacerbation severity in children. J. Allergy Clin. Immunol. 2016, 138, 1467–1471.e1469. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, X.; Hu, C.; Qin, L.; He, R.; Luo, L.; Tang, W.; Feng, J. Respiratory Syncytial Virus Exacerbates OVA-mediated asthma in mice through C5a-C5aR regulating CD4(+)T cells Immune Responses. Sci. Rep. 2017, 7, 15207. [Google Scholar] [CrossRef] [PubMed]
- Akkoc, T.; O′Mahony, L.; Ferstl, R.; Akdis, C.; Akkoc, T. Mouse Models of Asthma: Characteristics, Limitations and Future Perspectives on Clinical Translation. Adv. Exp. Med. Biol. 2022, 1376, 119–133. [Google Scholar]
- Alessandrini, F.; Musiol, S.; Schneider, E.; Blanco-Pérez, F.; Albrecht, M. Mimicking Antigen-Driven Asthma in Rodent Models-How Close Can We Get? Front. Immunol. 2020, 11, 575936. [Google Scholar] [CrossRef]
- Maltby, S.; Tay, H.L.; Yang, M.; Foster, P.S. Mouse models of severe asthma: Understanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. Respirology 2017, 22, 874–885. [Google Scholar] [CrossRef]
- Persson, C.G.; Erjefält, J.S.; Korsgren, M.; Sundler, F. The mouse trap. Trends Pharmacol. Sci. 1997, 18, 465–467. [Google Scholar] [CrossRef]
- Kumar, R.K.; Foster, P.S. Are mouse models of asthma appropriate for investigating the pathogenesis of airway hyper-responsiveness? Front. Physiol. 2012, 3, 312. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Jeffery, P.K.; Busse, W.W.; Johnson, M.; Vignola, A.M. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med. 2000, 161, 1720–1745. [Google Scholar] [CrossRef] [PubMed]
- Birrell, M.A.; Battram, C.H.; Woodman, P.; McCluskie, K.; Belvisi, M.G. Dissociation by steroids of eosinophilic inflammation from airway hyperresponsiveness in murine airways. Respir. Res. 2003, 4, 3. [Google Scholar] [CrossRef]
- McMillan, S.J.; Lloyd, C.M. Prolonged allergen challenge in mice leads to persistent airway remodelling. Clin. Exp. Allergy 2004, 34, 497–507. [Google Scholar] [CrossRef]
- Herz, U.; Renz, H.; Wiedermann, U. Animal models of type I allergy using recombinant allergens. Methods 2004, 32, 271–280. [Google Scholar] [CrossRef]
- Van Hove, C.L.; Maes, T.; Cataldo, D.D.; Guéders, M.M.; Palmans, E.; Joos, G.F.; Tournoy, K.G. Comparison of acute inflammatory and chronic structural asthma-like responses between C57BL/6 and BALB/c mice. Int. Arch. Allergy Immunol. 2009, 149, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Duez, C.; Tsicopoulos, A.; Janin, A.; Tillie-Leblond, I.; Thyphronitis, G.; Marquillies, P.; Hamid, Q.; Wallaert, B.; Tonnel, A.B.; Pestel, J. An in vivo model of allergic inflammation: Pulmonary human cell infiltrate in allergen-challenged allergic Hu-SCID mice. Eur. J. Immunol. 1996, 26, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Perros, F.; Hoogsteden, H.C.; Coyle, A.J.; Lambrecht, B.N.; Hammad, H. Blockade of CCR4 in a humanized model of asthma reveals a critical role for DC-derived CCL17 and CCL22 in attracting Th2 cells and inducing airway inflammation. Allergy 2009, 64, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Shultz, L.D.; Ishikawa, F.; Greiner, D.L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 2007, 7, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Kumar, R.K.; Foster, P.S. Pathogenesis of steroid-resistant airway hyperresponsiveness: Interaction between IFN-gamma and TLR4/MyD88 pathways. J. Immunol. 2009, 182, 5107–5115. [Google Scholar] [CrossRef] [PubMed]
- McKinley, L.; Alcorn, J.F.; Peterson, A.; Dupont, R.B.; Kapadia, S.; Logar, A.; Henry, A.; Irvin, C.G.; Piganelli, J.D.; Ray, A.; et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol. 2008, 181, 4089–4097. [Google Scholar] [CrossRef]
- Epstein, M.M. Do mouse models of allergic asthma mimic clinical disease? Int. Arch. Allergy Immunol. 2004, 133, 84–100. [Google Scholar] [CrossRef]
- Hessel, E.M.; Zwart, A.; Oostveen, E.; Van Oosterhout, A.J.; Blyth, D.I.; Nijkamp, F.P. Repeated measurement of respiratory function and bronchoconstriction in unanesthetized mice. J. Appl. Physiol. 1985 1995, 79, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Janssen, E.M.; van Oosterhout, A.J.; Nijkamp, F.P.; van Eden, W.; Wauben, M.H. The efficacy of immunotherapy in an experimental murine model of allergic asthma is related to the strength and site of T cell activation during immunotherapy. J. Immunol. 2000, 165, 7207–7214. [Google Scholar] [CrossRef] [PubMed]
- Blyth, D.I.; Wharton, T.F.; Pedrick, M.S.; Savage, T.J.; Sanjar, S. Airway subepithelial fibrosis in a murine model of atopic asthma: Suppression by dexamethasone or anti-interleukin-5 antibody. Am. J. Respir. Cell Mol. Biol. 2000, 23, 241–246. [Google Scholar] [CrossRef]
- Choi, I.W.; Sun, K.; Kim, Y.S.; Ko, H.M.; Im, S.Y.; Kim, J.H.; You, H.J.; Lee, Y.C.; Lee, J.H.; Park, Y.M.; et al. TNF-alpha induces the late-phase airway hyperresponsiveness and airway inflammation through cytosolic phospholipase A(2) activation. J. Allergy Clin. Immunol. 2005, 116, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Rodriguez, S.; Ford, W.R.; Broadley, K.J.; Kidd, E.J. Establishing the phenotype in novel acute and chronic murine models of allergic asthma. Int. Immunopharmacol. 2008, 8, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Henderson, W.R., Jr.; Lewis, D.B.; Albert, R.K.; Zhang, Y.; Lamm, W.J.; Chiang, G.K.; Jones, F.; Eriksen, P.; Tien, Y.T.; Jonas, M.; et al. The importance of leukotrienes in airway inflammation in a mouse model of asthma. J. Exp. Med. 1996, 184, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Hamelmann, E.; Cieslewicz, G.; Schwarze, J.; Ishizuka, T.; Joetham, A.; Heusser, C.; Gelfand, E.W. Anti-interleukin 5 but not anti-IgE prevents airway inflammation and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 1999, 160, 934–941. [Google Scholar] [CrossRef]
- Tomkinson, A.; Duez, C.; Cieslewicz, G.; Pratt, J.C.; Joetham, A.; Shanafelt, M.C.; Gundel, R.; Gelfand, E.W. A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J. Immunol. 2001, 166, 5792–5800. [Google Scholar] [CrossRef]
- Lloyd, C.M.; Gonzalo, J.A.; Nguyen, T.; Delaney, T.; Tian, J.; Oettgen, H.; Coyle, A.J.; Gutierrez-Ramos, J.C. Resolution of bronchial hyperresponsiveness and pulmonary inflammation is associated with IL-3 and tissue leukocyte apoptosis. J. Immunol. 2001, 166, 2033–2040. [Google Scholar] [CrossRef]
- McMillan, S.J.; Bishop, B.; Townsend, M.J.; McKenzie, A.N.; Lloyd, C.M. The absence of interleukin 9 does not affect the development of allergen-induced pulmonary inflammation nor airway hyperreactivity. J. Exp. Med. 2002, 195, 51–57. [Google Scholar] [CrossRef]
- McMillan, S.J.; Xanthou, G.; Lloyd, C.M. Therapeutic administration of Budesonide ameliorates allergen-induced airway remodelling. Clin. Exp. Allergy 2005, 35, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Kanehiro, A.; Ikemura, T.; Mäkelä, M.J.; Lahn, M.; Joetham, A.; Dakhama, A.; Gelfand, E.W. Inhibition of phosphodiesterase 4 attenuates airway hyperresponsiveness and airway inflammation in a model of secondary allergen challenge. Am. J. Respir. Crit. Care Med. 2001, 163, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Tournoy, K.G.; Kips, J.C.; Schou, C.; Pauwels, R.A. Airway eosinophilia is not a requirement for allergen-induced airway hyperresponsiveness. Clin. Exp. Allergy 2000, 30, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Immormino, R.M.; Jania, C.M.; Tilley, S.L.; Moran, T.P. Neuropilin-2 regulates airway inflammation in a neutrophilic asthma model. Immun. Inflamm. Dis. 2022, 10, e575. [Google Scholar] [CrossRef] [PubMed]
- Sarpong, S.B.; Zhang, L.Y.; Kleeberger, S.R. A novel mouse model of experimental asthma. Int. Arch. Allergy Immunol. 2003, 132, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, B.N.; De Veerman, M.; Coyle, A.J.; Gutierrez-Ramos, J.C.; Thielemans, K.; Pauwels, R.A. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Investig. 2000, 106, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Temelkovski, J.; Hogan, S.P.; Shepherd, D.P.; Foster, P.S.; Kumar, R.K. An improved murine model of asthma: Selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax 1998, 53, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Henderson, W.R., Jr.; Tang, L.O.; Chu, S.J.; Tsao, S.M.; Chiang, G.K.; Jones, F.; Jonas, M.; Pae, C.; Wang, H.; Chi, E.Y. A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am. J. Respir. Crit. Care Med. 2002, 165, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Leigh, R.; Ellis, R.; Wattie, J.; Southam, D.S.; De Hoogh, M.; Gauldie, J.; O′Byrne, P.M.; Inman, M.D. Dysfunction and remodeling of the mouse airway persist after resolution of acute allergen-induced airway inflammation. Am. J. Respir. Cell Mol. Biol. 2002, 27, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, J.S.; Lee, J.M.; Kwon, S.S.; Kim, K.H.; Moon, H.S.; Song, J.S.; Park, S.H.; Kim, Y.K. Inhaled corticosteroid prevents the thickening of airway smooth muscle in murine model of chronic asthma. Pulm. Pharmacol. Ther. 2008, 21, 14–19. [Google Scholar] [CrossRef]
- McGovern, T.K.; Robichaud, A.; Fereydoonzad, L.; Schuessler, T.F.; Martin, J.G. Evaluation of respiratory system mechanics in mice using the forced oscillation technique. J. Vis. Exp. 2013, 75, e50172. [Google Scholar]
- Bonnardel, E.; Prevel, R.; Campagnac, M.; Dubreuil, M.; Marthan, R.; Berger, P.; Dupin, I. Determination of reliable lung function parameters in intubated mice. Respir. Res. 2019, 20, 211. [Google Scholar] [CrossRef] [PubMed]
- De Vleeschauwer, S.I.; Rinaldi, M.; De Vooght, V.; Vanoirbeek, J.A.; Vanaudenaerde, B.M.; Verbeken, E.K.; Decramer, M.; Gayan-Ramirez, G.N.; Verleden, G.M.; Janssens, W. Repeated invasive lung function measurements in intubated mice: An approach for longitudinal lung research. Lab. Anim. 2011, 45, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Glaab, T.; Braun, A. Noninvasive Measurement of Pulmonary Function in Experimental Mouse Models of Airway Disease. Lung 2021, 199, 255–261. [Google Scholar] [CrossRef]
- Hyde, D.M.; Miller, L.A.; Schelegle, E.S.; Fanucchi, M.V.; Van Winkle, L.S.; Tyler, N.K.; Avdalovic, M.V.; Evans, M.J.; Kajekar, R.; Buckpitt, A.R.; et al. Asthma: A comparison of animal models using stereological methods. Eur. Respir. Rev. 2006, 15, 122–135. [Google Scholar] [CrossRef]
- Malm-Erjefält, M.; Persson, C.G.; Erjefält, J.S. Degranulation status of airway tissue eosinophils in mouse models of allergic airway inflammation. Am. J. Respir. Cell Mol. Biol. 2001, 24, 352–359. [Google Scholar] [CrossRef] [PubMed]
- De Bie, J.J.; Henricks, P.A.; Cruikshank, W.W.; Hofman, G.; Jonker, E.H.; Nijkamp, F.P.; Van Oosterhout, A.J. Modulation of airway hyperresponsiveness and eosinophilia by selective histamine and 5-HT receptor antagonists in a mouse model of allergic asthma. Br. J. Pharmacol. 1998, 124, 857–864. [Google Scholar] [CrossRef]
- Auer, J.; Lewis, P.A. The Physiology of the Immediate Reaction of Anaphylaxis in the Guinea-Pig. J. Exp. Med. 1910, 12, 151–175. [Google Scholar] [CrossRef]
- Meurs, H.; Santing, R.E.; Remie, R.; van der Mark, T.W.; Westerhof, F.J.; Zuidhof, A.B.; Bos, I.S.; Zaagsma, J. A guinea pig model of acute and chronic asthma using permanently instrumented and unrestrained animals. Nat. Protoc. 2006, 1, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Iijima, H.; Ishii, M.; Yamauchi, K.; Chao, C.L.; Kimura, K.; Shimura, S.; Shindoh, Y.; Inoue, H.; Mue, S.; Takishima, T. Bronchoalveolar lavage and histologic characterization of late asthmatic response in guinea pigs. Am. Rev. Respir. Dis. 1987, 136, 922–929. [Google Scholar] [CrossRef]
- Hutson, P.A.; Church, M.K.; Clay, T.P.; Miller, P.; Holgate, S.T. Early and late-phase bronchoconstriction after allergen challenge of nonanesthetized guinea pigs. I. The association of disordered airway physiology to leukocyte infiltration. Am. Rev. Respir. Dis. 1988, 137, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Santing, R.E.; Olymulder, C.G.; Zaagsma, J.; Meurs, H. Relationships among allergen-induced early and late phase airway obstructions, bronchial hyperreactivity, and inflammation in conscious, unrestrained guinea pigs. J. Allergy Clin. Immunol. 1994, 93, 1021–1030. [Google Scholar] [CrossRef]
- Sanjar, S.; Aoki, S.; Kristersson, A.; Smith, D.; Morley, J. Antigen challenge induces pulmonary airway eosinophil accumulation and airway hyperreactivity in sensitized guinea-pigs: The effect of anti-asthma drugs. Br. J. Pharmacol. 1990, 99, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Boichot, E.; Lagente, V.; Carre, C.; Waltmann, P.; Mencia-Huerta, J.M.; Braquet, P. Bronchial hyperresponsiveness and cellular infiltration in the lung of guinea-pigs sensitized and challenged by aerosol. Clin. Exp. Allergy 1991, 21, 67–76. [Google Scholar] [CrossRef]
- Andersson, P. Antigen-induced bronchial anaphylaxis in actively sensitized guinea-pigs. Pattern of response in relation to immunization regimen. Allergy 1980, 35, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.; Broadley, K.J. Optimisation of the sensitisation conditions for an ovalbumin challenge model of asthma. Int. Immunopharmacol. 2007, 7, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.L.; Nials, A.T.; Knowles, R.G.; Kidd, E.J.; Ford, W.R.; Broadley, K.J. A comparison of antiasthma drugs between acute and chronic ovalbumin-challenged guinea-pig models of asthma. Pulm. Pharmacol. Ther. 2012, 25, 453–464. [Google Scholar] [CrossRef]
- Lowe, A.P.P.; Thomas, R.S.; Nials, A.T.; Kidd, E.J.; Broadley, K.J.; Ford, W.R. Route of Administration Affects Corticosteroid Sensitivity of a Combined Ovalbumin and Lipopolysaccharide Model of Asthma Exacerbation in Guinea Pigs. J. Pharmacol. Exp. Ther. 2017, 362, 327–337. [Google Scholar] [CrossRef]
- Nabe, T.; Shinoda, N.; Yamada, M.; Sekioka, T.; Saeki, Y.; Yamamura, H.; Kohno, S. Repeated antigen inhalation-induced reproducible early and late asthma in guinea pigs. Jpn. J. Pharmacol. 1997, 75, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Kim, Y.K.; Lee, S.R.; Cho, S.H.; Min, K.U.; Kim, Y.Y. Repeated exposure to low levels of sulfur dioxide (SO2) enhances the development of ovalbumin-induced asthmatic reactions in guinea pigs. Ann. Allergy Asthma Immunol. 2001, 86, 62–67. [Google Scholar] [CrossRef]
- Hori, M.; Iwama, T.; Asakura, Y.; Kawanishi, M.; Kamon, J.; Hoshino, A.; Takahashi, S.; Takahashi, K.; Nakaike, S.; Tsuruzoe, N. NT-702 (parogrelil hydrochloride, NM-702), a novel and potent phosphodiesterase 3 inhibitor, suppress the asthmatic response in guinea pigs, with both bronchodilating and anti-inflammatory effects. Eur. J. Pharmacol. 2009, 618, 63–69. [Google Scholar] [CrossRef]
- Ramos-Ramírez, P.; Noreby, M.; Liu, J.; Ji, J.; Abdillahi, S.M.; Olsson, H.; Dahlén, S.E.; Nilsson, G.; Adner, M. A new house dust mite-driven and mast cell-activated model of asthma in the guinea pig. Clin. Exp. Allergy 2020, 50, 1184–1195. [Google Scholar] [CrossRef]
- Adams, G.K., 3rd; Lichtenstein, L.M. Antagonism of antigen-induced contraction of guinea pig and human airways. Nature 1977, 270, 255–257. [Google Scholar] [CrossRef]
- Björck, T.; Dahlén, S.E. Leukotrienes and histamine mediate IgE-dependent contractions of human bronchi: Pharmacological evidence obtained with tissues from asthmatic and non-asthmatic subjects. Pulm. Pharmacol. 1993, 6, 87–96. [Google Scholar] [CrossRef]
- Ellis, J.L.; Hubbard, W.C.; Meeker, S.; Undem, B.J. Ragweed antigen E and anti-IgE in human central versus peripheral isolated bronchi. Am. J. Respir. Crit. Care Med. 1994, 150, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Roquet, A.; Dahlén, B.; Kumlin, M.; Ihre, E.; Anstrén, G.; Binks, S.; Dahlén, S.E. Combined antagonism of leukotrienes and histamine produces predominant inhibition of allergen-induced early and late phase airway obstruction in asthmatics. Am. J. Respir. Crit. Care Med. 1997, 155, 1856–1863. [Google Scholar] [CrossRef] [PubMed]
- Lamm, W.J.; Lai, Y.L.; Hildebrandt, J. Histamine and leukotrienes mediate pulmonary hypersensitivity to antigen in guinea pigs. J. Appl. Phys. Respir Environ Exerc Phys. 1984, 56, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Ressmeyer, A.R.; Larsson, A.K.; Vollmer, E.; Dahlèn, S.E.; Uhlig, S.; Martin, C. Characterisation of guinea pig precision-cut lung slices: Comparison with human tissues. Eur. Respir. J. 2006, 28, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, Q.; Canning, B.J. Evidence for autocrine and paracrine regulation of allergen-induced mast cell mediator release in the guinea pig airways. Eur. J. Pharmacol. 2018, 822, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Hay, D.W.; Muccitelli, R.M.; Tucker, S.S.; Vickery-Clark, L.M.; Wilson, K.A.; Gleason, J.G.; Hall, R.F.; Wasserman, M.A.; Torphy, T.J. Pharmacologic profile of SK&F 104353: A novel, potent and selective peptidoleukotriene receptor antagonist in guinea pig and human airways. J. Pharmacol. Exp. Ther. 1987, 243, 474–481. [Google Scholar] [PubMed]
- Krell, R.D.; Aharony, D.; Buckner, C.K.; Keith, R.A.; Kusner, E.J.; Snyder, D.W.; Bernstein, P.R.; Matassa, V.G.; Yee, Y.K.; Brown, F.J.; et al. The preclinical pharmacology of ICI 204,219. A peptide leukotriene antagonist. Am. Rev. Respir. Dis. 1990, 141 Pt 1, 978–987. [Google Scholar] [CrossRef]
- Krell, R.D.; Kusner, E.J.; Aharony, D.; Giles, R.E. Biochemical and pharmacological characterization of ICI 198,615: A peptide leukotriene receptor antagonist. Eur. J. Pharmacol. 1989, 159, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Ishii, A.; Nakagawa, T.; Nambu, F.; Motoishi, M.; Miyamoto, T. Inhibition of endogenous leukotriene-mediated lung anaphylaxis in guinea pigs by a novel receptor antagonist ONO-1078. Int. Arch. Allergy Appl. Immunol. 1990, 92, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, N.; Obata, T.; Kobayashi, T.; Okada, Y.; Nambu, F.; Terawaki, T.; Aishita, H. In vivo pharmacologic profile of ONO-1078: A potent, selective and orally active peptide leukotriene (LT) antagonist. Jpn. J. Pharmacol. 1992, 60, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Kohrogi, H.; Honda, I.; Kawano, O.; Sugimoto, M.; Araki, S.; Ando, M. A novel leukotriene antagonist, ONO-1078, inhibits and reverses human bronchial contraction induced by leukotrienes C4 and D4 and antigen in vitro. Am. Rev. Respir. Dis. 1992, 146, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Malo, P.E.; Bell, R.L.; Shaughnessy, T.K.; Summers, J.B.; Brooks, D.W.; Carter, G.W. The 5-lipoxygenase inhibitory activity of zileuton in in vitro and in vivo models of antigen-induced airway anaphylaxis. Pulm. Pharmacol. 1994, 7, 73–79. [Google Scholar] [CrossRef]
- Jones, T.R.; Labelle, M.; Belley, M.; Champion, E.; Charette, L.; Evans, J.; Ford-Hutchinson, A.W.; Gauthier, J.Y.; Lord, A.; Masson, P.; et al. Pharmacology of montelukast sodium (Singulair), a potent and selective leukotriene D4 receptor antagonist. Can. J. Physiol. Pharmacol. 1995, 73, 191–201. [Google Scholar] [CrossRef]
- Spina, D.; Ferlenga, P.; Biasini, I.; Moriggi, E.; Marchini, F.; Semeraro, C.; Page, C.P. The effect duration of selective phosphodiesterase inhibitors in the guinea pig. Life Sci. 1998, 62, 953–965. [Google Scholar] [CrossRef]
- Boswell-Smith, V.; Spina, D.; Oxford, A.W.; Comer, M.B.; Seeds, E.A.; Page, C.P. The Pharmacology of Two Novel Long-Acting Phosphodiesterase 3/4 Inhibitors, RPL554 [9,10-Dimethoxy-2(2,4,6-trimethylphenylimino)-3-(N-carbamoyl-2-aminoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-Dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]isoquinolin-4-one]. J. Pharmacol. Exp. Ther. 2006, 318, 840–848. [Google Scholar]
- Franciosi, L.G.; Diamant, Z.; Banner, K.H.; Zuiker, R.; Morelli, N.; Kamerling, I.M.; de Kam, M.L.; Burggraaf, J.; Cohen, A.F.; Cazzola, M.; et al. Efficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: Findings from four clinical trials. Lancet Respir. Med. 2013, 1, 714–727. [Google Scholar] [CrossRef]
- Brewer, N.R.; Cruise, L.J. The Respiratory System of the Guinea Pig: Emphasis on Species Differences. Contemp. Top. Lab. Anim. Sci. 1997, 36, 100–108. [Google Scholar]
- Popa, V.; Douglas, J.S.; Bouhuys, A. Airway responses to histamine, acetylcholine, and antigen in sensitized guinea pigs. J. Lab. Clin. Med. 1974, 84, 225–234. [Google Scholar] [PubMed]
- Lewis, C.A.; Broadley, K.J. Airway hyper- or hyporeactivity to inhaled spasmogens 24 h after ovalbumin challenge of sensitized guinea-pigs. Br. J. Pharmacol. 1995, 116, 2351–2358. [Google Scholar] [CrossRef] [PubMed]
- Pretolani, M.; Vargaftig, B.B. From lung hypersensitivity to bronchial hyperreactivity. What can we learn from studies on animal models? Biochem. Pharmacol. 1993, 45, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Tree, J.A.; Elmore, M.J.; Javed, S.; Williams, A.; Marsh, P.D. Development of a guinea pig immune response-related microarray and its use to define the host response following Mycobacterium bovis BCG vaccination. Infect. Immun. 2006, 74, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Dey, B.; Tyagi, A.K. Development of the first oligonucleotide microarray for global gene expression profiling in guinea pigs: Defining the transcription signature of infectious diseases. BMC Genom. 2012, 13, 520. [Google Scholar] [CrossRef]
- Gillis, P.A.; Hernandez-Alvarado, N.; Gnanandarajah, J.S.; Wussow, F.; Diamond, D.J.; Schleiss, M.R. Development of a novel, guinea pig-specific IFN-γ ELISPOT assay and characterization of guinea pig cytomegalovirus GP83-specific cellular immune responses following immunization with a modified vaccinia virus Ankara (MVA)-vectored GP83 vaccine. Vaccine 2014, 32, 3963–3970. [Google Scholar] [CrossRef]
- Lasco, T.M.; Gonzalez-Juarrero, M.; Saalmüller, A.; Lunney, J.K. Cross-reaction of anti-human CD monoclonal antibodies on guinea pig cells: A summary of the guinea pig section of the HLDA8 animal homologues data. Vet. Immunol. Immunopathol. 2007, 119, 131–136. [Google Scholar] [CrossRef]
- Schäfer, H.; Burger, R. Tools for cellular immunology and vaccine research the in the guinea pig: Monoclonal antibodies to cell surface antigens and cell lines. Vaccine 2012, 30, 5804–5811. [Google Scholar] [CrossRef]
- Adner, M.; Canning, B.J.; Meurs, H.; Ford, W.; Ramos Ramírez, P.; van den Berg, M.P.M.; Birrell, M.A.; Stoffels, E.; Lundblad, L.K.A.; Nilsson, G.P.; et al. Back to the future: Re-establishing guinea pig in vivo asthma models. Clin. Sci (Lond). 2020, 134, 1219–1242. [Google Scholar] [CrossRef]
- Shampain, M.P.; Behrens, B.L.; Larsen, G.L.; Henson, P.M. An animal model of late pulmonary responses to Alternaria challenge. Am. Rev. Respir. Dis. 1982, 126, 493–498. [Google Scholar]
- Minshall, E.M.; Riccio, M.M.; Herd, C.M.; Douglas, G.J.; Seeds, E.A.; McKenniff, M.G.; Sasaki, M.; Spina, D.; Page, C.P. A novel animal model for investigating persistent airway hyperresponsiveness. J. Pharmacol. Toxicol. Methods 1993, 30, 177–188. [Google Scholar] [CrossRef]
- Keir, S.D.; Spina, D.; Douglas, G.; Herd, C.; Page, C.P. Airway responsiveness in an allergic rabbit model. J. Pharmacol. Toxicol. Methods 2011, 64, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Obiefuna, P.C.; Batra, V.K.; Nadeem, A.; Borron, P.; Wilson, C.N.; Mustafa, S.J. A novel A1 adenosine receptor antagonist, L-97-1 [3-[2-(4-aminophenyl)-ethyl]-8-benzyl-7-{2-ethyl-(2-hydroxy-ethyl)-amino]-ethyl}-1-propyl-3,7-dihydro-purine-2,6-dione], reduces allergic responses to house dust mite in an allergic rabbit model of asthma. J. Pharmacol. Exp. Ther. 2005, 315, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Tiotiu, A.; Chenuel, B.; Foucaud, L.; Demoulin, B.; Demoulin-Alexikova, S.; Christov, C.; Poussel, M. Lack of desensitization of the cough reflex in ovalbumin-sensitized rabbits during exercise. PLoS ONE 2017, 12, e0171862. [Google Scholar] [CrossRef] [PubMed]
- Basin, S.; Valentin, S.; Demoulin-Alexikova, S.; Demoulin, B.; Foucaud, L.; Gérard, D.; Pouget, C.; Allado, E.; Chenuel, B.; Poussel, M. Impact of Inhaled Corticosteroids on the Modulation of Respiratory Defensive Reflexes During Artificial Limb Exercise in Ovalbumin-Sensitized Rabbits. Front. Physiol. 2021, 12, 804577. [Google Scholar] [CrossRef]
- Dos Santos Rocha, A.; Südy, R.; Peták, F.; Habre, W. Physiologically variable ventilation in a rabbit model of asthma exacerbation. Br. J. Anaesth. 2020, 125, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Minshall, E.; Spina, D.; Page, C.P. Effects of neonatal immunization and repeated allergen exposure on airway responsiveness in the rabbit. J. Appl. Physiol (1985). 1996, 80, 2108–2119. [Google Scholar] [CrossRef]
- Zavala, D.C.; Rhodes, M.L. Selective bronchial catheterization for the study of experimental lung damage in the rabbit. Proc. Soc. Exp. Biol. Med. 1973, 144, 509–512. [Google Scholar] [CrossRef]
- Herd, C.M.; Donigi-Gale, D.; Shoupe, T.S.; Burroughs, D.; Yeadon, M.; Page, C.P. Effect of a 5-lipoxygenase inhibitor and leukotriene antagonist (PF 5901) on antigen-induced airway responses in neonatally immunized rabbits. Br. J. Pharmacol. 1994, 112, 292–298. [Google Scholar] [CrossRef]
- Herd, C.M.; Gozzard, N.; Page, C.P. Capsaicin pre-treatment prevents the development of antigen-induced airway hyperresponsiveness in neonatally immunised rabbits. Eur. J. Pharmacol. 1995, 282, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Keir, S.; Page, C. The rabbit as a model to study asthma and other lung diseases. Pulm. Pharmacol. Ther. 2008, 21, 721–730. [Google Scholar] [CrossRef]
- Choi, H.K.; Finkbeiner, W.E.; Widdicombe, J.H. A comparative study of mammalian tracheal mucous glands. J. Anat. 2000, 197 Pt 3, 361–372. [Google Scholar] [CrossRef]
- Clifton, V.L.; Moss, T.J.; Wooldridge, A.L.; Gatford, K.L.; Liravi, B.; Kim, D.; Muhlhausler, B.S.; Morrison, J.L.; Davies, A.; De Matteo, R.; et al. Development of an experimental model of maternal allergic asthma during pregnancy. J. Physiol. 2016, 594, 1311–1325. [Google Scholar] [CrossRef]
- Clifton, V.L.; McDonald, M.; Morrison, J.L.; Holman, S.L.; Lock, M.C.; Saif, Z.; Meakin, A.; Wooldridge, A.L.; Gatford, K.L.; Wallace, M.J.; et al. Placental glucocorticoid receptor isoforms in a sheep model of maternal allergic asthma. Placenta 2019, 83, 33–36. [Google Scholar] [CrossRef]
- Meakin, A.S.; Morrison, J.L.; Bradshaw, E.L.; Holman, S.L.; Saif, Z.; Gatford, K.L.; Wallace, M.J.; Bischof, R.J.; Moss, T.J.M.; Clifton, V.L. Identification of placental androgen receptor isoforms in a sheep model of maternal allergic asthma. Placenta 2021, 104, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Wooldridge, A.L.; Clifton, V.L.; Moss, T.J.M.; Lu, H.; Jamali, M.; Agostino, S.; Muhlhausler, B.S.; Morrison, J.L.; De Matteo, R.; Wallace, M.J.; et al. Maternal allergic asthma during pregnancy alters fetal lung and immune development in sheep: Potential mechanisms for programming asthma and allergy. J. Physiol. 2019, 597, 4251–4262. [Google Scholar] [CrossRef] [PubMed]
- Bischof, R.J.; Snibson, K.; Shaw, R.; Meeusen, E.N. Induction of allergic inflammation in the lungs of sensitized sheep after local challenge with house dust mite. Clin. Exp. Allergy 2003, 33, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Snibson, K.J.; Bischof, R.J.; Slocombe, R.F.; Meeusen, E.N. Airway remodelling and inflammation in sheep lungs after chronic airway challenge with house dust mite. Clin. Exp. Allergy 2005, 35, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Bischof, R.J.; Bourke, J.E.; Hirst, S.J.; Meeusen, E.N.; Snibson, K.J.; Van Der Velden, J. Measurement and impact of remodeling in the lung: Airway neovascularization in asthma. Proc. Am. Thorac. Soc. 2009, 6, 673–677. [Google Scholar] [CrossRef]
- Abraham, W.; Delehunt, J.; Yerger, L.; Marchette, B. Characterization of a late phase pulmonary response after antigen challenge in allergic sheep. Am. Rev. Respir. Dis. 1983, 128, 839–844. [Google Scholar]
- Koumoundouros, E.; Bischof, R.J.; Meeusen, E.N.; Mareels, I.M.; Snibson, K.J. Chronic airway disease: Deteriorating pulmonary function in sheep associated with repeated challenges of house dust mite. Exp. Lung Res. 2006, 32, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Abraham, W.M.; Fishman, C.E.; Forteza, R.; Ahmed, A.; Cortes, A.; Warne, R.L.; Moore, W.R.; Tanaka, R.D. Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep. Am. J. Respir. Crit. Care Med. 1995, 152 Pt 1, 2076–2083. [Google Scholar] [CrossRef]
- Tomioka, K.; Garrido, R.; Ahmed, A.; Stevenson, J.S.; Abraham, W.M. YM461, a PAF antagonist, blocks antigen-induced late airway responses and airway hyperresponsiveness in allergic sheep. Eur. J. Pharmacol. 1989, 170, 209–215. [Google Scholar] [CrossRef]
- Van der Velden, J.; Harkness, L.M.; Barker, D.M.; Barcham, G.J.; Ugalde, C.L.; Koumoundouros, E.; Bao, H.; Organ, L.A.; Tokanovic, A.; Burgess, J.K.; et al. The Effects of Tumstatin on Vascularity, Airway Inflammation and Lung Function in an Experimental Sheep Model of Chronic Asthma. Sci. Rep. 2016, 6, 26309. [Google Scholar] [CrossRef] [PubMed]
- Van der Velden, J.; Barker, D.; Barcham, G.; Koumoundouros, E.; Snibson, K. Increased vascular density is a persistent feature of airway remodeling in a sheep model of chronic asthma. Exp. Lung Res. 2012, 38, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Bischof, R.J.; Snibson, K.J.; Van Der Velden, J.; Meeusen, E.N. Immune response to allergens in sheep sensitized to house dust mite. J. Inflamm (Lond). 2008, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Van der Velden, J.; Barker, D.; Barcham, G.; Koumoundouros, E.; Snibson, K. Assessment of peripheral airway function following chronic allergen challenge in a sheep model of asthma. PLoS ONE 2011, 6, e28740. [Google Scholar] [CrossRef]
- Kirschvink, N.; Reinhold, P. Use of alternative animals as asthma models. Curr. Drug. Targets 2008, 9, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Scheerlinck, J.-P.Y.; Snibson, K.J.; Bowles, V.M.; Sutton, P. Biomedical applications of sheep models: From asthma to vaccines. Trends Biotechnol. 2008, 26, 259–266. [Google Scholar] [CrossRef]
- Kips, J.C.; Cuvelier, C.A.; Pauwels, R.A. Effect of acute and chronic antigen inhalation on airway morphology and responsiveness in actively sensitized rats. Am. Rev. Respir. Dis. 1992, 145, 1306–1310. [Google Scholar] [CrossRef] [PubMed]
- Misawa, M.; Chiba, Y. Repeated antigenic challenge-induced airway hyperresponsiveness and airway inflammation in actively sensitized rats. Jpn. J. Pharmacol. 1993, 61, 41–50. [Google Scholar] [CrossRef]
- Renzi, P.M.; al Assaad, A.S.; Yang, J.; Yasruel, Z.; Hamid, Q. Cytokine expression in the presence or absence of late airway responses after antigen challenge of sensitized rats. Am. J. Respir. Cell Mol. Biol. 1996, 15, 367–373. [Google Scholar] [CrossRef]
- Schneider, T.; van Velzen, D.; Moqbel, R.; Issekutz, A.C. Kinetics and quantitation of eosinophil and neutrophil recruitment to allergic lung inflammation in a brown Norway rat model. Am. J. Respir. Cell Mol. Biol. 1997, 17, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, M.I.; Selgrade, M.J. A model of immune-mediated lung disease in rats sensitized to house dust mite and upregulation of immunity following exposure to nitrogen dioxide. Chest 1996, 109 (Suppl. 3), 69s. [Google Scholar] [CrossRef]
- Wagner, E.M.; Jenkins, J.; Schmieder, A.; Eldridge, L.; Zhang, Q.; Moldobaeva, A.; Zhang, H.; Allen, J.S.; Yang, X.; Mitzner, W.; et al. Angiogenesis and airway reactivity in asthmatic Brown Norway rats. Angiogenesis 2015, 18, 1–11. [Google Scholar] [CrossRef]
- Lanza, G.M.; Jenkins, J.; Schmieder, A.H.; Moldobaeva, A.; Cui, G.; Zhang, H.; Yang, X.; Zhong, Q.; Keupp, J.; Sergin, I.; et al. Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat. Theranostics 2017, 7, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.R.; Khuman, V.; Beladiya, J.V.; Chaudagar, K.K.; Mehta, A.A. An experimental model of asthma in rats using ovalbumin and lipopolysaccharide allergens. Heliyon 2019, 5, e02864. [Google Scholar] [CrossRef] [PubMed]
- Renzi, P.M.; Olivenstein, R.; Martin, J.G. Inflammatory cell populations in the airways and parenchyma after antigen challenge in the rat. Am. Rev. Respir. Dis. 1993, 147, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Rabb, H.A.; Olivenstein, R.; Issekutz, T.B.; Renzi, P.M.; Martin, J.G. The role of the leukocyte adhesion molecules VLA-4, LFA-1, and Mac-1 in allergic airway responses in the rat. Am. J. Respir. Crit. Care Med. 1994, 149, 1186–1191. [Google Scholar] [CrossRef]
- Laberge, S.; Rabb, H.; Issekutz, T.B.; Martin, J.G. Role of VLA-4 and LFA-1 in allergen-induced airway hyperresponsiveness and lung inflammation in the rat. Am. J. Respir. Crit. Care Med. 1995, 151 Pt 1, 822–829. [Google Scholar] [CrossRef]
- Haczku, A.; Macary, P.; Haddad, E.B.; Huang, T.J.; Kemeny, D.M.; Moqbel, R.; Chung, K.F. Expression of Th-2 cytokines interleukin-4 and -5 and of Th-1 cytokine interferon-gamma in ovalbumin-exposed sensitized Brown-Norway rats. Immunology 1996, 88, 247–251. [Google Scholar] [CrossRef]
- Peták, F.; Wale, J.L.; Sly, P.D. Effects of salbutamol and Ro-20-1724 on airway and parenchymal mechanics in rats. J. Appl. Physiol (1985). 1999, 87, 1373–1380. [Google Scholar] [CrossRef]
- Elwood, W.; Lötvall, J.O.; Barnes, P.J.; Chung, K.F. Effect of dexamethasone and cyclosporin A on allergen-induced airway hyperresponsiveness and inflammatory cell responses in sensitized Brown-Norway rats. Am. Rev. Respir. Dis. 1992, 145, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Tigani, B.; Hannon, J.P.; Schaeublin, E.; Mazzoni, L.; Fozard, J.R. Effects of immunomodulators on airways hyperresponsiveness to adenosine induced in actively sensitised Brown Norway rats by exposure to allergen. Naunyn Schmiedebergs Arch. Pharmacol. 2003, 368, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Gold, W.; Kessler, G.-F.; Yu, D. Role of vagus nerves in experimental asthma in allergic dogs. J. Appl. Physiol. 1972, 33, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Krell, R.D.; Chakrin, L.W. Canine airway responses to acetylcholine, prostaglandin F2α, histamine, and serotonin after chronic antigen exposure. J. Allergy Clin. Immunol. 1976, 58, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Hirshman, C.A.; Malley, A.; Downes, H. Basenji-Greyhound dog model of asthma: Reactivity to Ascaris suum, citric acid, and methacholine. J. Appl. Physiol. 1980, 49, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Snapper, J.R.; Braasch, P.S.; Loring, S.H.; Ingram, R.H., Jr.; Drazen, J.M. Comparison of the responsiveness to histamine and to Ascaris suum challenge in dogs. Am. Rev. Respir. Dis. 1980, 122, 775–780. [Google Scholar] [CrossRef]
- Palevsky, H.; Grippi, M.; Pack, A. The effect of antigen-induced bronchoconstriction on phrenic nerve activity. Am. Rev. Respir. Dis. 1986, 133, 749–756. [Google Scholar]
- Kleeberger, S.; Kolbe, J.; Adkinson, N.F., Jr.; Peters, S.; Spannhake, E. Central role of cyclooxygenase in the response of canine peripheral airways to antigen. J. Appl. Physiol. 1986, 61, 1309–1315. [Google Scholar] [CrossRef]
- Sasaki, H.; Yanai, M.; Shimura, S.; Okayama, H.; Aikawa, T.; Sasaki, T.; Takishima, T. Late Asthmatic Response to Ascaris Antigen Challenge in Dogs Treated with Metyrapone1-3. Am. Rev. Respir. Dis. 1987, 136, 1459–1465. [Google Scholar] [CrossRef]
- Turner, C.R.; Spannhake, E.W. Acute topical steroid administration blocks mast cell increase and the late asthmatic response of the canine peripheral airways. Am. Rev. Respir. Dis. 1990, 141, 421–427. [Google Scholar] [CrossRef]
- Miyahara, T.; Shibamoto, T.; Wang, H.-G.; Koyama, S. Role of circulating blood components and thromboxane in anaphylactic vasoconstriction in isolated canine lungs. J. Appl. Physiol. 1997, 83, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.J.; Inman, M.D.; Denburg, J.A.; O′Byrne, P.M. Allergen challenge increases cell traffic between bone marrow and lung. Am. J. Respir. Cell Mol. Biol. 1998, 18, 759–767. [Google Scholar] [CrossRef]
- Becker, A.; Hershkovich, J.; Simons, F.; Simons, K.; Lilley, M.; Kepron, M. Development of chronic airway hyperresponsiveness in ragweed-sensitized dogs. J. Appl. Physiol. 1989, 66, 2691–2697. [Google Scholar] [CrossRef]
- House, A.; Celly, C.; Young, S.; Kreutner, W.; Chapman, R. Bronchoconstrictor reactivity to NKA in allergic dogs: A comparison to histamine and methacholine. Pulm. Pharmacol. Ther. 2001, 14, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Chrusch, C.; Sharma, S.; Unruh, H.; Bautista, E.; Duke, K.; Becker, A.; Kepron, W.; Mink, S.N. Histamine H3 receptor blockade improves cardiac function in canine anaphylaxis. Am. J. Respir. Crit. Care Med. 1999, 160, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E.G.; Rudolph, K.; Bowen, L.E.; Muggenburg, B.A.; Bice, D.E. Effect of inhaled ultrafine carbon particles on the allergic airway response in ragweed-sensitized dogs. Inhal. Toxicol. 2003, 15, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Out, T.A.; Wang, S.Z.; Rudolph, K.; Bice, D.E. Local T-cell activation after segmental allergen challenge in the lungs of allergic dogs. Immunology 2002, 105, 499–508. [Google Scholar] [CrossRef]
- Chung, K.; Becker, A.; Lazarus, S.; Frick, O.; Nadel, J.; Gold, W. Antigen-induced airway hyperresponsiveness and pulmonary inflammation in allergic dogs. J. Appl. Physiol. 1985, 58, 1347–1353. [Google Scholar] [CrossRef]
- Bice, D.E.; Degen, M.A.; Harris, D.L.; Muggenburg, B.A. Recruitment of antibody-forming cells in the lung after local immunization is nonspecific. Am. Rev. Respir. Dis. 1982, 126, 635–639. [Google Scholar] [PubMed]
- Bice, D.; Weissman, D.; Muggenburg, B. Long-term maintenance of localized antibody responses in the lung. Immunology 1991, 74, 215. [Google Scholar] [PubMed]
- Weissman, D.N.; Bice, D.E.; Muggenburg, B.A.; Haley, P.J.; Shopp, G.M.; Schuyler, M.R. Primary immunization in the canine lung. Am. Rev. Respir. Dis. 1992, 145, 6–12. [Google Scholar] [CrossRef]
- Wooley, M.; Wattie, J.; Ellis, R.; Lane, C.; Stevens, W.; Wooley, K.; Dahlback, M.; O′Byrne, P. Effect of an inhaled corticosteroid on airway eosinophils and allergen-induced airway hyperresponsiveness. J. Appl. Physiol. 1994, 77, 1303–1308. [Google Scholar] [CrossRef]
- Redman, T.K.; Rudolph, K.; Barr, E.B.; Bowen, L.E.; Muggenburg, B.A.; Bice, D.E. Pulmonary immunity to ragweed in a Beagle dog model of allergic asthma. Exp. Lung Res. 2001, 27, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Weiszer, I.; Patterson, R.; Pruzansky, J.J. Ascaris hypersensitivity in the rhesus monkey. I. A model for the study of immediate type thypersensitity in the primate. J. Allergy 1968, 41, 14–22. [Google Scholar]
- Gundel, R.H.; Wegner, C.D.; Letts, L.G. Antigen-induced acute and late-phase responses in primates. Am. Rev. Respir. Dis. 1992, 146, 369–373. [Google Scholar] [CrossRef]
- Turner, C.R.; Andresen, C.J.; Smith, W.B.; Watson, J.W. Characterization of a primate model of asthma using anti-allergy/anti-asthma agents. Inflamm. Res. 1996, 45, 239–245. [Google Scholar] [CrossRef]
- Yasue, M.; Nakamura, S.; Yokota, T.; Okudaira, H.; Okumura, Y. Experimental monkey model sensitized with mite antigen. Int. Arch. Allergy Immunol. 1998, 115, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Schelegle, E.S.; Gershwin, L.J.; Miller, L.A.; Fanucchi, M.V.; Van Winkle, L.S.; Gerriets, J.P.; Walby, W.F.; Omlor, A.M.; Buckpitt, A.R.; Tarkington, B.K.; et al. Allergic asthma induced in rhesus monkeys by house dust mite (Dermatophagoides farinae). Am. J. Pathol. 2001, 158, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Van Scott, M.R.; Hooker, J.L.; Ehrmann, D.; Shibata, Y.; Kukoly, C.; Salleng, K.; Westergaard, G.; Sandrasagra, A.; Nyce, J. Dust mite-induced asthma in cynomolgus monkeys. J. Appl. Phys. 1985 2004, 96, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.; Harris, K.E.; Pruzansky, J.J. Induction of IgE-mediated cutaneous, cellular, and airway reactivity in rhesus monkeys by Ascaris suum infection. J. Lab. Clin. Med. 1983, 101, 864–872. [Google Scholar] [PubMed]
- Ferreira, F.D.; Mayer, P.; Sperr, W.R.; Valent, P.; Seiberler, S.; Ebner, C.; Liehl, E.; Scheiner, O.; Kraft, D.; Valenta, R. Induction of IgE antibodies with predefined specificity in rhesus monkeys with recombinant birch pollen allergens, Bet v 1 and Bet v 2. J. Allergy Clin. Immunol. 1996, 97 Pt 1, 95–103. [Google Scholar] [CrossRef]
- Plopper, C.G.; Heidsiek, J.G.; Weir, A.J.; George, J.A.; Hyde, D.M. Tracheobronchial epithelium in the adult rhesus monkey: A quantitative histochemical and ultrastructural study. Am. J. Anat. 1989, 184, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Seehase, S.; Schlepütz, M.; Switalla, S.; Mätz-Rensing, K.; Kaup, F.J.; Zöller, M.; Schlumbohm, C.; Fuchs, E.; Lauenstein, H.D.; Winkler, C.; et al. Bronchoconstriction in nonhuman primates: A species comparison. J. Appl. Physiol (1985). 2011, 111, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Moise, N.; Spaulding, G. Feline bronchial asthma: Pathogenesis, pathophysiology, diagnostics and therapeutic considerations. Compend. Contin. Educ. Pract. Vet. 1981, 3, 1091–1102. [Google Scholar]
- Howard, E.; Ryan, C. Chronic Obstructive Pulmonary Disease in the Domestic Cat; California Veterinarian: Gardena, CA, USA, 1982. [Google Scholar]
- Moise, N.S.; Wiedenkeller, D.; Yeager, A.E.; Blue, J.T.; Scarlett, J. Clinical, radiographic, and bronchial cytologic features of cats with bronchial disease: 65 cases (1980–1986). J. Am. Vet. Med. Assoc. 1989, 194, 1467–1473. [Google Scholar]
- Dye, J.A.; McKiernan, B.C.; Rozanski, E.A.; Hoffmann, W.E.; Losonsky, J.M.; Homco, L.D.; Weisiger, R.M.; Kakoma, I. Bronchopulmonary disease in the cat: Historical, physical, radiographic, clinicopathologic, and pulmonary functional evaluation of 24 affected and 15 healthy cats. J. Vet. Intern. Med. 1996, 10, 385–400. [Google Scholar] [CrossRef]
- Corcoran, B.M.; Foster, D.J.; Fuentes, V.L. Feline asthma syndrome: A retrospective study of the clinical presentation in 29 cats. J. Small Anim. Pr. 1995, 36, 481–488. [Google Scholar] [CrossRef]
- Halliwell, R.E. Efficacy of hyposensitization in feline allergic diseases based upon results of in vitro testing for allergen-specific immunoglobulin E. J. Am. Anim. Hosp. Assoc. 1997, 33, 282–288. [Google Scholar] [CrossRef]
- Moriello, K.A.; Stepien, R.L.; Henik, R.A.; Wenholz, L.J. Pilot study: Prevalence of positive aeroallergen reactions in 10 cats with small-airway disease without concurrent skin disease. Vet. Derm. 2007, 18, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Norris Reinero, C.R.; Decile, K.C.; Berghaus, R.D.; Williams, K.J.; Leutenegger, C.M.; Walby, W.F.; Schelegle, E.S.; Hyde, D.M.; Gershwin, L.J. An experimental model of allergic asthma in cats sensitized to house dust mite or bermuda grass allergen. Int. Arch. Allergy Immunol. 2004, 135, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Prost, C. Treatment of feline asthma with allergen avoidance and specific immunotherapy: Experience with 20 cats. Rev. Fr. Allergol. Immunol. Clin. 2008, 48, 409–413. [Google Scholar]
- Nafe, L.A.; DeClue, A.E.; Lee-Fowler, T.M.; Eberhardt, J.M.; Reinero, C.R. Evaluation of biomarkers in bronchoalveolar lavage fluid for discrimination between asthma and chronic bronchitis in cats. Am. J. Vet. Res. 2010, 71, 583–591. [Google Scholar] [CrossRef]
- Reinero, C.R. Advances in the understanding of pathogenesis, and diagnostics and therapeutics for feline allergic asthma. Vet. J. 2011, 190, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Adamama-Moraitou, K.K.; Patsikas, M.N.; Koutinas, A.F. Feline lower airway disease: A retrospective study of 22 naturally occurring cases from Greece. J. Feline Med. Surg. 2004, 6, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Grotheer, M.; Schulz, B. Feline asthma and chronic bronchitis–an overview of diagnostics and therapy. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2019, 47, 175–187. [Google Scholar]
- Vientós-Plotts, A.I.; Ericsson, A.C.; McAdams, Z.L.; Rindt, H.; Reinero, C.R. Temporal changes of the respiratory microbiota as cats transition from health to experimental acute and chronic allergic asthma. Front. Vet. Sci. 2022, 9, 983375. [Google Scholar] [CrossRef]
- Plopper, C.G.; Hyde, D.M. Epithelial cells of the bronchiole. In Comparative Biology of the Normal Lung; Elsevier: Amsterdam, Netherlands, 2015; pp. 83–92. [Google Scholar]
- St George, J.; Harkema, J.R.; Hyde, D.M.; Plopper, C.G. Cell populations and structure/function relationships of cells in the airways. Toxicol. Lung 1988, 71–102. [Google Scholar]
- Padrid, P. Animal models of asthma. Lung Biol. Health Dis. 1996, 96, 211–233. [Google Scholar]
- Padrid, P.; Snook, S.; Finucane, T.; Shiue, P.; Cozzi, P.; Solway, J.; Leff, A.R. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats. Am. J. Respir. Crit. Care Med. 1995, 151, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Diamond, L.; O′Donnell, M. A nonadrenergic vagal inhibitory pathway to feline airways. Science 1980, 208, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Irvin, C.G.; Boileau, R.; Tremblay, J.; Martin, R.R.; Macklem, P.T. Bronchodilatation: Noncholinergic, nonadrenergic mediation demonstrated in vivo in the cat. Science 1980, 207, 791–792. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.; Beland, J. Nonadrenergic inhibitory nervous system in human airways. J. Appl. Physiol. 1976, 41, 764–771. [Google Scholar] [CrossRef]
- Kirschvink, N.; Leemans, J.; Delvaux, F.; Snaps, F.; Clercx, C.; Gustin, P. Non-invasive assessment of airway responsiveness in healthy and allergen-sensitised cats by use of barometric whole body plethysmography. Vet. J. 2007, 173, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Chand, N.; Eyre, P. Atypical (relaxant) response to histamine in cat bronchus. Agents Actions 1977, 7, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Higenbottam, T.; Adcock, J. Effects of aerosol-applied capsaicin, histamine and prostaglandin E2 on airway sensory receptors of anaesthetized cats. J. Physiol. 1993, 469, 51–66. [Google Scholar] [CrossRef]
- Norris, C.R.; Decile, K.C.; Berghaus, L.J.; Berghaus, R.D.; Walby, W.F.; Schelegle, E.S.; Hyde, D.M.; Gershwin, L.J. Concentrations of cysteinyl leukotrienes in urine and bronchoalveolar lavage fluid of cats with experimentally induced asthma. Am. J. Vet. Res. 2003, 64, 1449–1453. [Google Scholar] [CrossRef]
- Reinero, C.R.; Decile, K.C.; Byerly, J.R.; Berghaus, R.D.; Walby, W.F.; Berghaus, L.J.; Hyde, D.M.; Schelegle, E.S.; Gershwin, L.J. Effects of drug treatment on inflammation and hyperreactivity of airways and on immune variables in cats with experimentally induced asthma. Am. J. Vet. Res. 2005, 66, 1121–1127. [Google Scholar] [CrossRef]
- Couetil, L.L.; Cardwell, J.M.; Gerber, V.; Lavoie, J.P.; Leguillette, R.; Richard, E.A. Inflammatory Airway Disease of Horses--Revised Consensus Statement. J. Vet. Intern. Med. 2016, 30, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.R.; Cooley, J.; Mujahid, N.; Costa, L.R.; Wills, R.W.; Johnson, M.E.; Swiderski, C.E. Horses With Pasture Asthma Have Airway Remodeling That Is Characteristic of Human Asthma. Vet. Pathol. 2018, 55, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Bullone, M.; Joubert, P.; Gagné, A.; Lavoie, J.P.; Hélie, P. Bronchoalveolar lavage fluid neutrophilia is associated with the severity of pulmonary lesions during equine asthma exacerbations. Equine Vet. J. 2018, 50, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Pirie, R.S. Recurrent airway obstruction: A review. Equine Vet. J. 2014, 46, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, J.W.; Reid, S.W.; Christley, R.M. A survey of horse owners in Great Britain regarding horses in their care. Part 2: Risk factors for recurrent airway obstruction. Equine Vet. J. 2007, 39, 301–308. [Google Scholar] [CrossRef]
- Ivester, K.M.; Couëtil, L.L.; Moore, G.E. An observational study of environmental exposures, airway cytology, and performance in racing thoroughbreds. J. Vet. Intern. Med. 2018, 32, 1754–1762. [Google Scholar] [CrossRef]
- Couëtil, L.L.; Ward, M.P. Analysis of risk factors for recurrent airway obstruction in North American horses: 1,444 cases (1990-1999). J. Am. Vet. Med. Assoc. 2003, 223, 1645–1650. [Google Scholar] [CrossRef]
- Wasko, A.J.; Barkema, H.W.; Nicol, J.; Fernandez, N.; Logie, N.; Léguillette, R. Evaluation of a risk-screening questionnaire to detect equine lung inflammation: Results of a large field study. Equine Vet. J. 2011, 43, 145–152. [Google Scholar] [CrossRef]
- Couetil, L.; Cardwell, J.M.; Leguillette, R.; Mazan, M.; Richard, E.; Bienzle, D.; Bullone, M.; Gerber, V.; Ivester, K.; Lavoie, J.P.; et al. Equine Asthma: Current Understanding and Future Directions. Front. Vet. Sci. 2020, 7, 450. [Google Scholar] [CrossRef]
- Hughes, K.J.; Nicolson, L.; Da Costa, N.; Franklin, S.H.; Allen, K.J.; Dunham, S.P. Evaluation of cytokine mRNA expression in bronchoalveolar lavage cells from horses with inflammatory airway disease. Vet. Immunol. Immunopathol. 2011, 140, 82–89. [Google Scholar] [CrossRef]
- Lavoie, J.P.; Cesarini, C.; Lavoie-Lamoureux, A.; Moran, K.; Lutz, S.; Picandet, V.; Jean, D.; Marcoux, M. Bronchoalveolar lavage fluid cytology and cytokine messenger ribonucleic Acid expression of racehorses with exercise intolerance and lower airway inflammation. J. Vet. Intern. Med. 2011, 25, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Beekman, L.; Tohver, T.; Leguillette, R. Comparison of cytokine mRNA expression in the bronchoalveolar lavage fluid of horses with inflammatory airway disease and bronchoalveolar lavage mastocytosis or neutrophilia using REST software analysis. J. Vet. Intern. Med. 2012, 26, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Richard, E.A.; Depecker, M.; Defontis, M.; Leleu, C.; Fortier, G.; Pitel, P.H.; Courouce-Malblanc, A. Cytokine concentrations in bronchoalveolar lavage fluid from horses with neutrophilic inflammatory airway disease. J. Vet. Intern. Med. 2014, 28, 1838–1844. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.B.; Husulak, M.L.; Kosolofski, H.; Dos Santos, S.; Burgess, H.; Meachem, M.D. Tumor necrosis factor-alpha protein concentrations in bronchoalveolar lavage fluid from healthy horses and horses with severe equine asthma. Vet. Immunol. Immunopathol. 2018, 202, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Giguere, S.; Viel, L.; Lee, E.; MacKay, R.J.; Hernandez, J.; Franchini, M. Cytokine induction in pulmonary airways of horses with heaves and effect of therapy with inhaled fluticasone propionate. Vet. Immunol. Immunopathol. 2002, 85, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, J.P.; Maghni, K.; Desnoyers, M.; Taha, R.; Martin, J.G.; Hamid, Q.A. Neutrophilic airway inflammation in horses with heaves is characterized by a Th2-type cytokine profile. Am. J. Respir. Crit. Care Med. 2001, 164 Pt 1, 1410–1413. [Google Scholar] [CrossRef]
- Debrue, M.; Hamilton, E.; Joubert, P.; Lajoie-Kadoch, S.; Lavoie, J.P. Chronic exacerbation of equine heaves is associated with an increased expression of interleukin-17 mRNA in bronchoalveolar lavage cells. Vet. Immunol. Immunopathol. 2005, 105, 25–31. [Google Scholar] [CrossRef]
- Padoan, E.; Ferraresso, S.; Pegolo, S.; Castagnaro, M.; Barnini, C.; Bargelloni, L. Real time RT-PCR analysis of inflammatory mediator expression in recurrent airway obstruction-affected horses. Vet. Immunol. Immunopathol. 2013, 156, 190–199. [Google Scholar] [CrossRef]
- Tessier, L.; Cote, O.; Clark, M.E.; Viel, L.; Diaz-Mendez, A.; Anders, S.; Bienzle, D. Impaired response of the bronchial epithelium to inflammation characterizes severe equine asthma. BMC Genom. 2017, 18, 708. [Google Scholar] [CrossRef]
- Bond, S.L.; Hundt, J.; Leguillette, R. Effect of injected dexamethasone on relative cytokine mRNA expression in bronchoalveolar lavage fluid in horses with mild asthma. BMC Vet. Res. 2019, 15, 397. [Google Scholar] [CrossRef]
- Hansen, S.; Otten, N.D.; Birch, K.; Skovgaard, K.; Hopster-Iversen, C.; Fjeldborg, J. Bronchoalveolar lavage fluid cytokine, cytology and IgE allergen in horses with equine asthma. Vet. Immunol. Immunopathol. 2019, 220, 109976. [Google Scholar] [CrossRef]
- Hue, E.; Orard, M.; Toquet, M.P.; Depecker, M.; Couroucé, A.; Pronost, S.; Paillot, R.; Richard, E.A. Asymmetrical Pulmonary Cytokine Profiles Are Linked to Bronchoalveolar Lavage Fluid Cytology of Horses With Mild Airway Neutrophilia. Front. Vet. Sci. 2020, 7, 226. [Google Scholar] [CrossRef] [PubMed]
- Leclere, M.; Lavoie-Lamoureux, A.; Lavoie, J.P. Heaves, an asthma-like disease of horses. Respirology 2011, 16, 1027–1046. [Google Scholar] [CrossRef] [PubMed]
- Bullone, M.; Lavoie, J.P. Asthma “of horses and men”–how can equine heaves help us better understand human asthma immunopathology and its functional consequences? Mol. Immunol. 2015, 66, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.U.; Sheats, M.K. The Role of Neutrophils in the Pathophysiology of Asthma in Humans and Horses. Inflammation 2021, 44, 450–465. [Google Scholar] [CrossRef]
- Sheats, M.K.; Davis, K.U.; Poole, J.A. Comparative Review of Asthma in Farmers and Horses. Curr. Allergy Asthma Rep. 2019, 19, 50. [Google Scholar] [CrossRef] [PubMed]
- Relave, F.; David, F.; Leclère, M.; Alexander, K.; Bussières, G.; Lavoie, J.P.; Marcoux, M. Evaluation of a thoracoscopic technique using ligating loops to obtain large lung biopsies in standing healthy and heaves-affected horses. Vet. Surg. 2008, 37, 232–240. [Google Scholar] [CrossRef]
- Relave, F.; David, F.; Leclère, M.; Alexander, K.; Hélie, P.; Meulyzer, M.; Lavoie, J.P.; Marcoux, M. Thoracoscopic lung biopsies in heaves-affected horses using a bipolar tissue sealing system. Vet. Surg. 2010, 39, 839–846. [Google Scholar] [CrossRef]
- Lugo, J.; Stick, J.A.; Peroni, J.; Harkema, J.R.; Derksen, F.J.; Robinson, N.E. Safety and efficacy of a technique for thoracoscopically guided pulmonary wedge resection in horses. Am. J. Vet. Res. 2002, 63, 1232–1240. [Google Scholar] [CrossRef]
- Young, S.S.; Hall, L.W. A rapid, non-invasive method for measuring total respiratory impedance in the horse. Equine Vet. J. 1989, 21, 99–105. [Google Scholar] [CrossRef]
- Young, S.S.; Tesarowski, D. Respiratory mechanics of horses measured by conventional and forced oscillation techniques. J. Appl. Physiol (1985). 1994, 76, 2467–2472. [Google Scholar] [CrossRef] [PubMed]
- Young, S.S.; Tesarowski, D.; Viel, L. Frequency dependence of forced oscillatory respiratory mechanics in horses with heaves. J. Appl. Physiol (1985). 1997, 82, 983–987. [Google Scholar] [CrossRef] [PubMed]
- van Erck, E.; Votion, D.M.; Kirschvink, N.; Art, T.; Lekeux, P. Use of the impulse oscillometry system for testing pulmonary function during methacholine bronchoprovocation in horses. Am. J. Vet. Res. 2003, 64, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- Van Erck, E.; Votion, D.; Art, T.; Lekeux, P. Qualitative and quantitative evaluation of equine respiratory mechanics by impulse oscillometry. Equine Vet. J. 2006, 38, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Bizzotto, D.; Paganini, S.; Stucchi, L.; Avallone, M.P.; Ramirez, E.M.; Pompilio, P.P.; Ferrucci, F.; Lavoie, J.P.; Dellacà, R.L. A portable fan-based device for evaluating lung function in horses by the forced oscillation technique. Physiol. Meas. 2022, 43, 025001. [Google Scholar] [CrossRef] [PubMed]
- Olave, C.J.; Ivester, K.M.; Couetil, L.L.; Burgess, J.; Park, J.H.; Mukhopadhyay, A. Effects of low-dust forages on dust exposure, airway cytology, and plasma omega-3 concentrations in Thoroughbred racehorses: A randomized clinical trial. J. Vet. Intern. Med. 2023, 37, 338–348. [Google Scholar] [CrossRef]
- Mainguy-Seers, S.; Lavoie, J.P. Glucocorticoid treatment in horses with asthma: A narrative review. J. Vet. Intern. Med. 2021, 35, 2045–2057. [Google Scholar] [CrossRef]
- Lavoie, J.P.; Bullone, M.; Rodrigues, N.; Germim, P.; Albrecht, B.; von Salis-Soglio, M. Effect of different doses of inhaled ciclesonide on lung function, clinical signs related to airflow limitation and serum cortisol levels in horses with experimentally induced mild to severe airway obstruction. Equine Vet. J. 2019, 51, 779–786. [Google Scholar] [CrossRef]
- Lavoie, J.P.; Leclere, M.; Rodrigues, N.; Lemos, K.R.; Bourzac, C.; Lefebvre-Lavoie, J.; Beauchamp, G.; Albrecht, B. Efficacy of inhaled budesonide for the treatment of severe equine asthma. Equine Vet. J. 2019, 51, 401–407. [Google Scholar] [CrossRef]
- Léguillette, R.; Tohver, T.; Bond, S.L.; Nicol, J.A.; McDonald, K.J. Effect of Dexamethasone and Fluticasone on Airway Hyperresponsiveness in Horses With Inflammatory Airway Disease. J. Vet. Intern. Med. 2017, 31, 1193–1201. [Google Scholar] [CrossRef]
- Nogradi, N.; Couetil, L.L.; Messick, J.; Stochelski, M.A.; Burgess, J.R. Omega-3 fatty acid supplementation provides an additional benefit to a low-dust diet in the management of horses with chronic lower airway inflammatory disease. J. Vet. Intern. Med. 2015, 29, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Bond, S.; Leguillette, R.; Richard, E.A.; Couetil, L.; Lavoie, J.P.; Martin, J.G.; Pirie, R.S. Equine asthma: Integrative biologic relevance of a recently proposed nomenclature. J. Vet. Intern. Med. 2018, 32, 2088–2098. [Google Scholar] [CrossRef] [PubMed]
- Hulliger, M.F.; Pacholewska, A.; Vargas, A.; Lavoie, J.P.; Leeb, T.; Gerber, V.; Jagannathan, V. An Integrative miRNA-mRNA Expression Analysis Reveals Striking Transcriptomic Similarities between Severe Equine Asthma and Specific Asthma Endotypes in Humans. Genes 2020, 11, 1143. [Google Scholar] [CrossRef]
- Padoan, E.; Ferraresso, S.; Pegolo, S.; Barnini, C.; Castagnaro, M.; Bargelloni, L. Gene Expression Profiles of the Immuno-Transcriptome in Equine Asthma. Animals (Basel) 2022, 13, 4. [Google Scholar] [CrossRef]
- Ray, A.; Kolls, J.K. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol. 2017, 38, 942–954. [Google Scholar] [CrossRef]
- Seys, S.F.; Lokwani, R.; Simpson, J.L.; Bullens, D.M.A. New insights in neutrophilic asthma. Curr. Opin. Pulm. Med. 2019, 25, 113–120. [Google Scholar] [CrossRef]
- Yu, Q.L.; Chen, Z. Establishment of different experimental asthma models in mice. Exp. Ther. Med. 2018, 15, 2492–2498. [Google Scholar] [CrossRef]
- An, T.J.; Rhee, C.K.; Kim, J.H.; Lee, Y.R.; Chon, J.Y.; Park, C.K.; Yoon, H.K. Effects of Macrolide and Corticosteroid in Neutrophilic Asthma Mouse Model. Tuberc. Respir. Dis (Seol). 2018, 81, 80–87. [Google Scholar] [CrossRef]
- Quoc, Q.L.; Choi, Y.; Thi Bich, T.C.; Yang, E.M.; Shin, Y.S.; Park, H.S. S100A9 in adult asthmatic patients: A biomarker for neutrophilic asthma. Exp. Mol. Med. 2021, 53, 1170–1179. [Google Scholar] [CrossRef]
- Herszberg, B.; Ramos-Barbon, D.; Tamaoka, M.; Martin, J.G.; Lavoie, J.P. Heaves, an asthma-like equine disease, involves airway smooth muscle remodeling. J. Allergy Clin. Immunol. 2006, 118, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Nurmagambetov, T.; Kuwahara, R.; Garbe, P. The Economic Burden of Asthma in the United States, 2008–2013. Ann. Am. Thorac. Soc. 2018, 15, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Fallon, P.G.; Schwartz, C. The high and lows of type 2 asthma and mouse models. J. Allergy Clin. Immunol. 2020, 145, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Bazán-Perkins, B.; Sánchez-Guerrero, E.; Vargas, M.H.; Martínez-Cordero, E.; Ramos-Ramírez, P.; Alvarez-Santos, M.; Hiriart, G.; Gaxiola, M.; Hernández-Pando, R. Beta1-integrins shedding in a guinea-pig model of chronic asthma with remodelled airways. Clin. Exp. Allergy 2009, 39, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.M.; Almatroudi, A.; Alwashmi, A.S.; Abdulmonem, W.A.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Alsahli, M.A.; Alrumaihi, F.; Allemailem, K.S.; Abdellatif, A.A.H.; et al. Thyme oil alleviates Ova-induced bronchial asthma through modulating Th2 cytokines, IgE, TSLP and ROS. Biomed. Pharmacother. 2021, 140, 111726. [Google Scholar] [CrossRef] [PubMed]
- Nino, G.; Hu, A.; Grunstein, J.S.; McDonough, J.; Kreiger, P.A.; Josephson, M.B.; Choi, J.K.; Grunstein, M.M. G Protein βγ-subunit signaling mediates airway hyperresponsiveness and inflammation in allergic asthma. PLoS ONE 2012, 7, e32078. [Google Scholar] [CrossRef]
- Halim, N.S.S.; Ch′ng, E.S.; Kardia, E.; Ali, S.A.; Radzi, R.; Yahaya, B.H. Aerosolised Mesenchymal Stem Cells Expressing Angiopoietin-1 Enhances Airway Repair. Stem Cell Rev. Rep. 2019, 15, 112–125. [Google Scholar] [CrossRef]
- Liravi, B.; Piedrafita, D.; Nguyen, G.; Bischof, R.J. Dynamics of IL-4 and IL-13 expression in the airways of sheep following allergen challenge. BMC Pulm. Med. 2015, 15, 101. [Google Scholar] [CrossRef]
- Gatford, K.L.; Wooldridge, A.L.; Kind, K.L.; Bischof, R.; Clifton, V.L. Pre-birth origins of allergy and asthma. J. Reprod. Immunol. 2017, 123, 88–93. [Google Scholar] [CrossRef]
- Solèr, M.; Sielczak, M.W.; Abraham, W.M. A PAF antagonist blocks antigen-induced airway hyperresponsiveness and inflammation in sheep. J. Appl. Physiol (1985). 1989, 67, 406–413. [Google Scholar] [CrossRef]
- Solèr, M.; Sielczak, M.; Abraham, W.M. A bradykinin-antagonist blocks antigen-induced airway hyperresponsiveness and inflammation in sheep. Pulm. Pharmacol. 1990, 3, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.M.; Burch, R.M.; Farmer, S.G.; Sielczak, M.W.; Ahmed, A.; Cortes, A. A bradykinin antagonist modifies allergen-induced mediator release and late bronchial responses in sheep. Am. Rev. Respir. Dis. 1991, 143 Pt 1, 787–796. [Google Scholar] [CrossRef]
- Chapman, R.W. Canine models of asthma and COPD. Pulm. Pharmacol. Ther. 2008, 21, 731–742. [Google Scholar] [CrossRef]
- Miller, L.A.; Royer, C.M.; Pinkerton, K.E.; Schelegle, E.S. Nonhuman Primate Models of Respiratory Disease: Past, Present, and Future. ILAR J. 2017, 58, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.R.; Jackman, J.K.; Bullens, S.L.; Davis, S.M.; Choy, D.F.; Fedorowicz, G.; Tan, M.; Truong, B.T.; Gloria Meng, Y.; Diehl, L.; et al. Lung gene expression in a rhesus allergic asthma model correlates with physiologic parameters of disease and exhibits common and distinct pathways with human asthma and a mouse asthma model. Am. J. Pathol. 2011, 179, 1667–1680. [Google Scholar] [CrossRef] [PubMed]
- Coffman, R.L.; Hessel, E.M. Nonhuman primate models of asthma. J. Exp. Med. 2005, 201, 1875–1879. [Google Scholar] [CrossRef] [PubMed]
- Bullone, M.; Lavoie, J.P. The equine asthma model of airway remodeling: From a veterinary to a human perspective. Cell Tissue Res. 2020, 380, 223–236. [Google Scholar] [CrossRef]
- Lange-Consiglio, A.; Stucchi, L.; Zucca, E.; Lavoie, J.P.; Cremonesi, F.; Ferrucci, F. Insights into animal models for cell-based therapies in translational studies of lung diseases: Is the horse with naturally occurring asthma the right choice? Cytotherapy 2019, 21, 525–534. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woodrow, J.S.; Sheats, M.K.; Cooper, B.; Bayless, R. Asthma: The Use of Animal Models and Their Translational Utility. Cells 2023, 12, 1091. https://doi.org/10.3390/cells12071091
Woodrow JS, Sheats MK, Cooper B, Bayless R. Asthma: The Use of Animal Models and Their Translational Utility. Cells. 2023; 12(7):1091. https://doi.org/10.3390/cells12071091
Chicago/Turabian StyleWoodrow, Jane Seymour, M. Katie Sheats, Bethanie Cooper, and Rosemary Bayless. 2023. "Asthma: The Use of Animal Models and Their Translational Utility" Cells 12, no. 7: 1091. https://doi.org/10.3390/cells12071091
APA StyleWoodrow, J. S., Sheats, M. K., Cooper, B., & Bayless, R. (2023). Asthma: The Use of Animal Models and Their Translational Utility. Cells, 12(7), 1091. https://doi.org/10.3390/cells12071091