Mutational Landscape of Cholangiocarcinoma According to Different Etiologies: A Review
Abstract
:1. Introduction
2. CCA Genomic Landscape in Eastern and Western Patients
3. Liver Fluke Infections
4. Primary Sclerosing Cholangitis
5. Hepatitis Virus Infection
6. Bile Duct Cysts
7. Liver Cirrhosis
8. Hepatolithiasis
9. Thorotrast
10. Aflatoxins
11. Organic Solvents
12. Asbestos
13. Conclusions
Funding
Conflicts of Interest
References
- Schuback, H.L.; Arceci, R.J.; Meshinchi, S. Somatic characterization of pediatric acute myeloid leukemia using next-generation sequencing. Semin. Hematol. 2013, 50, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Grove, C.S.; Vassiliou, G.S. Acute myeloid leukaemia: A paradigm for the clonal evolution of cancer? Model. Mech. 2014, 7 (Suppl. 8), 941–951. [Google Scholar] [CrossRef]
- Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; et al. Cell-of-Origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 2018, 173, 291–304e6. [Google Scholar] [CrossRef] [PubMed]
- Brandi, G.; Farioli, A.; Astolfi, A.; Biasco, G.; Tavolari, S. Genetic heterogeneity in cholangiocarcinoma: A major challenge for targeted therapies. Oncotarget 2015, 6 (Suppl. 17), 14744–14753. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Tavolari, S.; Brandi, G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 2019, 39 (Suppl. 1), 19–31. [Google Scholar] [CrossRef]
- WHO. Classification of Tumours Digestive System Tumours, 5th ed.; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Jusakul, A.; Kongpetch, S.; Teh, B.T. Genetics of Opisthorchis viverrini-related cholangiocarcinoma. Curr. Opin. Gastroenterol. 2015, 31, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Chaiteerakij, R.; Pan-Ngum, W.; Poovorawan, K.; Soonthornworasiri, N.; Treeprasertsuk, S.; Phaosawasdi, K. Characteristics and outcomes of cholangiocarcinoma by region in Thailand: A nationwide study. World J. Gastroenterol. 2017, 23, (Suppl. 39), 7160–7167. [Google Scholar] [CrossRef]
- Javle, M.; Lee, S.; Azad, N.S.; Borad, M.J.; Kelley, R.K.; Sivaraman, S.; Teschemaker, A.; Chopra, I.; Janjan, N.; Parasuraman, S.; et al. Temporal Changes in Cholangiocarcinoma Incidence and Mortality in the United States from 2001 to 2017. Oncologist 2022, 27 (Suppl. 10), 874–883. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Jiang, L.; Li, F.; Li, Q.; Yuan, S.; Huang, S.; Fu, Y.; Yan, X.; Chen, J.; Li, H.; et al. The epidemiological trends of biliary tract cancers in the United States of America. BMC Gastroenterol. 2022, 22 (Suppl. 1), 546. [Google Scholar] [CrossRef]
- Bergquist, A.; von Seth, E. Epidemiology of cholangiocarcinoma. Best. Pract. Res. Clin. Gastroenterol. 2015, 29 (Suppl. 2), 221–232. [Google Scholar] [CrossRef]
- Ellington, T.D.; Momin, B.; Wilson, R.J.; Henley, S.J.; Wu, M.; Ryerson, A.B. Incidence and Mortality of Cancers of the Biliary Tract, Gallbladder, and Liver by Sex, Age, Race/Ethnicity, and Stage at Diagnosis: United States, 2013 to 2017. Cancer Epidemiol. Biomark. Prev. 2021, 30 (Suppl. 9), 1607–1614. [Google Scholar] [CrossRef]
- Bertuccio, P.; Bosetti, C.; Levi, F.; Decarli, A.; Negri, E.; La Vecchia, C. A comparison of trends in mortality from primary liver cancer and intrahepatic cholangiocarcinoma in Europe. Ann. Oncol. 2013, 24, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated Projection of US Cancer Incidence and Death to 2040. JAMA Netw. Open 2021, 4 (Suppl. 4), e214708. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Hu, J.; Liu, S.; Meric-Bernstam, F.; Abdel-Wahab, R.; Xu, J.; Li, Q.; Yan, M.; Feng, Y.; Lin, J.; et al. Intrahepatic Cholangiocarcinoma: Genomic Heterogeneity Between Eastern and Western Patients. JCO Precis. Oncol. 2020, 4, PO.18.00414. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Lu, D.; Chen, R.; Lin, Y.; Zhu, H.; Zhang, Z.; Cai, S.; Cui, P.; Song, G.; Rao, D.; et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell 2022, 40 (Suppl. 1), 70–87.e15. [Google Scholar] [CrossRef] [PubMed]
- Sithithaworn, P.; Andrews, R.H.; Nguyen, V.D.; Wongsaroj, T.; Sinuon, M.; Odermatt, P.; Nawa, Y.; Liang, S.; Brindley, P.J.; Sripa, B.; et al. The current status of opisthorchiasis and clonorchiasis in the Mekong Basin. Parasitol. Int. 2012, 61 (Suppl. 1), 10–16. [Google Scholar] [CrossRef]
- Keiser, J.; Utzinger, J. Food-borne trematodiases. Clin. Microbiol. Rev. 2009, 22, 466–483. [Google Scholar] [CrossRef]
- IARC. A review of human carcinogens part B: Biological Agents. IARC Monogr. Eval. Carcinog. Risks Hum. 2011, 100B, 457. [Google Scholar]
- Sripa, B.; Brindley, P.J.; Mulvenna, J.; Laha, T.; Smout, M.J.; Mairiang, E.; Bethony, J.M.; Loukas, A. The tumorigenic liver fluke Opisthorchis viverrini--multiple pathways to cancer. Trends Parasitol. 2012, 28 (Suppl. 10), 395–407. [Google Scholar] [CrossRef]
- Ong, C.K.; Subimerb, C.; Pairojkul, C.; McPherson, J.R.; Allen, G.E.; Ng, C.C.; Wong, B.H.; Myint, S.S.; Rajasegaran, V.; Heng, H.L.; et al. Exome sequencing of liver fluke associated cholangiocarcinoma. Nat. Genet. 2012, 44 (Suppl. 6), 690–693. [Google Scholar] [CrossRef]
- Chan-On, W.; Nairismagi, M.L.; Ong, C.K.; Lim, K.H.; McPherson, J.R.; Cutcutache, I.; Heng, H.L.; Ooi, L.; Chung, A.; Chow, P.; et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non infection-related bile duct cancers. Nat. Genet. 2013, 45, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Pawlik, T.M.; Anders, R.A.; Selaru, F.M.; Streppel, M.M.; Lucas, D.J.; Niknafs, N.; Guthrie, V.B.; Maitra, A.; Niknafs, N.; et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 2013, 45 (Suppl. 12), 1470–1473. [Google Scholar] [CrossRef] [PubMed]
- Kongpetch, S.; Jusakul, A.; Lim, J.Q.; Ng, C.C.Y.; Chan, J.Y.; Rajasegaran, V.; Lim, T.H.; Lim, K.H.; Choo, S.P.; Dima, S.; et al. Lack of Targetable FGFR2 Fusions in Endemic Fluke-Associated Cholangiocarcinoma. JCO Glob. Oncol. 2020, 6, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Jusakul, A.; Cutcutache, I.; Yong, C.H.; Lim, J.Q.; Huang, M.N.; Padmanabhan, N.; Nellore, V.; Nellore, V.; Kongpetch, S.; Ng, A.W.T.; et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discov. 2017, 7 (Suppl. 10), 1116–1135. [Google Scholar] [CrossRef]
- Weismuller, T.J.; Trivedi, P.J.; Bergquist, A.; Imam, M.; Lenzen, H.; Ponsioen, C.Y.; Holm, K.; Gotthardt, D.; Färkkilä, M.A.; Marschall, H.U.; et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology 2017, 152 (Suppl. 8), 1975–1984.e1978. [Google Scholar] [CrossRef]
- Toy, E.; Balasubramanian, S.; Selmi, C.; Li, C.S.; Bowlus, C.L. The prevalence, incidence and natural history of primary sclerosing cholangitis in an ethnically diverse population. BMC Gastroenterol. 2011, 11, 83. [Google Scholar] [CrossRef]
- Boonstra, K.; Weersma, R.K.; van Erpecum, K.J.; van Nieuwkerk, K.M.; Drenth, J.P.; Witteman, B.J.; Tuynman, H.A.; Naber, A.H.; Kingma, P.J.; van Buuren, H.R.; et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology 2013, 58 (Suppl. 6), 2045–2055. [Google Scholar] [CrossRef]
- O’Mahony, C.A.; Vierling, J.M. Etiopathogenesis of primary sclerosing cholangitis. Semin. Liver Dis. 2006, 26, 3–21. [Google Scholar] [CrossRef]
- Kamp, E.J.C.A.; Peppelenbosch, M.P.; Doukas, M.; Verheij, J.; Ponsioen, C.Y.; van Marion, R.; Bruno, M.J.; Koerkamp, B.G.; Dinjens, W.N.M.; de Vries, A.C. Primary Sclerosing Cholangitis-Associated Cholangiocarcinoma Demonstrates High Intertumor and Intratumor Heterogeneity. Clin. Transl. Gastroenterol. 2021, 12 (Suppl. 10), e00410. [Google Scholar] [CrossRef]
- Goeppert, B.; Folseraas, T.; Roessler, S.; Kloor, M.; Volckmar, A.-L.; Endris, V.; Buchhalter, I.; Buchhalter, I.; Stenzinger, A.; Grzyb, K.; et al. Genomic Characterization of Cholangiocarcinoma in Primary Sclerosing Cholangitis Reveals Therapeutic Opportunities. Hepatology 2020, 72, 1253–1266. [Google Scholar] [CrossRef]
- Nakamura, H.; Arai, Y.; Totoki, Y.; Shirota, T.; Elzawahry, A.; Kato, M.; Hama, N.; Hosoda, F.; Urushidate, T.; Ohashi, S.; et al. Genomic spectra of biliary tract cancer. Nat. Genet. 2015, 47, 1003–1010. [Google Scholar] [CrossRef]
- Hughes, N.R.; Pairojkul, C.; Royce, S.G.; Clouston, A.; Bhathal, P.S. Liver fluke-associated and sporadic cholangiocarcinoma: An immunohistochemical study of bile duct, peribiliary gland and tumour cell phenotypes. J. Clin. Pathol. 2006, 59, 1073–1078. [Google Scholar] [CrossRef]
- Carpino, G.; Cardinale, V.; Renzi, A.; Hov, J.R.; Berloco, P.B.; Rossi, M.; Karlsen, T.H.; Alvaro, D.; Gaudio, E. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. J. Hepatol. 2015, 63 (Suppl. 5), 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Maucort-Boulch, D.; de Martel, C.; Franceschi, S.; Plummer, M. Fraction and incidence of liver cancer attributable to hepatitis B and C viruses worldwide. Int. J. Cancer 2018, 142 (Suppl. 12), 2471–2477. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yuan, Y.; Gu, D. Hepatitis B and C virus infections and the risk of biliary tract cancers: A meta-analysis of observational studies. Infect. Agents Cancer 2022, 17 (Suppl. 1), 45. [Google Scholar] [CrossRef] [PubMed]
- Pollicino, T.; Caminiti, G. HBV-integration studies in the clinic: Role in the natural history of infection. Viruses 2021, 13 (Suppl. 3), 368. [Google Scholar] [CrossRef]
- Zhao, L.H.; Liu, X.; Yan, H.X.; Zhao, J.; Liu, S.P.; Zhuang, X.H.; Lin, C.; Qin, C.-J.; Zhao, Y.; Pan, Z.-Y.; et al. Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma. Nat. Commun. 2016, 7, 12992. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Tian, T.; Rao, X.; Dong, W.; Zhang, J.; Yang, Y.; Tao, Q.; Peng, F.; Shen, C.; et al. Analysis of viral integration reveals new insights of oncogenic mechanism in HBV-infected intrahepatic cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma. Hepatol. Int. 2022, 16 (Suppl. 6), 1339–1352. [Google Scholar] [CrossRef]
- An, J.; Kim, D.; Oh, B.; Oh, Y.J.; Song, J.; Park, N.; Kim, H.I.; Kang, H.J.; Oh, J.H.; Kim, W.; et al. Comprehensive characterization of viral integrations and genomic aberrations in HBV-infected intrahepatic cholangiocarcinomas. Hepatology 2022, 75 (Suppl. 4), 997–1011. [Google Scholar] [CrossRef]
- Totoki, Y.; Tatsuno, K.; Covington, K.R.; Ueda, H.; Creighton, C.J.; Kato, M.; Tsuji, S.; Donehower, L.A.; Slagle, B.L.; Nakamura, H.; et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 2014, 46, 1267–1273. [Google Scholar] [CrossRef]
- Zou, S.; Li, J.; Zhou, H.; Zhao, X.; Li, Y.; Li, Q.; Wang, H.; Hu, J.; Kong, G.; Wu, M.; et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat. Commun. 2014, 5, 5696. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, A.; Furuta, M.; Shiraishi, Y.; Gotoh, K.; Kawakami, Y.; Arihiro, K.; Nakamura, T.; Ueno, M.; Ariizumi, S.; Nguyen, H.H.; et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat. Commun. 2015, 6, 6120. [Google Scholar] [CrossRef]
- Todani, T.; Watanabe, Y.; Narusue, M.; Tabuchi, K.; Okajima, K. Congenital bile duct cysts: Classification, operative procedures, and review of thirty-seven cases including cancer arising from choledochal cyst. Am. J. Surg. 1977, 134 (Suppl. 2), 263–269. [Google Scholar] [CrossRef]
- Sastry, A.V.; Abbadessa, B.; Wayne, M.G.; Steele, J.G.; Cooperman, A.M. What is the incidence of biliary carcinoma in choledochal cysts, when do they develop, and how should it affect management? World J. Surg. 2015, 39 (Suppl. 2), 487–492. [Google Scholar] [CrossRef]
- He, X.D.; Wang, L.; Liu, W.; Liu, Q.; Qu, Q.; Li, B.L.; Hong, T. The risk of carcinogenesis in congenital choledochal cyst patients: An analysis of 214 cases. Ann. Hepatol. 2014, 13, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Asano, T.; Yamasaki, M.; Kenmochi, T.; Nakagohri, T.; Ochiai, T. Risk of bile duct carcinogenesis after excision of extrahepatic bile ducts in pancreaticobiliary maljunction. Surgery 1999, 126 (Suppl. 5), 939–944. [Google Scholar] [CrossRef]
- Soreide, K.; Korner, H.; Havnen, J.; Soreide, J.A. Bile duct cysts in adults. Br. J. Surg. 2004, 91 (Suppl. 12), 1538–1548. [Google Scholar] [CrossRef] [PubMed]
- Schwab, M.E.; Song, H.; Mattis, A.; Phelps, A.; Vu, L.T.; Huang, F.W.; Nijagal, A. De novo somatic mutations and KRAS amplification are associated with cholangiocarcinoma in a patient with a history of choledochal cyst. J. Pediatr. Surg. 2020, 55 (Suppl. 12), 2657–2661. [Google Scholar] [CrossRef]
- Singham, J.; Yoshida, E.M.; Scudamore, C.H. Choledochal cysts: Part 1 of 3: Classification and pathogenesis. Can. J. Surg. 2009, 52, 434–440. [Google Scholar]
- Kamisawa, T.; Kuruma, S.; Chiba, K.; Tabata, T.; Koizumi, S.; Kikuyama, M. Biliary carcinogenesis in pancreaticobiliary maljunction. J. Gastroenterol. 2017, 52, 158–163. [Google Scholar] [CrossRef]
- Matsubara, T.; Sakurai, Y.; Zhi, L.Z.; Miura, H.; Ochiai, M.; Funabiki, T. K-ras and p53 gene mutations in noncancerous biliary lesions of patients with pancreaticobiliary maljunction. J. Hepatobiliary Pancreat. Surg. 2002, 9 (Suppl. 3), 312–321. [Google Scholar] [CrossRef]
- Palmer, W.C.; Patel, T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J. Hepatol. 2012, 57 (Suppl. 1), 69–76. [Google Scholar] [CrossRef]
- Yuan, L.; Luo, X.; Lu, X.; Yi, B.; Chu, K.; Cai, Q.; Jiang, X. Comparison of clinicopathological characteristics between cirrhotic and non-cirrhotic patients with intrahepatic cholangiocarcinoma: A large-scale retrospective study. Mol. Clin. Oncol. 2017, 7 (Suppl. 4), 615–622. [Google Scholar] [CrossRef]
- Zhou, H.; Rogler, L.E.; Teperman, L.; Morgan, G.; Rogler, C.E. Identification of hepatocytic and bile ductular cell lineages and candidate stem cells in bipolar ductular reactions in cirrhotic human liver. Hepatology 2007, 45, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lee, J.M. Primary malignant tumours in the non-cirrhotic liver. Eur. J. Radiol. 2017, 95, 349–361. [Google Scholar] [CrossRef]
- Joseph, N.M.; Tsokos, C.G.; Umetsu, S.E.; Shain, A.H.; Kelley, R.K.; Onodera, C.; Bowman, S.; Talevich, E.; Ferrell, L.D.; Kakar, S.; et al. Genomic profiling of combined hepatocellular-cholangiocarcinoma reveals similar genetics to hepatocellular carcinoma. J. Pathol. 2019, 248 (Suppl. 2), 164–178. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, J.S.; Joo, M.K.; Lee, B.J.; Kim, J.H.; Yeon, J.E.; Park, J.J.; Byun, K.S.; Bak, Y.T. Hepatolithiasis and intrahepatic cholangiocarcinoma: A review. World J. Gastroenterol. 2015, 21 (Suppl. 48), 13418–13431. [Google Scholar] [CrossRef]
- Lin, C.C.; Lin, P.Y.; Chen, Y.L. Comparison of concomitant and subsequent cholangiocarcinomas associated with hepatolithiasis: Clinical implications. World J. Gastroenterol. 2013, 19, 375–380. [Google Scholar] [CrossRef]
- Zen, Y.; Adsay, N.V.; Bardadin, K.; Hong, S.M.; Hytiroglou, P.; Klöppel, G.; Lauwers, G.Y.; van Leeuwen, D.J.; Notohara, K.; Oshima, K.; et al. Biliary intraepithelial neoplasia: An international interobserver agreement study and proposal for diagnostic criteria. Mod. Pathol. 2007, 20, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.; Sasaki, M.; Igarashi, S.; Sato, Y.; Nakanuma, Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 2013, 119 (Suppl. 9), 1669–1674. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Humphreys, J.A.H.; Collier, C.G.; Prie, N.D.; Mori, T.; Machinami, R. Revised organ partition of tho in Thorotrast patients. Radiat. Res. 1999, 152, 102–106. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Wada, I.; Fukumoto, M. Alpha-particle carcinogenesis in Thorotrast patients: Epidemiology, dosimetry, pathology, and molecular analysis. J. Environ. Pathol. Toxicol. Oncol. 2001, 20 (Suppl. 4), 311–315. [Google Scholar] [CrossRef]
- Kamikawa, T.; Amenomori, M.; Itoh, T.; Momoi, H.; Hiai, H.; Machinami, R.; Ishikawa, Y.; Mori, T.; Shimahara, Y.; Yamaoka, Y.; et al. Analysis of genetic changes in intrahepatic cholangiocarcinoma induced by thorotrast. Radiat. Res. 1999, 152 (Suppl. 6), 118–124. [Google Scholar] [CrossRef]
- Wild, C.P.; Gong, Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis 2010, 31, 71–82. [Google Scholar] [CrossRef]
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Press: Lyon, France, 1993; Volume 56, pp. 245–395. [Google Scholar]
- Aguilar, F.; Hussain, S.P.; Cerutti, P. Aflatoxin B1 induces the transversion of G-->T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc. Natl. Acad. Sci. USA 1993, 90 (Suppl. 18), 8586–8590. [Google Scholar] [CrossRef]
- Gouas, D.; Shi, H.; Hainaut, P. The aflatoxin-induced TP53 mutation at codon 249 (R249S): Biomarker of exposure, early detection and target for therapy. Cancer Lett. 2009, 286 (Suppl. 1), 29–37. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S.; Nakanuma, Y.; Takemura, S.; Sakata, C.; Urata, Y.; Nozawa, A.; Nishioka, T.; Kinoshita, M.; Hamano, G.; Terajima, H.; et al. Case series of 17 patients with cholangiocarcinoma among young adult workers of a printing company in Japan. J. Hepatobiliary Pancreat. Sci. 2014, 31, 479–488. [Google Scholar] [CrossRef]
- Kumagai, S.; Sobue, T.; Makiuchi, T.; Kubo, S.; Uehara, S.; Hayashi, T.; Sato, K.K.; Endo, G. Relationship between cumulative exposure to 1,2-dichloropropane and incidence risk of cholangiocarcinoma among offset printing workers. Occup. Environ. Med. 2016, 73 (Suppl. 8), 545–552. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Kumagai, S.; Nagoya, T.; Endo, G. Chemical exposure levels in printing workers with cholangiocarcinoma. J. Occup. Health 2014, 56, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Kumagai, S.; Nagoya, T.; Endo, G. Chemical exposure levels in printing workers with cholangiocarcinoma (second report). J. Occup. Health 2015, 57, 245–252. [Google Scholar] [CrossRef]
- Seeherunwong, A.; Chaiear, N.; Khuntikeo, N.; Ekpanyaskul, C. The Proportion of Occupationally Related Cholangiocarcinoma: A Tertiary Hospital Study in Northeastern Thailand. Cancers 2022, 14 (Suppl. 10), 2386. [Google Scholar] [CrossRef]
- IARC. Perfluoro-ctanoic acid, tetrafluoroethylene, dichloromethane, 1,2-dichloropropane, 1,3-propane sultone. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Working Group: Lyon, France, 2014; Volume 110. [Google Scholar]
- Mimaki, S.; Totsuka, Y.; Suzuki, Y.; Nakai, C.; Goto, M.; Kojima, M.; Arakawa, H.; Takemura, S.; Tanaka, S.; Marubashi, S.; et al. Hypermutation and unique mutational signatures of occupational cholangiocarcinoma in printing workers exposed to haloalkanes. Carcinogenesis 2016, 37, 817–826. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Arsenic, metals, fibres, and dusts. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 11–465. [Google Scholar]
- Furuya, S.; Chimed-Ochir, O.; Takahashi, K.; David, A.; Takala, J. Global Asbestos Disaster. Int. J. Environ. Res. Public Health 2018, 15 (Suppl. 5), 1000. [Google Scholar] [CrossRef] [PubMed]
- Brandi, G.; Tavolari, S. Asbestos and Intrahepatic Cholangiocarcinoma. Cells 2020, 9 (Suppl. 2), 421. [Google Scholar] [CrossRef] [PubMed]
- Selikoff, I.J.; Seidman, H. Asbestos-associated deaths among insulation workers in the United States and Canada, 1967–1987. Ann. N. Y. Acad. Sci. 1991, 643, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Szendroi, M.; Nemeth, L.; Vajta, G. Asbestos bodies in a bile duct cancer after occupational exposure. Environ. Res. 1983, 30, 270–280. [Google Scholar] [CrossRef]
- Brandi, G.; Di Girolamo, S.; Farioli, A.; Ercolani, G.; Violante, F.S.; Biasco, G.; Mattioli, S. Asbestos: A hidden player behind the cholangiocarcinoma increase? Findings from a case-control analysis. Cancer Causes Control 2013, 24, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Farioli, A.; Straif, K.; Brandi, G.; Sparen, P.; Tryggvadottir, L.; Weiderpass, E.; Biasco, G.; Violante, F.S.; Mattioli, S.; Pukkala, E. Occupational exposure to asbestos and risk of cholangiocarcinoma: A population-based case-control study in four Nordic countries. Occup. Environ. Med. 2018, 75, 191–198. [Google Scholar] [CrossRef]
- Grosso, F.; Croce, A.; Libener, R.; Mariani, N.; Pastormerlo, M.; Maconi, A.; Rinaudo, C. Asbestos fiber identification in liver from cholangiocarcinoma patients living in an asbestos polluted area: A preliminary study. Tumori 2019, 105 (Suppl. 5), 404–410. [Google Scholar] [CrossRef]
- Vasuri, F.; Deserti, M.; Corradini, A.G.; Tavolari, S.; Relli, V.; Palloni, A.; Frega, G.; Curti, S.; Mattioli, S.; Cescon, M.; et al. Asbestos exposure as an additional risk factor for small duct intrahepatic cholangiocarcinoma: A pilot study. Sci. Rep. 2023, 13 (Suppl. 1), 2580. [Google Scholar] [CrossRef] [PubMed]
- Brandi, G.; Deserti, M.; Astolfi, A.; Tavolari, S.; Abbati, F.; de Lorenzo, S. Whole-exome sequencing analysis identifies recurrent mutation rate in BAP1 gene in intrahepatic cholangiocarcinoma patients exposed to asbestos. Ann. Oncol. 2017, 28, vi47. [Google Scholar] [CrossRef]
- Brandi, G.; Deserti, M.; Palloni, A.; Frega, G.; De Lorenzo, S.; Abbati, F.; Rizzo, A.; Di Marco, M.; Massari, F.; Tavolari, S. Intrahepatic cholangiocarcinoma development in a patient with a novel BAP1 germline mutation and low exposure to asbestos. Cancer Genet. 2020, 248–249, 57–62. [Google Scholar] [CrossRef] [PubMed]
Incidence Rate | Most Associated Risk Factor | N° of Cases Analysed for Each Study | Genomic Landscape | Ref. | |
---|---|---|---|---|---|
Western CCAs vs. Eastern CCAs | ˂6 per 100,000 person-years vs. up to 113 per 100,000 person-years (Southeast Asia) | Primary sclerosing cholangitis vs. Liver fluke infection | 1. 283 patients from USA vs. 164 Chinese patients | 1. CDKN2A/B (30%), IDH1/2 (23.3%) and BAP1 (17.3%) mutation vs. TP53 (41.5%), TERT (13.4%), BRCA1/2 (8.5%), TGFBR2 (6.1%), RBM10 (6.1%), NF1 (6.1%), SPTA1 (5.5%), RB1 (5.5%), KMT2C (5.5%) and DDR (4.9%) mutation | [15] |
2. 158 iCCA patients from USA vs. 253 iCCA Chinese patients | 2. IDH1 (28%) and ARID1A (20%) mutation vs. KRAS (18%) mutation | [16] |
Etiology | Geographic Distribution | N° of Cases Analyzed for Each Study | Mutation Signature | Ref. |
---|---|---|---|---|
Liver fluke infection | Southeast Asia, mainly Mekong region | 1. 54 fluke-positive CCAs | 1. TP53 (44.4%), KRAS (16.7%), SMAD4 (16.7%) MLL3 (14.8%), ROBO2 (9.3%), RNF43 (9.3%), GNAS (9.3%) and PEG3 (5.6%) mutation | [21] |
2. 108 fluke-positive CCAs | 2. TP53 (39.8%), SMAD4 (19.4%), ARID1A (17.6%) and MLL3 (13%) mutation | [22] | ||
3. 133 fluke-positive CCAs | 3. ERBB2 amplification, TP53 mutation | [25] | ||
Primary sclerosing cholangitis | Europe, North America | 1. 24 PSC-associated CCAs | 1. TP53 (45.8%) mutation, loss of CDKN2A (33.3%) | [30] |
2. 60 PSC-associated iCCAs; 64 PSC-associated perihilar CCAs; 18 PSC-associated distal CCAs; 28 PSC-associated gallbladder cancers; 4 PSC-associated tumors of unknown anatomical origin | 2. TP53 (35.5%), KRAS (28.0%), CDKN2A (14.5%), SMAD4 (11.4%), PIK3CA (9.1%), CDKN2B (8.6%), ERBB2 (8.1%), KDM5A/6A (7.0%) and ROBO1 (7.0%) mutation; HER2 amplification (8.4%) | [31] | ||
Hepatitis B virus | Asian countries, mainly China | 1. 41 HBV-associated iCCAs | 1. HBV integration in TERT (10%), ZMAT4 (5%), MET (5%), ANKFN1 (5%), PLXNB2 (5%) genes | [39] |
2. 108 HBV-associated iCCAs | 2. HBV integration in TERT, FN1, FAT2, BRD9, ABCA12 and NBPF20 genes; IDH1, PBRM1 and PIK3CA mutation; TP53 mutation in iCCAs positive for viral integration | [40] | ||
3. 102 HBV-associated iCCAs | 3. TP53 mutation | [42] | ||
Bile duct cysts | Asian countries, mainly China and Japan | 1. 37 BTCs associated with pancreaticobiliary maljunction | 1. KRAS and TP53 mutation | [52] |
Liver cirrhosis | Asian countries, mainly China | 1. 10 iCCAs | 1. CDKN2A gene mutation/deletion (40%), IDH1/2 mutation (30%), FGFR2 translocation/mutation (20%), PBRM1 (20%), ARID1A and BAP1 (10%) mutation | [57] |
Hepatolithiasis | China, Taiwan, Hong Kong, Korea and Japan | 1. 38 iCCAs | 1. KRAS mutation (31.5%) | [61] |
Thorotrast | Worldwide | 1. 22 iCCAs | 1. TP53 mutation (27.2%) | [64] |
Aflatoxin B1 | Southeast Asia, China and sub-Saharan Africa | 1. 102 iCCAs | 1. TP53 R249S and TP553 truncating mutation (38.2%) | [42] |
Organic solvents (1,2-dichloropropane) | Japan and Thailand | 1. 4 iCCAs from occupationally-exposed printing workers | 1. ARID1A and AXIN1A mutation (75%), CDKN2A mutation (50%) | [75] |
Asbestos | Western countries | 1. 10 iCCAs from occupationally-exposed workers | 1. BAP1 mutation (27%) | [85] |
2. 1 iCCA from a patient with low exposure | 2. BAP1 germline mutation, BAP1 loss of heterozygosity in tumor cells | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavolari, S.; Brandi, G. Mutational Landscape of Cholangiocarcinoma According to Different Etiologies: A Review. Cells 2023, 12, 1216. https://doi.org/10.3390/cells12091216
Tavolari S, Brandi G. Mutational Landscape of Cholangiocarcinoma According to Different Etiologies: A Review. Cells. 2023; 12(9):1216. https://doi.org/10.3390/cells12091216
Chicago/Turabian StyleTavolari, Simona, and Giovanni Brandi. 2023. "Mutational Landscape of Cholangiocarcinoma According to Different Etiologies: A Review" Cells 12, no. 9: 1216. https://doi.org/10.3390/cells12091216
APA StyleTavolari, S., & Brandi, G. (2023). Mutational Landscape of Cholangiocarcinoma According to Different Etiologies: A Review. Cells, 12(9), 1216. https://doi.org/10.3390/cells12091216