Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure
Abstract
:1. Introduction
2. Role of Catecholamines in Cardiac Hypertrophy and Heart Failure
3. Role of Angiotensin II in Cardiac Hypertrophy and Heart Failure
4. Role of Serotonin in Cardiac Hypertrophy and Heart Failure
5. Role of Endothelin-1 in Cardiac Hypertrophy and Heart Failure
6. Role of Vasopressin in Cardiac Hypertrophy and Heart Failure
7. Perspective and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation 2012, 125, e2–e220. [Google Scholar] [PubMed]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; et al. Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ. Heart Fail. 2013, 6, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Jessup, M.; Brozena, S. Heart failure. N. Engl. J. Med. 2003, 348, 2007–2018. [Google Scholar] [CrossRef] [PubMed]
- Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005, 85, 1093–1129. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Thompson, R.E.; Hare, J.M.; Hruban, R.H.; Clemetson, D.E.; Howard, D.L.; Baughman, K.L.; Kasper, E.K. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N. Engl. J. Med. 2000, 342, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Janicki, J.S.; Brower, G.L.; Gardner, J.D.; Chancey, A.L.; Stewart, J.A., Jr. The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail. Rev. 2004, 9, 33–42. [Google Scholar] [CrossRef]
- Parmley, W.W. Pathophysiology and current therapy of congestive heart failure. J. Am. Coll. Cardiol. 1989, 13, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.; Kenchaiah, S.; Larson, M.G.; Benjamin, E.J.; Kupka, M.J.; Ho, K.K.; Murabito, J.M.; Vasan, R.S. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 2002, 347, 1397–1402. [Google Scholar] [CrossRef]
- McMurray, J.J.; Stewart, S. Epidemiology, aetiology, and prognosis of heart failure. Heart 2000, 83, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Larson, M.G.; Leip, E.P.; Beiser, A.; D’Agostino, R.B.; Kannel, W.B.; Murabito, J.M.; Vasan, R.S.; Benjamin, E.J.; Levy, D. Lifetime risk for developing congestive heart failure: The Framingham Heart Study. Circulation 2002, 106, 3068–3072. [Google Scholar] [CrossRef]
- Olson, R.E. Myocardial metabolism in congestive heart failure. J. Chronic Dis. 1959, 9, 442–464. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Saini-Chohan, H.K.; Rodriguez-Leyva, D.; Elimban, V.; Dent, M.R.; Tappia, P.S. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc. Res. 2009, 81, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Das, P.K.; Sharma, G.P. Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol. 1978, 10, 363–385. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.A.; Braunwald, E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990, 81, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Cohn, J.N.; Ferrari, R.; Sharpe, N. Cardiac remodeling--concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol. 2000, 35, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Neurohormonal interactions and adaptations in congestive heart failure. Circulation 1988, 77, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Bhullar, S.K.; Adameova, A.; Mota, K.O.; de Vasconcelos, C.M.L. Status of β1-adrenoceptor signal transduction system in cardiac hypertrophy and heart failure. Rev. Cardiovasc. Med. 2023, 24, 264. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Afzal, N.; Beamish, R.E.; Naimark, B.; Takeda, N.; Nagano, M. Pathophysiology of cardiac dysfunction in congestive heart failure. Can. J. Cardiol. 1993, 9, 873–887. [Google Scholar] [PubMed]
- Opie, L.H.; Commerford, P.J.; Gersh, B.J.; Pfeffer, M.A. Controversies in ventricular remodelling. Lancet 2006, 367, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Mudd, J.O.; Kass, D.A. Tackling heart failure in the twenty-first century. Nature 2008, 451, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Shao, Q.; Panagia, V. Remodeling of cardiac membranes during the development of congestive heart failure. Heart Fail. Rev. 1998, 2, 261–272. [Google Scholar] [CrossRef]
- Machackova, J.; Barta, J.; Dhalla, N.S. Myofibrillar remodeling in cardiac hypertrophy, heart failure and cardiomyopathies. Can. J. Cardiol. 2006, 22, 953–968. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, H.N.; Goldstein, S. Ventricular remodelling: Consequences and therapy. Eur. Heart J. 1993, 14 (Suppl. C), 24–29. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Dent, M.R.; Tappia, P.S.; Sethi, R.; Barta, J.; Goyal, R.K. Subcellular remodeling as a viable target for the treatment of congestive heart failure. J. Cardiovasc. Pharmacol. Ther. 2006, 11, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Burchfield, J.S.; Xie, M.; Hill, J.A. Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation 2013, 128, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed]
- van Heerebeek, L.; Borbely, A.; Niessen, H.W.; Bronzwaer, J.G.; van der Velden, J.; Stienen, G.J.; Linke, W.A.; Laarman, G.J.; Paulus, W.J. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 2006, 113, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Selby, D.E.; Palmer, B.M.; LeWinter, M.M.; Meyer, M. Tachycardia-induced diastolic dysfunction and resting tone in myocardium from patients with a normal ejection fraction. J. Am. Coll. Cardiol. 2011, 58, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Minamino, T.; Toko, H.; Okada, S.; Ikeda, H.; Yasuda, N.; Tateno, K.; Moriya, J.; Yokoyama, M.; Nojima, A.; et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J. Clin. Investig. 2010, 120, 1506–1514. [Google Scholar] [CrossRef]
- Borbely, A.; van der Velden, J.; Papp, Z.; Bronzwaer, J.G.; Edes, I.; Stienen, G.J.; Paulus, W.J. Cardiomyocyte stiffness in diastolic heart failure. Circulation 2005, 111, 774–781. [Google Scholar] [CrossRef]
- Maillet, M.; van Berlo, J.H.; Molkentin, J.D. Molecular basis of physiological heart growth: Fundamental concepts and new players. Nat. Rev. Mol. Cell Biol. 2013, 14, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Lyon, R.C.; Zanella, F.; Omens, J.H.; Sheikh, F. Mechanotransduction in cardiac hypertrophy and failure. Circ. Res. 2015, 116, 1462–1476. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, B.C.; Weeks, K.L.; Pretorius, L.; McMullen, J.R. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol. Ther. 2010, 128, 191–227. [Google Scholar] [CrossRef] [PubMed]
- Molkentin, J.D.; Dorn, G.W., 2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 2001, 63, 391–426. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 2016, 97, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Wikman-Coffelt, J.; Parmley, W.W.; Mason, D.T. The cardiac hypertrophy process: Analyses of factors determining pathological vs. physiological development. Circ. Res. 1979, 45, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Heyliger, C.E.; Beamish, R.E.; Innes, I.R. Pathophysiological aspects of myocardial hypertrophy. Can. J. Cardiol. 1987, 3, 183–196. [Google Scholar] [PubMed]
- Heineke, J.; Molkentin, J.D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell. Biol. 2006, 7, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Sethi, R.; Saini, H.K.; Guo, X.; Wang, X.; Elimban, V.; Dhalla, N.S. Dependence of changes in beta-adrenoceptor signal transduction on type and stage of cardiac hypertrophy. J. Appl. Physiol. 2007, 102, 978–984. [Google Scholar] [CrossRef]
- Oldfield, C.J.; Duhamel, T.A.; Dhalla, N.S. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can. J. Physiol. Pharmacol. 2020, 98, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Parmley, W.W. Neuroendocrine changes in heart failure and their clinical relevance. Clin. Cardiol. 1995, 18, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, D.P.; Onuoha, G.N.; McDowell, G.; Elborn, J.S.; Riley, M.S.; Nugent, A.M.; Steele, I.C.; Shaw, C.; Buchanan, K.D. Neuroendocrine changes in chronic cardiac failure. Basic Res. Cardiol. 1996, 91 (Suppl. S1), 13–20. [Google Scholar] [CrossRef]
- Rouleau, J.L. The neurohormonal hypothesis and the treatment of heart failure. Can. J. Cardiol. 1996, 12, 3F–8F. [Google Scholar]
- Grossman, W. Cardiac hypertrophy: Useful adaptation or pathologic process? Am. J. Med. 1980, 69, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.T.; Sun, Y.; Guarda, E. Structural remodeling in hypertensive heart disease and the role of hormones. Hypertension 1994, 23 Pt 2, 869–877. [Google Scholar] [CrossRef]
- Packer, M. The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 1992, 20, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Francis, G.S.; Benedict, C.; Johnstone, D.E.; Kirlin, P.C.; Nicklas, J.; Liang, C.S.; Kubo, S.H.; Rudin-Toretsky, E.; Yusuf, S. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the studies. Circulation 1990, 82, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Delcayre, C.; Swynghedauw, B.; Molecular mechanisms of myocardial remodeling. The role of aldosterone. J. Mol. Cell. Cardiol. 2002, 34, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.T.; Brilla, C.G. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991, 83, 1849–1865. [Google Scholar] [CrossRef] [PubMed]
- Kenessey, A.; Ojamaa, K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J. Biol. Chem. 2006, 281, 20666–20672. [Google Scholar] [CrossRef]
- Pantos, C.; Mourouzis, I.; Cokkinos, D.V. New insights into the role of thyroid hormone in cardiac remodeling: Time to reconsider? Heart Fail. Rev. 2011, 16, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Vasan, R.S.; Sullivan, L.M.; D’Agostino, R.B.; Roubenoff, R.; Harris, T.; Sawyer, D.B.; Levy, D.; Wilson, P.W. Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: The Framingham Heart Study. Ann. Intern. Med. 2003, 139, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Troncoso, R.; Ibarra, C.; Vicencio, J.M.; Jaimovich, E.; Lavandero, S. New insights into IGF-1 signaling in the heart. Trends Endocrinol. Metab. 2014, 25, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Parodi, E.M.; Kuhn, B. Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc. Res. 2014, 102, 194–204. [Google Scholar] [CrossRef]
- Ruetten, H.; Dimmeler, S.; Gehring, D.; Ihling, C.; Zeiher, A.M. Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload. Cardiovasc. Res. 2005, 66, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.M.; Sanderson, J.E.; Shum, I.O.; Chan, S.; Yeung, L.Y.; Hung, Y.T.; Cockram, C.S.; Woo, K.S. Diastolic dysfunction and natriuretic peptides in systolic heart failure. Higher ANP and BNP levels are associated with the restrictive filling pattern. Eur. Heart J. 1996, 17, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Clerico, A.; Iervasi, G.; Del Chicca, M.G.; Emdin, M.; Maffei, S.; Nannipieri, M.; Sabatino, L.; Forini, F.; Manfredi, C.; Donato, L. Circulating levels of cardiac natriuretic peptides (ANP and BNP) measured by highly sensitive and specific immunoradiometric assays in normal subjects and in patients with different degrees of heart failure. J. Endocrinol. Investig. 1998, 21, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Siwik, D.A.; Pagano, P.J.; Colucci, W.S. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am. J. Physiol. Cell Physiol. 2001, 280, C53–C60. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, D.B.; Siwik, D.A.; Xiao, L.; Pimentel, D.R.; Singh, K.; Colucci, W.S. Role of oxidative stress in myocardial hypertrophy and failure. J. Mol. Cell. Cardiol. 2002, 34, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Keith, M.; Geranmayegan, A.; Sole, M.J.; Kurian, R.; Robinson, A.; Omran, A.S.; Jeejeebhoy, K.N. Increased oxidative stress in patients with congestive heart failure. J. Am. Coll. Cardiol. 1998, 31, 1352–1356. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Elmoselhi, A.B.; Hata, T.; Makino, N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc. Res. 2000, 47, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Temsah, R.M.; Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 2000, 18, 655–673. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Saini, H.K.; Tappia, P.S.; Sethi, R.; Mengi, S.A.; Gupta, S.K. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J. Cardiovasc. Med. 2007, 8, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Molkentin, J.D.; Lu, J.R.; Antos, C.L.; Markham, B.; Richardson, J.; Robbins, J.; Grant, S.R.; Olson, E.N. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998, 93, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Backs, J.; Backs, T.; Neef, S.; Kreusser, M.M.; Lehmann, L.H.; Patrick, D.M.; Grueter, C.E.; Qi, X.; Richardson, J.A.; Hill, J.A.; et al. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc. Natl. Acad. Sci. USA 2009, 106, 2342–2347. [Google Scholar] [CrossRef] [PubMed]
- Rona, G. Catecholamine cardiotoxicity. J. Mol. Cell. Cardiol. 1985, 17, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Adameova, A.; Abdellatif, Y.; Dhalla, N.S. Role of the excessive amounts of circulating catecholamines and glucocorticoids in stress-induced heart disease. Can. J. Physiol. Pharmacol. 2009, 87, 493–514. [Google Scholar] [CrossRef] [PubMed]
- Bohm, M. Alterations of β-adrenoceptor-G-protein-regulated adenylyl cyclase in heart failure. Mol. Cell. Biochem. 1995, 147, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Bristow, M.R.; Feldman, A.M. Changes in the receptor-G protein-adenylyl cyclase system in heart failure from various types of heart muscle disease. Basic. Res. Cardiol. 1992, 87, 15–35. [Google Scholar] [PubMed]
- Stiles, G.L.; Caron, M.G.; Lefkowitz, R.J. β-adrenergic receptors: Biochemical mechanisms of physiological regulation. Physiol. Rev. 1984, 64, 661–743. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Wang, X.; Sethi, R.; Das, P.K.; Beamish, R.E. β-adrenergic linked signal transduction mechanisms in failing hearts. Heart Fail. Rev. 1997, 2, 55–65. [Google Scholar] [CrossRef]
- Panagia, V.; Pierce, G.N.; Dhalla, K.S.; Ganguly, P.K.; Beamish, R.E.; Dhalla, N.S. Adaptive changes in subcellular calcium transport during catecholamine-induced cardiomyopathy. J. Mol. Cell. Cardiol. 1985, 17, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Kallfelt, B.J.; Hjalmarson, A.C.; Isaksson, O.G. In vitro effects of catecholamines on protein synthesis in perfused rat heart. J. Mol. Cell. Cardiol. 1976, 8, 787–802. [Google Scholar] [CrossRef] [PubMed]
- Singal, T.; Dhalla, N.S.; Tappia, P.S. Regulation of c-Fos and c-Jun gene expression by phospholipase C in adult cardiomyocytes. Mol. Cell Biochem. 2009, 327, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Takeo, S.; Elmoselhi, A.B.; Goel, R.; Sentex, E.; Wang, J.; Dhalla, N.S. Attenuation of changes in sarcoplasmic reticular and gene expression in cardiac hypertrophy by propranolol and verapamil. Mol. Cell Biochem. 2000, 213, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Rockman, H.A.; Koch, W.J.; Lefkowitz, R.J. Seven-transmembrane-spanning receptors and heart function. Nature 2002, 415, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, E.A.; Du, X.J.; Reichelt, M.E.; Graham, R.M. Cardiac α1-adrenergic drive in pathological remodelling. Cardiovasc. Res. 2008, 77, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 2001, 70, 281–312. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Sano, H.; Iizuka, K.; Okada, H.; Kudo, T.; Kageyama, K. Phosphatidylinositol metabolism in hypertrophic rat heart. Circ. Res. 1993, 72, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Sakata, Y. Tissue factors contributing to cardiac hypertrophy in cardiomyopathic hamsters (BIO14.6): Involvement of transforming growth factor-β1 and tissue renin-angiotensin system in the progression of cardiac hypertrophy. Hokkaido Igaku Zasshi 1993, 68, 18–28. [Google Scholar] [PubMed]
- Dent, M.R.; Dhalla, N.S.; Tappia, P.S. Phospholipase C gene expression, protein content and activities in cardiac hypertrophy and heart failure due to volume overload. Am. J. Physiol. 2004, 282, H719–H727. [Google Scholar] [CrossRef] [PubMed]
- Singal, T.; Dhalla, N.S.; Tappia, P.S. Phospholipase C may be involved in norepinephrine-induced cardiac hypertrophy. Biochem. Biophys. Res. Commun. 2004, 320, 1015–1019. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Xu, Y.J.; Sheu, S.S.; Tappia, P.S.; Panagia, V. Phosphatidic acid: A potential signal transducer for cardiac hypertrophy. J. Mol. Cell. Cardiol. 1997, 29, 2865–2871. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Yau, L.; Yu, L.P.; Elimban, V.; Zahradka, P.; Dhalla, N.S. Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes. Biochem. Pharmacol. 1996, 52, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Corder, D.W.; Heyliger, C.E.; Beamish, R.E.; Dhalla, N.S. Defect in the adrenergic receptor-adenylate cyclase system during development of catecholamine-induced cardiomyopathy. Am. Heart J. 1984, 107, 537–542. [Google Scholar] [CrossRef]
- Tappia, P.S.; Hata, T.; Hozaima, L.; Sandhu, M.S.; Panagia, V.; Dhalla, N.S. Role of oxidative stress in catecholamine-induced changes in cardiac sarcolemmal Ca2+ transport. Arch. Biochem. Biophys. 2001, 387, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Adameova, A.; Kaur, M. Role of catecholamine oxidation in sudden cardiac death. Fundam. Clin. Pharmacol. 2010, 24, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S. Formation of aminochrome leads to cardiac dysfunction and sudden cardiac death. Circ. Res. 2018, 123, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Mialet-Perez, J.; Santin, J.; Parini, A. Monoamine oxidase-A, serotonin and norepinephrine: Synergistic players in cardiac physiology and pathology. J. Neural Transm. 2018, 125, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Sethi, R.; Adameova, A.; Dhalla, K.S.; Khan, M.; Elimban, V.; Dhalla, N.S. Modification of epinephrine-induced arrhythmias by N-acetyl-L-cysteine and vitamin E. J. Cardiovasc. Pharmacol. Ther. 2009, 14, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.K.; Dhalla, N.S. Effectiveness of some vitamins in the prevention of cardiovascular disease: A narrative review. Front. Physiol. 2021, 12, 729255. [Google Scholar] [CrossRef] [PubMed]
- Adameova, A.; Tappia, P.S.; Hatala, R.; Dhalla, N.S. Potential of sulphur-containing amino acids in the prevention of catecholamine-induced arrhythmias. Curr. Med. Chem. 2018, 25, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Babick, A.; Elimban, V.; Dhalla, N.S. Reversal of cardiac remodelling and subcellular defects by prazosin in heart failure due to myocardial infarction. J. Clin. Exp. Cardiol. 2012, S5, 1–7. [Google Scholar]
- Babick, A.; Elimban, V.; Zieroth, S.; Dhalla, N.S. Reversal of cardiac dysfunction and subcellular alterations by metoprolol in heart failure due to myocardial infarction. J. Cell. Physiol. 2013, 228, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- Rehsia, N.S.; Dhalla, N.S. Mechanisms of the beneficial effects of β-adrenoceptor antagonists in congestive heart failure. Exp. Clin. Cardiol. 2010, 15, e86–e95. [Google Scholar]
- Peach, M.J. Renin-angiotensin system: Biochemistry and mechanisms of action. Physiol. Rev. 1977, 57, 313–370. [Google Scholar] [CrossRef] [PubMed]
- Wollert, K.C.; Drexler, H. The renin-angiotensin system and experimental heart failure. Cardiovasc. Res. 1999, 43, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Bader, M. Role of the local renin-angiotensin system in cardiac damage: A minireview focussing on transgenic animal models. J. Mol. Cell. Cardiol. 2002, 34, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Miura, S.; Saku, K.; Karnik, S.S. Molecular analysis of the structure and function of the angiotensin II type 1 receptor. Hypertens. Res. 2003, 26, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, K.D.; Wenzel, S. Angiotensin II: A hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol. Ther. 2008, 119, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, S.K.; Shah, A.K.; Dhalla, N.S. Role of angiotensin II in the development of subcellular remodeling in heart failure. Explor. Med. 2021, 2, 352–371. [Google Scholar] [CrossRef]
- Bhullar, S.K.; Dhalla, N.S. Angiotensin II-induced signal transduction mechanisms for cardiac hypertrophy. Cells 2022, 11, 3336. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, S.K.; Shah, A.K.; Dhalla, N.S. Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. Scr. Med. 2022, 53, 51–76. [Google Scholar] [CrossRef]
- Bhullar, S.K.; Dhalla, N.S. Adaptive and maladaptive roles of different angiotensin receptors in the development of cardiac hypertrophy and heart failure. Can. J. Physiol. Pharmacol. 2024, 102, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M.; Schiffrin, E.L. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol. Rev. 2000, 52, 639–672. [Google Scholar] [PubMed]
- Kim, S.; Iwao, H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol. Rev. 2000, 52, 11–34. [Google Scholar]
- Touyz, R.M.; Berry, C. Recent advances in angiotensin II signaling. Braz. J. Med. Biol. Res. 2002, 35, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 2007, 292, C82–C97. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol. Rev. 2018, 98, 1627–1738. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.; Pant, M.; Paliwal, S.; Dwivedi, J.; Sharma, S. An insight on multicentric signaling of angiotensin II in cardiovascular system: A recent update. Front. Pharmacol. 2021, 12, 734917. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S.; Haneda, T. Hypertrophic growth of cultured neonatal rat heart cells mediated by type 1 angiotensin II receptor. Am. J. Physiol. 1994, 266, H2443–H2451. [Google Scholar] [CrossRef] [PubMed]
- Dostal, D.E.; Baker, K.M. Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart. Mediation by the AT1 receptor. Am. J. Hypertens. 1992, 5, 276–280. [Google Scholar] [PubMed]
- Matsubara, H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ. Res. 1998, 83, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.H.; Yuan, H. Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovasc. Diagn. Ther. 2012, 2, 56–62. [Google Scholar] [PubMed]
- Simões e Silva, A.C.; Silveira, K.D.; Ferreira, A.J.; Teixeira, M.M. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br. J. Pharmacol. 2013, 169, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Mercure, C.; Yogi, A.; Callera, G.E.; Aranha, A.B.; Bader, M.; Ferreira, A.J.; Santos, R.A.S.; Walther, T.; Touyz, R.M.; Reudelhuber, T.L. Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ. Res. 2008, 103, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Zhong, J.C.; Grant, M.B.; Oudit, G.Y. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ. Res. 2016, 118, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1-7). Physiol. Rev. 2018, 98, 505–553. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000, 87, E1–E9. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.; Simoes e Silva, A.C.; Maric, C.; Silva, D.M.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.B.; Lopes, M.T.; Bader, M.; et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl. Acad. Sci. USA 2003, 100, 8258–8263. [Google Scholar] [CrossRef]
- Kriszta, G.; Kriszta, Z.; Váncsa, S.; Hegyi, P.J.; Frim, L.; Erőss, B.; Hegyi, P.; Pethő, G.; Pinter, E. Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on angiotensin-converting enzyme 2 levels: A comprehensive analysis based on animal studies. Front. Pharmacol. 2021, 12, 619524. [Google Scholar] [CrossRef] [PubMed]
- Ago, T.; Sadoshima, J. From contractile enhancement to pathological hypertrophy: Angiotenin II-induced Nox2 -mediated reactive oxygen species. J. Am. Coll. Cardiol. 2015, 66, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Hingtgen, S.D.; Tian, X.; Yang, J.; Dunlay, S.M.; Peek, A.S.; Wu, Y.; Sharma, R.V.; Engelhardt, J.F.; Davisson, R.L.; Atef, M.E.; et al. Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol. Genom. 2006, 26, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Looi, Y.H.; Grieve, D.J.; Siva, A.; Walker, S.J.; Anilkumar, N.; Cave, A.C.; Marber, M.; Monaghan, M.J.; Shah, A.M. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 2008, 51, 319–325. [Google Scholar] [CrossRef] [PubMed]
- De Mello, W.C. Local renin angiotensin aldosterone systems and cardiovascular diseases. Med. Clin. N. Am. 2017, 101, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Tarzami, S.T. Chemokines and inflammation in heart disease: Adaptive or maladaptive? Int. J. Clin. Exp. Med. 2011, 4, 74–80. [Google Scholar] [PubMed]
- Zhang, H.; Dhalla, N.S. The role of pro-Inflammatory cytokines in the pathogenesis of cardiovascular disease. Int. J. Mol. Sci. 2024, 25, 1082. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, J.R.; Mongue-Din, H.; Eaton, P.; Shah, A.M. Redox signaling in cardiac physiology and pathology. Circ. Res. 2012, 111, 1091–1106. [Google Scholar] [CrossRef] [PubMed]
- Maejima, Y.; Kuroda, J.; Matsushima, S.; Ago, T.; Sadoshima, J. Regulation of myocardial growth and death by NADPH oxidase. J. Mol. Cell. Cardiol. 2011, 50, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, C.E.; Zhang, M.; Cave, A.C.; Shah, A.M. NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc. Res. 2006, 71, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Sirker, A.; Zhang, M.; Shah, A.M. NADPH oxidases in cardiovascular disease: Insights from in vivo models and clinical studies. Basic Res. Cardiol. 2011, 106, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Murugesan, P.; Huang, K.; Cai, H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets. Nat. Rev. Cardiol. 2020, 17, 170–194. [Google Scholar] [CrossRef] [PubMed]
- Sadoshima Lassègue, B.; San Martín, A.; Griendling, K.K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 2012, 110, 1364–1390. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.K.; Bhullar, S.K.; Elimban, V.; Dhalla, N.S. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants 2021, 10, 931. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, P.M. Serotonin, hypertension and vascular disease. Neth. J. Med. 1991, 38, 35–42. [Google Scholar] [PubMed]
- Parikh, V.; Singh, M. Resident cardiac mast cells and the cardioprotective effect of ischemic preconditioning in isolated rat heart. J. Cardiovasc. Pharmacol. 1997, 30, 149–156. [Google Scholar] [CrossRef]
- Villalón, C.M.; Centurión, D. Cardiovascular responses produced by 5-hydroxytriptamine: A pharmacological update on the receptors/mechanisms involved and therapeutic implications. Naunyn Schmiedebergs Arch. Pharmacol. 2007, 376, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Jaffré, F.; Bonnin, P.; Callebert, J.; Debbabi, H.; Setola, V.; Doly, S.; Monassier, L.; Mettauer, B.; Blaxall, B.C.; Launay, J.-M.; et al. Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. Circ. Res. 2009, 104, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Del Rizzo, D.F.; Zahradka, P.; Bhangu, S.K.; Werner, J.P.; Kumamoto, H.; Takeda, N.; Dhalla, N.S. Sarpogrelate inhibits serotonin-induced proliferation of porcine coronary artery smooth muscle cells: Implications for long-term graft patency. Ann. Thorac. Surg. 2001, 71, 1856–1864. [Google Scholar] [CrossRef] [PubMed]
- Saini, H.K.; Takeda, N.; Goyal, R.K.; Kumamoto, H.; Arneja, A.S.; Dhalla, N.S. Therapeutic potentials of sarpogrelate in cardiovascular disease. Cardiovasc. Drug Rev. 2004, 22, 27–54. [Google Scholar] [CrossRef] [PubMed]
- Nagatomo, T.; Rashid, M.; Abul Muntasir, H.; Komiyama, T. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system. Pharmacol. Ther. 2004, 104, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Barnes, N.M.; Sharp, T. A review of central 5-HT receptors and their function. Neuropharmacology 1999, 38, 1083–1152. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.R. Cardiovascular effects from stimulation of 5-hydroxytryptamine receptors. Fundam. Clin. Pharmacol. 1989, 3, 245–265. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, T.; Longmore, J.; Shaw, D.; Pantev, E.; Bard, J.A.; Branchek, T.; Edvinsson, L. Characterisation of 5-HT receptors in human coronary arteries by molecular and pharmacological techniques. Eur. J. Pharmacol. 1999, 372, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Jiang, Y.P.; Lu, Z.; Martin, D.W.; Kelly, D.J.; Zuckerman, J.M.; Ballou, L.M.; Cohen, I.S.; Lin, R.Z. A transgenic mouse model of heart failure using inducible Galpha q. J. Biol. Chem. 2005, 280, 40337–40346. [Google Scholar] [CrossRef] [PubMed]
- Saini, H.K.; Sharma, S.K.; Zahradka, P.; Kumamoto, H.; Takeda, N.; Dhalla, N.S. Attenuation of the serotonin-induced increase in intracellular calcium in rat aortic smooth muscle cells by sarpogrelate. Can. J. Physiol. Pharmacol. 2003, 81, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Hamamori, Y.; Yokoyama, M.; Yamada, M.; Akita, H.; Goshima, K.; Fukuzaki, H. 5-Hydroxytryptamine induces phospholipase C-mediated hydrolysis of phosphoinositides through 5-hydroxytryptamine-2 receptors in cultured fetal mouse ventricular myocytes. Circ. Res. 1990, 66, 1474–1483. [Google Scholar] [CrossRef]
- Nosek, T.M.; Williams, M.F.; Zeigler, S.T.; Godt, R.E. Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am. J. Physiol. 1986, 250 Pt 1, C807–C811. [Google Scholar] [CrossRef]
- Shimizu, Y.; Minatoguchi, S.; Hashimoto, K.; Uno, Y.; Arai, M.; Wang, N.; Chen, X.; Lu, C.; Takemura, G.; Shimomura, M.; et al. The role of serotonin in ischemic cellular damage and the infarct size-reducing effect of sarpogrelate, a 5-hydroxytryptamine-2 receptor blocker, in rabbit hearts. J. Am. Coll. Cardiol. 2002, 40, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.M.; Sarswat, N.; Kelesidis, I.; Iqbal, M.; Chandra, R.; Zolty, R. Plasma serotonin in heart failure: Possible marker and potential treatment target. Heart Lung Circ. 2017, 26, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Vikenes, K.; Farstad, M.; Nordrehaug, J.E. Serotonin is associated with coronary artery disease and cardiac events. Circulation 1999, 100, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Esler, M.; Alvarenga, M.; Barton, D.; Jennings, G.; Kaye, D.; Guo, L.; Schwarz, R.; Lambert, G. Measurement of noradrenaline and serotonin metabolites with internal jugular vein sampling: An indicator of brain monoamine turnover in depressive illness and panic disorder. Front. Psychiatry 2022, 13, 818012. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, E.K.; Schmitz, J.M.; Benedict, C.R.; Malloy, C.R.; Willerson, J.T.; Dehmer, G.J. Transcardiac serotonin concentration is increased in selected patients with limiting angina and complex coronary lesion morphology. Circulation 1989, 79, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Hirowatari, Y.; Yoshika, M.; Komiyama, Y.; Tsuka, Y.; Takahashi, H. The ratio of plasma to whole-blood serotonin may be a novel marker of atherosclerotic cardiovascular disease. J. Lab. Clin. Med. 2004, 144, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Barta, J.; Sanganalmath, S.K.; Kumamoto, H.; Takeda, N.; Edes, I.; Dhalla, N.S. Antiplatelet agents sarpogrelate and cilostazol affect experimentally-induced ventricular arrhythmias and mortality. Cardiovasc. Toxicol. 2008, 8, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Brasil, D.; Temsah, R.M.; Kumar, K.; Kumamoto, H.; Takeda, N.; Dhalla, N.S. Blockade of 5-HT(2A) receptors by sarpogrelate protects the heart against myocardial infarction in rats. J. Cardiovasc. Pharmacol. Ther. 2002, 7, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.M.; Parr, L.C.; Livingston, W.B.; Lindsley, C.W.; Merryman, W.D. 2B Determined: The future of the serotonin receptor 2B in drug discovery. J. Med. Chem. 2023, 66, 11027–11039. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Shen, J.; Pu, J.; He, B. Aspirin attenuates pulmonary arterial hypertension in rats by reducing plasma 5-hydroxytryptamine levels. Cell. Biochem. Biophys. 2011, 61, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Virk, H.U.H.; Escobar, J.; Rodriguez, M.; Bates, E.R.; Khalid, U.; Jneid, H.; Birnbaum, Y.; Levine, G.N.; Smith, S.C.; Krittanawong, C. Dual antiplatelet therapy: A concise review for clinicians. Life 2023, 13, 1580. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhou, P.; Gao, W.; Zhong, H.; Chen, Y.; Chen, W.; Waresi, M.; Xie, K.; Shi, H.; Gong, H.; et al. Cilostazol combined with P2Y12 receptor inhibitors: A substitute antiplatelet regimen for aspirin-intolerant patients undergoing percutaneous coronary stent implantation. Clin. Cardiol. 2022, 45, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Kang, J.; Park, K.W.; Hur, S.H.; Lee, N.H.; Hwang, D.; Yang, H.M.; Ahn, H.S.; Cha, K.S.; Jo, S.H.; et al. Comparison of antiplatelet monotherapies after percutaneous coronary intervention according to clinical, ischemic, and bleeding risks. J. Am. Coll. Cardiol. 2023, 82, 1565–1578. [Google Scholar] [CrossRef] [PubMed]
- Linden, K.; Mailey, J.; Kearney, A.; Menown, I.B.A. Advances in clinical cardiology 2019: A summary of key clinical trials. Adv. Ther. 2020, 37, 2620–2645. [Google Scholar] [CrossRef] [PubMed]
- Sikharulidze, I.; Chelidze, K.; Mamatsashvili, I. Cardiovascular event assessment in patients with nonobstructive coronary artery disease undergoing dual antiplatelet treatment. Georgian Med. News 2020, 309, 43–46. [Google Scholar]
- Koh, Y.; Kwok, C.; Voskoboinik, A.; Kalman, J.M.; Wong, M. Serotonin antidepressants and atrial fibrillation burden from cardiac implantable electronic devices. J. Arrhythm. 2023, 39, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Majid, P.A.; Morris, W.M.; Sole, M.J. Hemodynamic and neurohumoral effects of ketanserin, a 5-HT2 receptor antagonist in patients with congestive heart failure. Can. J. Cardiol. 1987, 3, 70–74. [Google Scholar] [PubMed]
- Grobecker, H.; Gessler, I.; Delius, W.; Dominiak, P.; Kees, F. Effect of ketanserin on hemodynamics, plasma-catecholamine concentrations, and serotonin uptake by platelets in volunteers and patients with congestive heart failure. J. Cardiovasc. Pharmacol. 1985, 7, S102–S104. [Google Scholar] [CrossRef] [PubMed]
- Sanganalmath, S.K.; Barta, J.; Takeda, N.; Kumamoto, H.; Dhalla, N.S. Antiplatelet therapy mitigates cardiac remodeling and dysfunction in congestive heart failure due to myocardial infarction. Can. J. Physiol. Pharmacol. 2008, 86, 180–189. [Google Scholar] [CrossRef]
- Sanganalmath, S.K.; Babick, A.P.; Barta, J.; Kumamoto, H.; Takeda, N.; Dhalla, N.S. Antiplatelet therapy attenuates subcellular remodelling in congestive heart failure. J. Cell. Mol. Med. 2008, 12, 1728–1738. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Sunagawa, Y.; Funamoto, M.; Honda, H.; Katanasaka, Y.; Murai, N.; Kawase, Y.; Hirako, Y.; Katagiri, T.; Katagiri, H.; et al. The selective serotonin 2A receptor antagonist sarpogrelate prevents cardiac hypertrophy and systolic dysfunction via inhibition of the ERK1/2-GATA4 signaling pathway. Pharmaceuticals 2021, 14, 1268. [Google Scholar] [CrossRef] [PubMed]
- Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A. Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc. Natl. Acad. Sci. USA 1986, 83, 674–678. [Google Scholar] [CrossRef]
- Seuwen, K.; Pouysségur, J. Serotonin as a growth factor. Biochem. Pharmacol. 1990, 39, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Fozard, J.R.; Mwaluko, G.M. Mechanism of the indirect sympathomimetic effect of 5-hydroxytrypt-amine on the isolated heart of the rabbit. Br. J. Pharmacol. 1976, 57, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Akima, M. An analysis of the stimulant effects of 5-hydroxytryptamine on isolated, blood-perfused rat heart. Eur. J. Pharmacol. 1979, 55, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, C.; Caudrillier, A.; Ordener, C.; Pizzinat, N.; Parini, A.; Mialet-Perez, J. Dose-dependent activation of distinct hypertrophic pathways by serotonin in cardiac cells. Am. J. Physiol. Heart. Circ. Physiol. 2009, 297, H821–H828. [Google Scholar] [CrossRef] [PubMed]
- Mialet-Perez, J.; D’Angelo, R.; Villeneuve, C.; Ordener, C.; Nègre-Salvayre, A.; Parini, A.; Vindis, C. Serotonin 5-HT2A receptor-mediated hypertrophy is negatively regulated by caveolin-3 in cardiomyoblasts and neonatal cardiomyocytes. J. Mol. Cell. Cardiol. 2012, 52, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Lairez, O.; Cognet, T.; Schaak, S.; Calise, D.; Guilbeau-Frugier, C.; Parini, A.; Mialet-Perez, J. Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice. J. Neural. Transm. 2013, 120, 927–935. [Google Scholar] [CrossRef]
- Guillet-Deniau, I.; Burnol, A.F.; Girard, J. Identification and localization of a skeletal muscle secrotonin 5-HT2A receptor coupled to the Jak/STAT pathway. J. Biol. Chem. 1997, 272, 14825–14829. [Google Scholar] [CrossRef] [PubMed]
- Kjekshus, J.K.; Torp-Pedersen, C.; Gullestad, L.; Køber, L.; Edvardsen, T.; Olsen, I.C.; Sjaastad, I.; Qvigstad, E.; Skomedal, T.; Osnes, J.; et al. Effect of piboserod, a 5-HT4 serotonin receptor antagonist, on left ventricular function in patients with symptomatic heart failure. Eur. J. Heart Fail. 2009, 11, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Leftheriotis, D.; Flevari, P.; Ikonomidis, I.; Douzenis, A.; Liapis, C.; Paraskevaidis, I.; Iliodromitis, E.; Lykouras, L.; Kremastinos, D.T. The role of the selective serotonin re-uptake inhibitor sertraline in nondepressive patients with chronic ischemic heart failure: A preliminary study. Pacing. Clin. Electrophysiol. 2010, 33, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Birkeland, J.A.; Sjaastad, I.; Brattelid, T.; Qvigstad, E.; Moberg, E.R.; Krobert, K.A.; Bjørnerheim, R.; Skomedal, T.; Sejersted, O.M.; Osnes, J.-B.; et al. Effects of treatment with a 5-HT4 receptor antagonist in heart failure. Br. J. Pharmacol. 2007, 150, 143–152. [Google Scholar] [CrossRef]
- Monassier, L.; Laplante, M.A.; Jaffré, F.; Bousquet, P.; Maroteaux, L.; de Champlain, J. Serotonin 5-HT(2B) receptor blockade prevents reactive oxygen species-induced cardiac hypertrophy in mice. Hypertension 2008, 52, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Nigmatullina, R.R.; Kirillova, V.V.; Jourjikiya, R.K.; Mukhamedyarov, M.A.; Kudrin, V.S.; Klodt, P.M.; Palotás, A. Disrupted serotonergic and sympathoadrenal systems in patients with chronic heart failure may serve as new therapeutic targets and novel biomarkers to assess severity, progression and response to treatment. Cardiology 2009, 113, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Hirowatari, Y.; Hara, K.; Shimura, Y.; Takahashi, H. Serotonin levels in platelet-poor plasma and whole blood from healthy subjects: Relationship with lipid markers and coronary heart disease risk score. J. Atheroscler. Thromb. 2011, 18, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Figueras, J.; Domingo, E.; Cortadellas, J.; Padilla, F.; Dorado, D.G.; Segura, R.; Galard, R.; Soler, J.S. Comparison of plasma serotonin levels in patients with variant angina pectoris versus healed myocardial infarction. Am. J. Cardiol. 2005, 96, 204–207. [Google Scholar] [CrossRef]
- Janssen, W.; Schymura, Y.; Novoyatleva, T.; Kojonazarov, B.; Boehm, M.; Wietelmann, A.; Luitel, H.; Murmann, K.; Krompiec, D.R.; Tretyn, A.; et al. 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. Biomed. Res. Int. 2015, 2015, 438403. [Google Scholar] [CrossRef] [PubMed]
- Nebigil, C.G.; Jaffré, F.; Messaddeq, N.; Hickel, P.; Monassier, L.; Launay, J.M.; Maroteaux, L. Overexpression of the serotonin 5-HT2B receptor in heart leads to abnormal mitochondrial function and cardiac hypertrophy. Circulation 2003, 107, 3223–3229. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Leu, J.G.; Lin, K.Y.; Shih, C.Y.; Liang, Y.J. Serotonin receptor subtype-2B signaling is associated with interleukin-18-induced cardiomyoblast hypertrophy in vitro. Asian Biomed. (Res. Rev. News) 2022, 16, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Shih, J.C.; Chen, K.; Ridd, M.J. Monoamine oxidase: From genes to behavior. Annu. Rev. Neurosci. 1999, 22, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Umbarkar, P.; Singh, S.; Arkat, S.; Bodhankar, S.L.; Lohidasan, S.; Sitasawad, S.L. Monoamine oxidase-A is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy. Free Radic. Biol. Med. 2015, 87, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, C.; Guilbeau-Frugier, C.; Sicard, P.; Lairez, O.; Ordener, C.; Duparc, T.; De Paulis, D.; Couderc, B.; Spreux-Varoquaux, O.; Tortosa, F.; et al. p53-PGC-1α pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: Role in chronic left ventricular dysfunction in mice. Antioxid. Redox Signal. 2013, 18, 5–18. [Google Scholar] [CrossRef]
- Moncada, S.; Gryglewski, R.; Bunting, S.; Vane, J.R. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 1976, 263, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Yanagisawa, M.; Kimura, S.; Kasuya, Y.; Miyauchi, T.; Goto, K.; Masaki, T. The human endothelin family: Three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. USA 1989, 86, 2863–2867. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Yanagisawa, M.; Takuwa, Y.; Mitsui, Y.; Kobayashi, M.; Masaki, T. The human preproendothelin-1 gene. Complete nucleotide sequence and regulation of expression. J. Biol. Chem. 1989, 264, 14954–14959. [Google Scholar] [CrossRef]
- Sugden, P.H. Signaling pathways activated by vasoactive peptides in the cardiac myocyte and their role in myocardial pathologies. J. Card. Fail. 2002, 8, S359–S369. [Google Scholar] [CrossRef] [PubMed]
- Agapitov, A.V.; Haynes, W.G. Role of endothelin in cardiovascular disease. J. Renin. Angioten. Aldoster. Syst. 2002, 3, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Brunner, F.; Brás-Silva, C.; Cerdeira, A.S.; Leite-Moreira, A.F. Cardiovascular endothelins: Essential regulators of cardiovascular homeostasis. Pharmacol. Ther. 2006, 111, 508–531. [Google Scholar] [CrossRef] [PubMed]
- Rehsia, N.S.; Dhalla, N.S. Potential of endothelin-1 and vasopressin antagonists for the treatment of congestive heart failure. Heart Fail. Rev. 2010, 15, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharmacol. Rev. 2016, 68, 357–418. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, T.; Sakai, S. Endothelin and the heart in health and diseases. Peptides 2019, 111, 77–88. [Google Scholar] [CrossRef]
- Barton, M.; Yanagisawa, M. Endothelin: 30 years from discovery to therapy. Hypertension 2019, 74, 1232–1265. [Google Scholar] [CrossRef] [PubMed]
- Kuwaki, T.; Ling, G.Y.; Onodera, M.; Ishii, T.; Nakamura, A.; Ju, K.H.; Cao, W.; Kumada, M.; Kurihara, H.; Kurihara, Y.; et al. Endothelin in the central control of cardiovascular and respiratory functions. Clin. Exp. Pharmacol. Physiol. 1999, 26, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, K.; Nakao, K.; Arai, H.; Suga, S.; Ogawa, Y.; Mukoyama, M.; Shirakami, G.; Saito, Y.; Nakanishi, S.; Imura, H. Cloning and expression of human endothelin-1 receptor cDNA. FEBS Lett. 1991, 287, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Nakao, K.; Arai, H.; Nakagawa, O.; Hosoda, K.; Suga, S.; Nakanishi, S.; Imura, H. Molecular cloning of a non-isopeptide-selective human endothelin receptor. Biochem. Biophys. Res. Commun. 1991, 178, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Kishi, F.; Minami, K.; Okishima, N.; Murakami, M.; Mori, S.; Yano, M. Novel 31-amino-acid-length endothelins cause constriction of vascular smooth muscle. Biochem. Biophys. Res. Commun. 1998, 248, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Niwa, Y.; Nagata, N.; Oka, M.; Toyoshima, T.; Akiyoshi, H.; Wada, T.; Nakaya, Y. Production of nitric oxide from endothelial cells by 31-amino-acid-length endothelin-1, a novel vasoconstrictive product by human chymase. Life Sci. 2000, 67, 1103–1109. [Google Scholar] [CrossRef]
- Möllmann, H.; Schmidt-Schwedam, S.; Nef, H.; Möllmann, S.; Burstin, J.V.; Klose, S. Contractile effects of angiotensin and endothelin in failing and non-failing human hearts. Int. J. Cardiol. 2007, 114, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Badr, K.F.; Murray, J.J.; Breyer, M.D.; Takahashi, K.; Inagami, T.; Harris, R.C. Mesangial cell, glomerular and renal vascular responses to endothelin in the rat kidney. Elucidation of signal transduction pathways. J. Clin. Investig. 1989, 83, 336–342. [Google Scholar] [CrossRef]
- Takuwa, Y.; Kasuya, Y.; Takuwa, N.; Kudo, M.; Yanagisawa, M.; Goto, K.; Masaki, T.; Yamashita, K. Endothelin receptor is coupled to phospholipase C via a pertussis toxin-insensitive guanine nucleotide-binding regulatory protein in vascular smooth muscle cells. J. Clin. Investig. 1990, 85, 653–658. [Google Scholar] [CrossRef]
- Vanhaesebroeck, B.; Alessi, D.R. The PI3K-PDK1 connection: More than just a road to PKB. Biochem. J. 2000, 346 Pt 3, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Pham, F.H.; Cole, S.M.; Clerk, A. Regulation of cardiac myocyte protein synthesis through phosphatidylinositol 3’ kinase and protein kinase B. Adv. Enzym. Regul. 2001, 41, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Schiffrin, E.L.; Pollock, D.M. Endothelin system in hypertension and chronic kidney disease. Hypertension 2024, 81, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Miyauchi, T.; Sakurai, T.; Kasuya, Y.; Ihara, M.; Yamaguchi, I.; Goto, K.; Sugishita, Y. Endogenous endothelin-1 participates in the maintenance of cardiac function in rats with congestive heart failure. Marked increase in endothelin-1 production in the failing heart. Circulation 1996, 93, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Teerlink, J.R. The role of endothelin in the pathogenesis of heart failure. Curr. Cardiol. Rep. 2002, 4, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Dmour, B.A.; Costache, A.D.; Dmour, A.; Huzum, B.; Duca, Ș.T.; Chetran, A.; Miftode, R.Ș.; Afrăsânie, I.; Tuchiluș, C.; Cianga, C.M.; et al. Could endothelin-1 be a promising neurohormonal biomarker in acute heart failure? Diagnostics 2023, 13, 2277. [Google Scholar] [CrossRef]
- Mares, A.; Mukherjee, D.; Lange, R.A.; Nickel, N.P. Targeted Therapies in Patients with Pulmonary arterial hypertension due to congenital heart disease. Curr. Vasc. Pharmacol. 2022, 20, 341–360. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.J.; Levy, R.D.; Cernacek, P.; Langleben, D. Increased plasma endothelin-1 in pulmonary hypertension: Marker or mediator of disease? Ann. Intern. Med. 1991, 114, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Kumazaki, T.; Mitsui, Y. Endothelin-1 is produced and secreted by neonatal rat cardiac myocytes in vitro. Biochem. Biophys. Res. Commun. 1993, 191, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Houde, M.; Desbiens, L.; D’Orléans-Juste, P. Endothelin-1: Biosynthesis, signaling and vasoreactivity. Adv. Pharmacol. 2016, 77, 143–175. [Google Scholar]
- Miyauchi, T.; Yorikane, R.; Sakai, S.; Sakurai, T.; Okada, M.; Nishikibe, M.; Yano, M.; Yamaguchi, I.; Sugishita, Y.; Goto, K. Contribution of endogenous endothelin-1 to the progression of cardiopulmonary alterations in rats with monocrotaline-induced pulmonary hypertension. Circ. Res. 1993, 73, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Hiroe, M.; Hirata, Y.; Fujisaki, H.; Adachi, S.; Akimoto, H.; Ohta, Y.; Marumo, F. Endothelin ETA receptor antagonist blocks cardiac hypertrophy provoked by hemodynamic overload. Circulation 1994, 89, 2198–2203. [Google Scholar] [CrossRef] [PubMed]
- Shubeita, H.E.; McDonough, P.M.; Harris, A.N.; Knowlton, K.U.; Glembotski, C.C.; Brown, J.H.; Chien, K.R. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J. Biol. Chem. 1990, 265, 20555–20562. [Google Scholar] [CrossRef] [PubMed]
- Hiroe, M.; Hirata, Y.; Fujita, N.; Umezawa, S.; Ito, H.; Tsujino, M.; Koike, A.; Nogami, A.; Takamoto, T.; Marumo, F. Plasma endothelin-1 levels in idiopathic dilated cardiomyopathy. Am. J. Cardiol. 1991, 68, 1114–1115. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Ray, S.G.; Abdullah, I.; Dargie, H.J.; Morton, J.J. Plasma endothelin in chronic heart failure. Circulation 1992, 85, 1374–1379. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.J.; Cernacek, P.; Costello, K.B.; Rouleau, J.L. Elevated endothelin-1 in heart failure and loss of normal response to postural change. Circulation 1992, 85, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Margulies, K.B.; Hildebrand, F., Jr.; Lerman, A.; Perrella, M.A.; Burnett, J.C., Jr. Increased endothelin in experimental heart failure. Circulation 1990, 82, 2226–2230. [Google Scholar] [CrossRef] [PubMed]
- Underwood, R.D.; Aarhus, L.L.; Heublein, D.M.; Burnett, J.C., Jr. Endothelin in thoracic inferior vena caval constriction model of heart failure. Am. J. Physiol. 1992, 263 Pt 2, H951–H955. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, T.; Yanagisawa, M.; Tomizawa, T.; Sugishita, Y.; Suzuki, N.; Fujino, M.; Ajisaka, R.; Goto, K.; Masaki, T. Increased plasma concentrations of endothelin-1 and big endothelin-1 in acute myocardial infarction. Lancet 1989, 2, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Kimura, T.; Wang, Z.; Shimojo, N.; Maruyama, H.; Homma, S.; Kuga, K.; Yamaguchi, I.; Aonuma, K.; Miyauchi, T. Endothelin-1-induced cardiomyocyte hypertrophy is partly regulated by transcription factor II-F interacting C-terminal domain phosphatase of RNA polymerase II. Life Sci. 2012, 91, 572–577. [Google Scholar] [CrossRef]
- Dammanahalli, K.J.; Sun, Z. Endothelins and NADPH oxidases in the cardiovascular system. Clin. Exp. Pharmacol. Physiol. 2008, 35, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Miyauchi, T.; Kobayashi, M.; Yamaguchi, I.; Goto, K.; Sugishita, Y. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 1996, 384, 353–355. [Google Scholar] [CrossRef]
- Maayah, Z.H.; Ferdaoussi, M.; Boukouris, A.E.; Takahara, S.; Das, S.K.; Khairy, M.; Mackey, J.R.; Pituskin, E.; Sutendra, G.; Paterson, D.I.; et al. Endothelin Receptor Blocker Reverses Breast Cancer-Induced Cardiac Remodeling. J. Am. Coll. Cardiol. CardioOnc. 2023, 5, 686–700. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Luo, Q.; Zhong, B.; Tang, K.; Chen, X.; Yang, S.; Li, X. Salidroside attenuates myocardial remodeling in DOCA-salt-induced mice by inhibiting the endothelin 1 and PI3K/AKT/NFκB signaling pathways. Eur. J. Pharmacol. 2024, 962, 176236. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.A.; Pierce, J.G.; du Vigneaud, V. The purification and the amino acid content of vasopressin preparations. J. Biol. Chem. 1951, 191, 21–28. [Google Scholar] [CrossRef]
- Davoll, H.; Turner, R.A.; Pierce, J.G.; du Vigneaud, V. An investigation of the free amino groups on oxytocin and desulfurized oxytocin preparations. J. Biol. Chem. 1951, 193, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Szatalowicz, V.L.; Arnold, P.E.; Chaimovitz, C.; Bichet, D.; Berl, T.; Schrier, R.W. Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N. Engl. J. Med. 1981, 305, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, S.R.; Francis, G.S.; Cowley, A.W.; Levine, T.B.; Cohn, J.N. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J. Am. Coll. Cardiol. 1983, 1, 1385–1390. [Google Scholar] [CrossRef]
- Xu, D.L.; Martin, P.Y.; Ohara, M.; St John, J.; Pattison, T.; Meng, X.; Morris, K.; Kim, J.K.; Schrier, R.W. Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J. Clin. Investig. 1997, 99, 1500–1505. [Google Scholar] [CrossRef]
- Verbalis, J.G. AVP receptor antagonists as aquaretics: Review and assessment of clinical data. Cleve Clin. J. Med. 2006, 73 (Suppl. S3), S24–S33. [Google Scholar] [CrossRef] [PubMed]
- Guyton, A.C. The body fluids and kidenys. In Textbook of Medical Physiology; Guyton, A.C., Hall, J.E., Eds.; Saunders: Philadelphia, PA, USA, 2006; pp. 291–414. [Google Scholar]
- Kamoi, K.; Ishibashi, M.; Yamaji, T. Interaction of osmotic and nonosmotic stimuli in regulation of vasopressin secretion in hypoosmolar state of man. Endocrinol. J. 1997, 44, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Hupf, H.; Grimm, D.; Riegger, G.A.; Schunkert, H. Evidence for a vasopressin system in the rat heart. Circ. Res. 1999, 84, 365–370. [Google Scholar] [CrossRef]
- Brooks, V.L.; Keil, L.C.; Reid, I.A. Role of the renin-angiotensin system in the control of vasopressin secretion in conscious dogs. Circ. Res. 1986, 58, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Baertschi, A.J.; Friedli, M. A novel type of vasopressin receptor on anterior pituitary corticotrophs. Endocrinology 1985, 116, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Gopalakrishnan, V. Vasopressin increases cytosolic free Ca2+ in the neonatal rat cardiomyocyte. Evidence for V1 subtype receptors. Circ. Res. 1991, 69, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Haneda, T.; Osaki, J.; Miyata, S.; Kikuchi, K. Hypertrophic growth of cultured neonatal rat heart cells mediated by vasopressin V(1A) receptor. Eur. J. Pharmacol. 2000, 391, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Tahara, A.; Tomura, Y.; Wada, K.; Kusayama, T.; Tsukada, J.; Ishii, N.; Yatsu, T.; Uchida, W.; Tanaka, A. Effect of YM087, a potent nonpeptide vasopressin antagonist, on vasopressin-induced protein synthesis in neonatal rat cardiomyocyte. Cardiovasc. Res. 1998, 38, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Birnbaumer, M. Vasopressin receptors. Trends Endocrinol. Metab. 2000, 11, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Sparapani, S.; Millet-Boureima, C.; Oliver, J.; Mu, K.; Hadavi, P.; Kalostian, T.; Ali, N.; Avelar, C.M.; Bardies, M.; Barrow, B.; et al. The Biology of vasopressin. Biomedicines 2021, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Kwon, T.H.; Christensen, B.M.; Promeneur, D.; Frøkiaer, J.; Marples, D. Physiology and pathophysiology of renal aquaporins. J. Am. Soc. Nephrol. 1999, 10, 647–663. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H.M.; Noland, T.D.; Breyer, M.D. cAMP-dependent protein kinase mediates hydrosmotic effect of vasopressin in collecting duct. Am. J. Physiol. 1992, 263 Pt 1, C147–C153. [Google Scholar] [CrossRef]
- Riegger, G.A.; Liebau, G.; Bauer, E.; Kochsiek, K. Vasopressin and renin in high output heart failure of rats: Hemodynamic effects of elevated plasma hormone levels. J. Cardiovasc. Pharmacol. 1985, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, W.; Tani, S.; Tachibana, E.; Hirayama, A. Combined Evaluation of the plasma arginine vasopressin and noradrenaline levels may be a useful predictor of the prognosis of patients with acute decompensated heart failure. Int. Heart J. 2018, 59, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Beardwell, C.G.; Geelen, G.; Palmer, H.M.; Roberts, D.; Salamonson, L. Radioimmunoassay of plasma vasopressin in physiological and pathological states in man. J. Endocrinol. 1975, 67, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Cheng, J.; Qiu, L.; Cheng, X. Copeptin as a diagnostic and prognostic biomarker in cardiovascular diseases. Front. Cardiovasc. Med. 2022, 9, 901990. [Google Scholar] [CrossRef] [PubMed]
- Pittman, Q.J. Vasopressin and central control of the cardiovascular system: A 40-year retrospective. J. Neuroendocrinol. 2021, 33, e13011. [Google Scholar] [CrossRef] [PubMed]
- Chiorescu, R.M.; Lazar, R.D.; Buksa, S.B.; Mocan, M.; Blendea, D. Biomarkers of volume overload and edema in heart failure with reduced ejection fraction. Front. Cardiovasc. Med. 2022, 9, 910100. [Google Scholar] [CrossRef] [PubMed]
- Aikins, A.O.; Nguyen, D.H.; Paundralingga, O.; Farmer, G.E.; Shimoura, C.G.; Brock, C.; Cunningham, J.T. Cardiovascular neuroendocrinology: Emerging role for neurohypophyseal hormones in pathophysiology. Endocrinology 2021, 162, bqab082. [Google Scholar] [CrossRef] [PubMed]
- Szczepanska-Sadowska, E. The heart as a target of vasopressin and other cardiovascular peptides in health and cardiovascular diseases. Int. J. Mol. Sci. 2022, 23, 14414. [Google Scholar] [CrossRef] [PubMed]
- Urbach, J.; Goldsmith, S.R. Vasopressin antagonism in heart failure: A review of the hemodynamic studies and major clinical trials. Ther. Adv. Cardiovasc. Dis. 2021, 15, 1753944720977741. [Google Scholar] [CrossRef]
- Kapłon-Cieślicka, A.; Soloveva, A.; Mareev, Y.; Cabac-Pogorevici, I.; Verbrugge, F.H.; Vardas, P. Hyponatraemia in heart failure: Time for new solutions? Heart 2022, 108, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Suwanto, D.; Dewi, I.P.; Fagi, R.A. Hyponatremia in heart failure: Not just 135 to 145. J. Basic Clin. Physiol. Pharmacol. 2021, 33, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Şorodoc, V.; Asaftei, A.; Puha, G.; Ceasovschih, A.; Lionte, C.; Sîrbu, O.; Bologa, C.; Haliga, R.E.; Constantin, M.; Coman, A.E.; et al. Management of hyponatremia in heart failure: Practical considerations. J. Pers. Med. 2023, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, S.; Agic, M.B.; Narfström, F.; Melville, J.M.; Hultström, M. Renal neurohormonal regulation in heart failure decompensation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R493–R497. [Google Scholar] [CrossRef] [PubMed]
- Kashihara, T.; Mukai, R.; Oka, S.I.; Zhai, P.; Nakada, Y.; Yang, Z.; Mizushima, W.; Nakahara, T.; Warren, J.S.; Abdellatif, M.; et al. YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload. J. Clin. Investig. 2022, 132, e150595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, W.; Wang, Y. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed. Pharmacother. 2020, 125, 110022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Da, Q.; Cao, S.; Yan, K.; Shi, Z.; Miao, Q.; Li, C.; Hu, L.; Sun, S.; Wu, W.; et al. HINT1 (histidine triad nucleotide-binding protein 1) attenuates cardiac hypertrophy via suppressing HOXA5 (homeobox A5) expression. Circulation 2021, 144, 638–654. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.M.; Wei, C.C.; Tallaj, J.; Ardell, J.L.; Armour, J.A.; Hageman, G.R.; Bradley, W.E.; Dell’Italia, L.J.; Hardwick, J.C.; Ryan, S.E.; et al. Angiotensin II modulates catecholamine release into interstitial fluid of canine myocardium in vivo. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H813–H822. [Google Scholar] [CrossRef] [PubMed]
- Schlaich, M.P.; Kaye, D.M.; Lambert, E.; Hastings, J.; Campbell, D.J.; Lambert, G.; Esler, M.D. Angiotensin II and norepinephrine release: Interaction and effects on the heart. J. Hypertens. 2005, 23, 1077–1082. [Google Scholar] [CrossRef]
- Tallaj, J.; Wei, C.C.; Hankes, G.H.; Holland, M.; Rynders, P.; Dillon, A.R.; Ardell, J.L.; Armour, J.A.; Lucchesi, P.A.; Dell’Italia, L.J. Beta1-adrenergic receptor blockade attenuates angiotensin II-mediated catecholamine release into the cardiac interstitium in mitral regurgitation. Circulation 2003, 108, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yang, G.; Weng, X.; Liang, P.; Li, L.; Li, J.; Fan, Z.; Tian, W.; Wu, X.; Xu, H.; et al. Histone methyltransferase SET1 mediates angiotensin II-induced endothelin-1 transcription and cardiac hypertrophy in mice. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; d’Uscio, L.V.; Shaw, S.; Takase, H.; Barton, M.; Lüscher, T.F. Angiotensin II increases tissue endothelin and induces vascular hypertrophy: Reversal by ET(A)-receptor antagonist. Circulation 1997, 96, 1593–1597. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Kagaya, Y.; Weinberg, E.O.; Barry, W.H.; Lorell, B.H. Endothelin and angiotensin II stimulation of Na+-H+ exchange is impaired in cardiac hypertrophy. J. Clin. Investig. 1997, 99, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Mironova, E.; Archer, C.R.; Vendrov, A.E.; Runge, M.S.; Madamanchi, N.R.; Arendshorst, W.J.; Stockand, J.D.; El-Aziz, T.M.A. NOXA1-dependent NADPH oxidase 1 signaling mediates angiotensin II activation of the epithelial sodium channel. Am. J. Physiol. Ren. Physiol. 2022, 323, F633–F641. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Do, V.Q.; Seo, Y.S.; Kim, H.J.; Nam, J.H.; Yin, M.Z.; Kim, H.J.; Kim, S.J.; Griendling, K.K.; Lee, M.-Y. NADPH oxidase 1 mediates acute blood pressure response to angiotensin II by contributing to calcium influx in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e117–e130. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Murdoch, C.E.; Brewer, A.C.; Ivetic, A.; Evans, P.; Shah, A.M.; Zhang, M. Endothelial NADPH oxidase 4 protects against angiotensin II-induced cardiac fibrosis and inflammation. ESC Heart Fail. 2021, 8, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhalla, N.S.; Mota, K.O.; Elimban, V.; Shah, A.K.; de Vasconcelos, C.M.L.; Bhullar, S.K. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells 2024, 13, 856. https://doi.org/10.3390/cells13100856
Dhalla NS, Mota KO, Elimban V, Shah AK, de Vasconcelos CML, Bhullar SK. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells. 2024; 13(10):856. https://doi.org/10.3390/cells13100856
Chicago/Turabian StyleDhalla, Naranjan S., Karina O. Mota, Vijayan Elimban, Anureet K. Shah, Carla M. L. de Vasconcelos, and Sukhwinder K. Bhullar. 2024. "Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure" Cells 13, no. 10: 856. https://doi.org/10.3390/cells13100856
APA StyleDhalla, N. S., Mota, K. O., Elimban, V., Shah, A. K., de Vasconcelos, C. M. L., & Bhullar, S. K. (2024). Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells, 13(10), 856. https://doi.org/10.3390/cells13100856