Cell-Based Therapy for Fibrosing Interstitial Lung Diseases, Current Status, and Potential Applications of iPSC-Derived Cells
Abstract
:1. Introduction
1.1. An Overview of FILD
1.2. An Overview of iPSCs
2. Current Status of Cell-Based Therapies for FILD
2.1. FILD Treatment with MSCs
2.2. FILD Treatment with iPSCs
2.3. FILD Treatment with Other Cells
2.4. Clinical Trials
3. Points of Concern with Recent Cell-Based Therapy
4. The Problems of Using iPSCs Themselves to Treat FILD
5. Possibility for iPSC-Derived Cell-Based FILD Therapy
6. Proposal for iPSC-Derived Cell Type for FILD Treatment
7. Limitations for iPSC-Derived Cell
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lederer, D.J.; Martinez, F.J. Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 378, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Natsuizaka, M.; Chiba, H.; Kuronuma, K.; Otsuka, M.; Kudo, K.; Mori, M.; Bando, M.; Sugiyama, Y.; Takahashi, H. Epidemiologic survey of Japanese patients with idiopathic pulmonary fibrosis and investigation of ethnic differences. Am. J. Respir. Crit. Care Med. 2014, 190, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Wijsenbeek, M.; Cottin, V. Spectrum of Fibrotic Lung Diseases. N. Engl. J. Med. 2020, 383, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Laporta Hernandez, R.; Aguilar Perez, M.; Lázaro Carrasco, M.T.; Ussetti Gil, P. Lung Transplantation in Idiopathic Pulmonary Fibrosis. Med. Sci. 2018, 6, 68. [Google Scholar] [CrossRef] [PubMed]
- Mandai, M.; Watanabe, A.; Kurimoto, Y.; Hirami, Y.; Morinaga, C.; Daimon, T.; Fujihara, M.; Akimaru, H.; Sakai, N.; Shibata, Y.; et al. Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N. Engl. J. Med. 2017, 376, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Bayati, P.; Taherian, M.; Soleimani, M.; Farajifard, H.; Mojtabavi, N. Induced pluripotent stem cells modulate the Wnt pathway in the bleomycin-induced model of idiopathic pulmonary fibrosis. Stem Cell Res. Ther. 2023, 14, 343. [Google Scholar] [CrossRef] [PubMed]
- How, C.K.; Chien, Y.; Yang, K.Y.; Shih, H.C.; Juan, C.C.; Yang, Y.P.; Chiou, G.Y.; Huang, P.I.; Chang, Y.L.; Chen, L.K.; et al. Induced pluripotent stem cells mediate the release of interferon gamma-induced protein 10 and alleviate bleomycin-induced lung inflammation and fibrosis. Shock 2013, 39, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Ye, X.; Sun, R.; Matsumoto, Y.; Moriyama, M.; Asano, Y.; Ajioka, Y.; Saijo, Y. Differentiation of mouse induced pluripotent stem cells into alveolar epithelial cells in vitro for use in vivo. Stem Cells Transl. Med. 2014, 3, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, Z.; Gao, Y.; Zheng, R.; Zhang, X.; Zhao, L.; Tan, M. Induced Pluripotent Stem Cells Inhibit Bleomycin-Induced Pulmonary Fibrosis in Mice through Suppressing TGF-β1/Smad-Mediated Epithelial to Mesenchymal Transition. Front. Pharmacol. 2016, 7, 430. [Google Scholar] [CrossRef]
- Hosokawa, M.; Mikawa, R.; Hagiwara, A.; Okuno, Y.; Awaya, T.; Yamamoto, Y.; Takahashi, S.; Yamaki, H.; Osawa, M.; Setoguchi, Y.; et al. Cryptotanshinone is a candidate therapeutic agent for interstitial lung disease associated with a BRICHOS-domain mutation of SFTPC. iScience 2023, 26, 107731. [Google Scholar] [CrossRef]
- Saito, M.K.; Osawa, M.; Tsuchida, N.; Shiraishi, K.; Niwa, A.; Woltjen, K.; Asaka, I.; Ogata, K.; Ito, S.; Kobayashi, S.; et al. A disease-specific iPS cell resource for studying rare and intractable diseases. Inflamm. Regen. 2023, 43, 43. [Google Scholar] [CrossRef]
- Center for iPS Cell Research and Application K.U.C. iPS Cell Stock Project, HLA-Homozygous iPS Cells. Available online: https://www.cira-foundation.or.jp/e/research-institution/ips-stock-project/homozygous.html (accessed on 1 April 2024).
- Wijsenbeek, M.; Kreuter, M.; Olson, A.; Fischer, A.; Bendstrup, E.; Wells, C.D.; Denton, C.P.; Mounir, B.; Zouad-Lejour, L.; Quaresma, M.; et al. Progressive fibrosing interstitial lung diseases: Current practice in diagnosis and management. Curr. Med. Res. Opin. 2019, 35, 2015–2024. [Google Scholar] [CrossRef] [PubMed]
- Wells, A.U.; Flaherty, K.R.; Brown, K.K.; Inoue, Y.; Devaraj, A.; Richeldi, L.; Moua, T.; Crestani, B.; Wuyts, W.A.; Stowasser, S.; et al. Nintedanib in patients with progressive fibrosing interstitial lung diseases-subgroup analyses by interstitial lung disease diagnosis in the INBUILD trial: A randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Respir. Med. 2020, 8, 453–460. [Google Scholar] [CrossRef]
- Brown, K.K.; Martinez, F.J.; Walsh, S.L.F.; Thannickal, V.J.; Prasse, A.; Schlenker-Herceg, R.; Goeldner, R.G.; Clerisme-Beaty, E.; Tetzlaff, K.; Cottin, V.; et al. The natural history of progressive fibrosing interstitial lung diseases. Eur. Respir. J. 2020, 55, 2000085. [Google Scholar] [CrossRef]
- Distler, J.H.W.; Györfi, A.H.; Ramanujam, M.; Whitfield, M.L.; Königshoff, M.; Lafyatis, R. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 2019, 15, 705–730. [Google Scholar] [CrossRef]
- Winters, N.I.; Burman, A.; Kropski, J.A.; Blackwell, T.S. Epithelial Injury and Dysfunction in the Pathogenesis of Idiopathic PulmonaryFibrosis. Am. J. Med. Sci. 2019, 357, 374–378. [Google Scholar] [CrossRef]
- Wells, R.G. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 2013, 1832, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Lokmic, Z.; Musyoka, J.; Hewitson, T.D.; Darby, I.A. Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int. Rev. Cell Mol. Biol. 2012, 296, 139–185. [Google Scholar] [PubMed]
- Parker, M.W.; Rossi, D.; Peterson, M.; Smith, K.; Sikström, K.; White, E.S.; Connett, J.E.; Henke, C.A.; Larsson, O.; Bitterman, P.B. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Investig. 2014, 124, 1622–1635. [Google Scholar] [CrossRef]
- Nakamura, Y.; Shimizu, Y.; Fujimaki-Shiraishi, M.; Uchida, N.; Takemasa, A.; Niho, S. A Protective Effect of Pirfenidone in Lung Fibroblast-Endothelial Cell Network via Inhibition of Rho-Kinase Activity. Biomedicines 2023, 11, 2259. [Google Scholar] [CrossRef]
- Kelly, M.; Kolb, M.; Bonniaud, P.; Gauldie, J. Re-evaluation of fibrogenic cytokines in lung fibrosis. Curr. Pharm. Des. 2003, 9, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Vaillant, P.; Menard, O.; Vignaud, J.M.; Martinet, N.; Martinet, Y. The role of cytokines in human lung fibrosis. Monaldi Arch. Chest Dis. 1996, 51, 145–152. [Google Scholar]
- Fernandez, I.E.; Eickelberg, O. The impact of TGF-β on lung fibrosis: From targeting to biomarkers. Proc. Am. Thorac. Soc. 2012, 9, 111–116. [Google Scholar] [CrossRef]
- Nakamura, Y.; Shimizu, Y. Cellular and Molecular Control of Lipid Metabolism in Idiopathic Pulmonary Fibrosis: Clinical Application of the Lysophosphatidic Acid Pathway. Cells 2023, 12, 548. [Google Scholar] [CrossRef]
- Uchida, N.; Shimizu, Y.; Fujimaki, M.; Horibata, Y.; Nakamura, Y.; Horigane, Y.; Chibana, K.; Takemasa, A.; Sugimoto, H.; Niho, S. Metabolic changes induced by TGF-β1 via reduced expression of phosphatidylserine decarboxylase during myofibroblast transition. J. Clin. Biochem. Nutr. 2022, 70, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Johannson, K.A.; Chaudhuri, N.; Adegunsoye, A.; Wolters, P.J. Treatment of fibrotic interstitial lung disease: Current approaches and future directions. Lancet 2021, 398, 1450–1460. [Google Scholar] [CrossRef] [PubMed]
- Richeldi, L.; Davies, H.R.; Ferrara, G.; Franco, F. Corticosteroids for idiopathic pulmonary fibrosis. Cochrane Database Syst. Rev. 2003, 2003, cd002880. [Google Scholar] [CrossRef]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.F.; Flaherty, K.R.; Lasky, J.A.; et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef]
- Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.F.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N. Engl. J. Med. 2019, 381, 1718–1727. [Google Scholar] [CrossRef]
- Behr, J.; Prasse, A.; Kreuter, M.; Johow, J.; Rabe, K.F.; Bonella, F.; Bonnet, R.; Grohe, C.; Held, M.; Wilkens, H.; et al. Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): A double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir. Med. 2021, 9, 476–486. [Google Scholar] [CrossRef]
- Maher, T.M.; Corte, T.J.; Fischer, A.; Kreuter, M.; Lederer, D.J.; Molina-Molina, M.; Axmann, J.; Kirchgaessler, K.U.; Samara, K.; Gilberg, F.; et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2020, 8, 147–157. [Google Scholar] [CrossRef]
- Leong, S.W.; Bos, S.; Lordan, J.L.; Nair, A.; Fisher, A.J.; Meachery, G. Lung transplantation for interstitial lung disease: Evolution over three decades. BMJ Open Respir. Res. 2023, 10, e001387. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhang, Z.N.; Rong, Z.; Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature 2011, 474, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Okita, K.; Nagata, N.; Yamanaka, S. Immunogenicity of induced pluripotent stem cells. Circ. Res. 2011, 109, 720–721. [Google Scholar] [CrossRef]
- Masuda, S. Risk of teratoma formation after transplantation of induced pluripotent stem cells. Chest 2012, 141, 1120–1121. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Kawai, H.; Tian, F.; Ohta, Y.; Abe, K. Tumorigenic development of induced pluripotent stem cells in ischemic mouse brain. Cell Transplant. 2011, 20, 883–891. [Google Scholar] [CrossRef]
- Nakagawa, M.; Takizawa, N.; Narita, M.; Ichisaka, T.; Yamanaka, S. Promotion of direct reprogramming by transformation-deficient Myc. Proc. Natl. Acad. Sci. USA 2010, 107, 14152–14157. [Google Scholar] [CrossRef]
- Okita, K.; Nakagawa, M.; Hyenjong, H.; Ichisaka, T.; Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008, 322, 949–953. [Google Scholar] [CrossRef]
- Stadtfeld, M.; Nagaya, M.; Utikal, J.; Weir, G.; Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 2008, 322, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J. iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regen. Ther. 2020, 13, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Morizane, A.; Doi, D.; Magotani, H.; Onoe, H.; Hayashi, T.; Mizuma, H.; Takara, S.; Takahashi, R.; Inoue, H.; et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 2017, 548, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, N.; Eto, K. Platelet production from induced pluripotent stem cells. J. Thromb. Haemost. 2017, 15, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, N.; Kanda, J.; Nakamura, S.; Kitano, T.; Hishizawa, M.; Kondo, T.; Shimizu, S.; Shigemasa, A.; Hirai, H.; Arai, Y.; et al. iPLAT1: The first-in-human clinical trial of iPSC-derived platelets as a phase 1 autologous transfusion study. Blood 2022, 140, 2398–2402. [Google Scholar] [CrossRef] [PubMed]
- A Prospective Observational Study of Induced Pluripoteint Stem Cell-Derived Cardiac Spheres Transplantation Extended Follow-up. UMIN-CTR Clinical Trial. 2022. Available online: https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000053954 (accessed on 1 April 2024).
- Samura, T.; Miyagawa, S.; Kawamura, T.; Fukushima, S.; Yokoyama, J.Y.; Takeda, M.; Harada, A.; Ohashi, F.; Sato-Nishiuchi, R.; Toyofuku, T.; et al. Laminin-221 Enhances Therapeutic Effects of Human-Induced Pluripotent Stem Cell-Derived 3-Dimensional Engineered Cardiac Tissue Transplantation in a Rat Ischemic Cardiomyopathy Model. J. Am. Heart Assoc. 2020, 9, e015841. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Hamazaki, N.; Hamada, N.; Nagamatsu, G.; Okamoto, I.; Ohta, H.; Nosaka, Y.; Ishikura, Y.; Kitajima, T.S.; Semba, Y.; et al. Generation of functional oocytes from male mice in vitro. Nature 2023, 615, 900–906. [Google Scholar] [CrossRef]
- Avior, Y.; Sagi, I.; Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol. 2016, 17, 170–182. [Google Scholar] [CrossRef]
- Ortiz, L.A.; Gambelli, F.; McBride, C.; Gaupp, D.; Baddoo, M.; Kaminski, N.; Phinney, D.G. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. USA 2003, 100, 8407–8411. [Google Scholar] [CrossRef] [PubMed]
- Liebler, J.M.; Lutzko, C.; Banfalvi, A.; Senadheera, D.; Aghamohammadi, N.; Crandall, E.D.; Borok, Z. Retention of human bone marrow-derived cells in murine lungs following bleomycin-induced lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 295, L285–L292. [Google Scholar] [CrossRef]
- Gazdhar, A.; Susuri, N.; Hostettler, K.; Gugger, M.; Knudsen, L.; Roth, M.; Ochs, M.; Geiser, T. HGF Expressing Stem Cells in Usual Interstitial Pneumonia Originate from the Bone Marrow and Are Antifibrotic. PLoS ONE 2013, 8, e65453. [Google Scholar] [CrossRef]
- Lee, S.H.; Jang, A.S.; Kim, Y.E.; Cha, J.Y.; Kim, T.H.; Jung, S.; Park, S.K.; Lee, Y.K.; Won, J.H.; Kim, Y.H.; et al. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir. Res. 2010, 11, 16. [Google Scholar] [CrossRef]
- Rojas, M.; Xu, J.; Woods, C.R.; Mora, A.L.; Spears, W.; Roman, J.; Brigham, K.L. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am. J. Respir. Cell Mol. Biol. 2005, 33, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.A.; Dutreil, M.; Fattman, C.; Pandey, A.C.; Torres, G.; Go, K.; Phinney, D.G. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl. Acad. Sci. USA 2007, 104, 11002–11007. [Google Scholar] [CrossRef]
- Ono, M.; Ohkouchi, S.; Kanehira, M.; Tode, N.; Kobayashi, M.; Ebina, M.; Nukiwa, T.; Irokawa, T.; Ogawa, H.; Akaike, T.; et al. Mesenchymal stem cells correct inappropriate epithelial-mesenchyme relation in pulmonary fibrosis using stanniocalcin-1. Mol. Ther. 2015, 23, 549–560. [Google Scholar] [CrossRef]
- Huang, K.; Kang, X.; Wang, X.; Wu, S.; Xiao, J.; Li, Z.; Wu, X.; Zhang, W. Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats. Mol. Med. Rep. 2015, 11, 1685–1692. [Google Scholar] [CrossRef]
- Lan, Y.W.; Choo, K.B.; Chen, C.M.; Hung, T.H.; Chen, Y.B.; Hsieh, C.H.; Kuo, H.P.; Chong, K.Y. Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res. Ther. 2015, 6, 97. [Google Scholar] [CrossRef]
- Cahill, E.F.; Kennelly, H.; Carty, F.; Mahon, B.P.; English, K. Hepatocyte Growth Factor Is Required for Mesenchymal Stromal Cell Protection Against Bleomycin-Induced Pulmonary Fibrosis. Stem Cells Transl. Med. 2016, 5, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.W.; Theng, S.M.; Huang, T.T.; Choo, K.B.; Chen, C.M.; Kuo, H.P.; Chong, K.Y. Oncostatin M-Preconditioned Mesenchymal Stem Cells Alleviate Bleomycin-Induced Pulmonary Fibrosis Through Paracrine Effects of the Hepatocyte Growth Factor. Stem Cells Transl. Med. 2017, 6, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Huleihel, L.; Sellares, J.; Cardenes, N.; Álvarez, D.; Faner, R.; Sakamoto, K.; Yu, G.; Kapetanaki, M.G.; Kaminski, N.; Rojas, M. Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L92–L103. [Google Scholar] [CrossRef]
- Takao, S.; Nakashima, T.; Masuda, T.; Namba, M.; Sakamoto, S.; Yamaguchi, K.; Horimasu, Y.; Miyamoto, S.; Iwamoto, H.; Fujitaka, K.; et al. Human bone marrow-derived mesenchymal stromal cells cultured in serum-free media demonstrate enhanced antifibrotic abilities via prolonged survival and robust regulatory T cell induction in murine bleomycin-induced pulmonary fibrosis. Stem Cell Res. Ther. 2021, 12, 506. [Google Scholar] [CrossRef] [PubMed]
- Gad, E.S.; Salama, A.A.A.; El-Shafie, M.F.; Arafa, H.M.M.; Abdelsalam, R.M.; Khattab, M. The Anti-fibrotic and Anti-inflammatory Potential of Bone Marrow-Derived Mesenchymal Stem Cells and Nintedanib in Bleomycin-Induced Lung Fibrosis in Rats. Inflammation 2020, 43, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, E.R.; Laflamme, M.A.; Papayannopoulou, T.; Kahn, M.; Murry, C.E.; Henderson, W.R., Jr. Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS ONE 2012, 7, e33165. [Google Scholar] [CrossRef] [PubMed]
- Jun, D.; Garat, C.; West, J.; Thorn, N.; Chow, K.; Cleaver, T.; Sullivan, T.; Torchia, E.C.; Childs, C.; Shade, T.; et al. The pathology of bleomycin-induced fibrosis is associated with loss of resident lung mesenchymal stem cells that regulate effector T-cell proliferation. Stem Cells 2011, 29, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Cargnoni, A.; Gibelli, L.; Tosini, A.; Signoroni, P.B.; Nassuato, C.; Arienti, D.; Lombardi, G.; Albertini, A.; Wengler, G.S.; Parolini, O. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant. 2009, 18, 405–422. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Han, F.; Li, H.; Zhang, J.; Qiao, X.; Shi, J.; Yang, L.; Dong, J.; Luo, M.; Wei, J.; et al. Human placental mesenchymal stem cells of fetal origins-alleviated inflammation and fibrosis by attenuating MyD88 signaling in bleomycin-induced pulmonary fibrosis mice. Mol. Immunol. 2017, 90, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Moodley, Y.; Vaghjiani, V.; Chan, J.; Baltic, S.; Ryan, M.; Tchongue, J.; Samuel, C.S.; Murthi, P.; Parolini, O.; Manuelpillai, U. Anti-inflammatory effects of adult stem cells in sustained lung injury: A comparative study. PLoS ONE 2013, 8, e69299. [Google Scholar] [CrossRef] [PubMed]
- Moodley, Y.; Atienza, D.; Manuelpillai, U.; Samuel, C.S.; Tchongue, J.; Ilancheran, S.; Boyd, R.; Trounson, A. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am. J. Pathol. 2009, 175, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Garcia, O.; Carraro, G.; Turcatel, G.; Hall, M.; Sedrakyan, S.; Roche, T.; Buckley, S.; Driscoll, B.; Perin, L.; Warburton, D. Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage. PLoS ONE 2013, 8, e71679. [Google Scholar] [CrossRef]
- Kotani, T.; Masutani, R.; Suzuka, T.; Oda, K.; Makino, S.; Ii, M. Anti-inflammatory and anti-fibrotic effects of intravenous adipose-derived stem cell transplantation in a mouse model of bleomycin-induced interstitial pneumonia. Sci. Rep. 2017, 7, 14608. [Google Scholar] [CrossRef]
- Tashiro, J.; Elliot, S.J.; Gerth, D.J.; Xia, X.; Pereira-Simon, S.; Choi, R.; Catanuto, P.; Shahzeidi, S.; Toonkel, R.L.; Shah, R.H.; et al. Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis. Transl. Res. 2015, 166, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, E.J.; Lee, S.Y.; Kim, J.H.; Shim, J.J.; Shin, C.; In, K.H.; Kang, K.H.; Uhm, C.S.; Kim, H.K.; et al. The effect of adipose stem cell therapy on pulmonary fibrosis induced by repetitive intratracheal bleomycin in mice. Exp. Lung Res. 2014, 40, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wu, J.; Yuan, R.; Li, Y.; Yang, Q.; Wu, B.; Zhai, X.; Wang, J.; Magalon, J.; Sabatier, F.; et al. Adipose-derived mesenchymal stem cell therapy for reverse bleomycin-induced experimental pulmonary fibrosis. Sci. Rep. 2023, 13, 13183. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, S.; Scotton, C.J.; McNulty, K.; Nye, E.; Stamp, G.; Laurent, G.; Bonnet, D.; Janes, S.M. Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis. PLoS ONE 2009, 4, e8013. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Mollar, A.; Nacher, M.; Gay-Jordi, G.; Closa, D.; Xaubet, A.; Bulbena, O. Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 2007, 176, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Guillamat-Prats, R.; Gay-Jordi, G.; Xaubet, A.; Peinado, V.I.; Serrano-Mollar, A. Alveolar type II cell transplantation restores pulmonary surfactant protein levels in lung fibrosis. J. Heart Lung Transplant. 2014, 33, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Cores, J.; Dinh, P.C.; Hensley, T.; Adler, K.B.; Lobo, L.J.; Cheng, K. A pre-investigational new drug study of lung spheroid cell therapy for treating pulmonary fibrosis. Stem Cells Transl. Med. 2020, 9, 786–798. [Google Scholar] [CrossRef]
- Germano, D.; Blyszczuk, P.; Valaperti, A.; Kania, G.; Dirnhofer, S.; Landmesser, U.; Lüscher, T.F.; Hunziker, L.; Zulewski, H.; Eriksson, U. Prominin-1/CD133+ lung epithelial progenitors protect from bleomycin-induced pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2009, 179, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.A.; Yeh, C.C.; Hsu, C.H.; Hsu, C.W.; Kuo, F.H.; Tsai, P.J.; Fu, Y.S. Reversal of Pulmonary Fibrosis: Human Umbilical Mesenchymal Stem Cells from Wharton’s Jelly versus Human-Adipose-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 2023, 24, 6948. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, O.Y.; Park, H.J.; Lee, S.L.; Bok, E.Y.; Kim, M.; Suh, Y.S.; Cheon, Y.H.; Kim, H.O.; Kim, S.; et al. Promising Therapeutic Effects of Embryonic Stem Cells-Origin Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis Models: Immunomodulatory and Anti-Apoptotic Mechanisms. Immune Netw. 2023, 23, e45. [Google Scholar] [CrossRef]
- Li, H.Y.; Chien, Y.; Chen, Y.J.; Chen, S.F.; Chang, Y.L.; Chiang, C.H.; Jeng, S.Y.; Chang, C.M.; Wang, M.L.; Chen, L.K.; et al. Reprogramming induced pluripotent stem cells in the absence of c-Myc for differentiation into hepatocyte-like cells. Biomaterials 2011, 32, 5994–6005. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Li, L.F.; Yang, C.T.; Lu, K.H.; Huang, C.C.; Kao, K.C.; Chiou, S.H. Suppressing NF-κB and NKRF Pathways by Induced Pluripotent Stem Cell Therapy in Mice with Ventilator-Induced Lung Injury. PLoS ONE 2013, 8, e66760. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Li, L.F.; Fu, J.Y.; Kao, K.C.; Huang, C.C.; Chien, Y.; Liao, Y.W.; Chiou, S.H.; Chang, Y.L. Induced pluripotent stem cell therapy ameliorates hyperoxia-augmented ventilator-induced lung injury through suppressing the Src pathway. PLoS ONE 2014, 9, e109953. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Liu, J.; Li, X.; Lu, M.; Wang, X.; Ren, Y.; Li, X.; Xiang, M. Induced Pluripotent Stem Cells Attenuate Acute Lung Injury Induced by Ischemia Reperfusion via Suppressing the High Mobility Group Box-1. Dose Response 2020, 18, 1559325820969340. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.; Wanczyk, H.; Jensen, T.; Finck, C. Human induced pluripotent stem cells ameliorate hyperoxia-induced lung injury in a mouse model. Am. J. Transl. Res. 2020, 12, 292–307. [Google Scholar]
- Yang, K.Y.; Shih, H.C.; How, C.K.; Chen, C.Y.; Hsu, H.S.; Yang, C.W.; Lee, Y.C.; Perng, R.P.; Peng, C.H.; Li, H.Y.; et al. IV delivery of induced pluripotent stem cells attenuates endotoxin-induced acute lung injury in mice. Chest 2011, 140, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Mollar, A.; Gay-Jordi, G.; Guillamat-Prats, R.; Closa, D.; Hernandez-Gonzalez, F.; Marin, P.; Burgos, F.; Martorell, J.; Sánchez, M.; Arguis, P.; et al. Safety and Tolerability of Alveolar Type II Cell Transplantation in Idiopathic Pulmonary Fibrosis. Chest 2016, 150, 533–543. [Google Scholar] [CrossRef]
- Karyana, M.; Djaharuddin, I.; Rif’ati, L.; Arif, M.; Choi, M.K.; Angginy, N.; Yoon, A.; Han, J.; Josh, F.; Arlinda, D.; et al. Safety of DW-MSC infusion in patients with low clinical risk COVID-19 infection: A randomized, double-blind, placebo-controlled trial. Stem Cell Res. Ther. 2022, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Tzouvelekis, A.; Paspaliaris, V.; Koliakos, G.; Ntolios, P.; Bouros, E.; Oikonomou, A.; Zissimopoulos, A.; Boussios, N.; Dardzinski, B.; Gritzalis, D.; et al. A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. J. Transl. Med. 2013, 11, 171. [Google Scholar] [CrossRef]
- Ntolios, P.; Manoloudi, E.; Tzouvelekis, A.; Bouros, E.; Steiropoulos, P.; Anevlavis, S.; Bouros, D.; Froudarakis, M.E. Longitudinal outcomes of patients enrolled in a phase Ib clinical trial of the adipose-derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. Clin. Respir. J. 2018, 12, 2084–2089. [Google Scholar] [CrossRef]
- Chambers, D.C.; Enever, D.; Ilic, N.; Sparks, L.; Whitelaw, K.; Ayres, J.; Yerkovich, S.T.; Khalil, D.; Atkinson, K.M.; Hopkins, P.M. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology 2014, 19, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Glassberg, M.K.; Minkiewicz, J.; Toonkel, R.L.; Simonet, E.S.; Rubio, G.A.; DiFede, D.; Shafazand, S.; Khan, A.; Pujol, M.V.; LaRussa, V.F.; et al. Allogeneic Human Mesenchymal Stem Cells in Patients With Idiopathic Pulmonary Fibrosis via Intravenous Delivery (AETHER): A Phase I Safety Clinical Trial. Chest 2017, 151, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Fishman, J.E.; Kim, G.J.; Kyeong, N.Y.; Goldin, J.G.; Glassberg, M.K. Intravenous stem cell dose and changes in quantitative lung fibrosis and DLCO in the AETHER trial: A pilot study. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7568–7572. [Google Scholar] [PubMed]
- Averyanov, A.; Koroleva, I.; Konoplyannikov, M.; Revkova, V.; Lesnyak, V.; Kalsin, V.; Danilevskaya, O.; Nikitin, A.; Sotnikova, A.; Kotova, S.; et al. First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline. Stem Cells Transl. Med. 2020, 9, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, D.; Takenaka-Ninagawa, N.; Motoike, S.; Kajiya, M.; Akaboshi, T.; Zhao, C.; Shibata, M.; Senda, S.; Toyooka, Y.; Sakurai, H.; et al. Induction of functional xeno-free MSCs from human iPSCs via a neural crest cell lineage. NPJ Regen. Med. 2022, 7, 47. [Google Scholar] [CrossRef]
- Gotoh, S.; Ito, I.; Nagasaki, T.; Yamamoto, Y.; Konishi, S.; Korogi, Y.; Matsumoto, H.; Muro, S.; Hirai, T.; Funato, M.; et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 2014, 3, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Doi, A.; Wen, B.; Ng, K.; Zhao, R.; Cahan, P.; Kim, J.; Aryee, M.J.; Ji, H.; Ehrlich, L.I.; et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010, 467, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, C.; Murakami, Y.; Ishii, E.; Fujita, H.; Wakao, H. Reprogramming and redifferentiation of mucosal-associated invariant T cells reveal tumor inhibitory activity. eLife 2022, 11, e70848. [Google Scholar] [CrossRef] [PubMed]
- Jansen, B.J.; Gilissen, C.; Roelofs, H.; Schaap-Oziemlak, A.; Veltman, J.A.; Raymakers, R.A.; Jansen, J.H.; Kögler, G.; Figdor, C.G.; Torensma, R.; et al. Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem Cells Dev. 2010, 19, 481–490. [Google Scholar] [CrossRef]
- Iwashima, S.; Ozaki, T.; Maruyama, S.; Saka, Y.; Kobori, M.; Omae, K.; Yamaguchi, H.; Niimi, T.; Toriyama, K.; Kamei, Y.; et al. Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue. Stem Cells Dev. 2009, 18, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, K.; Tsuboi, N.; Shimizu, A.; Katsuno, T.; Kim, H.; Saka, Y.; Ozaki, T.; Sado, Y.; Imai, E.; Matsuo, S.; et al. Serum-starved adipose-derived stromal cells ameliorate crescentic GN by promoting immunoregulatory macrophages. J. Am. Soc. Nephrol. 2013, 24, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Kozlowska, U.; Krawczenko, A.; Futoma, K.; Jurek, T.; Rorat, M.; Patrzalek, D.; Klimczak, A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J. Stem Cells 2019, 11, 347–374. [Google Scholar] [CrossRef] [PubMed]
- Le Blanc, K.; Tammik, C.; Rosendahl, K.; Zetterberg, E.; Ringdén, O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003, 31, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Halm, D.; Leibig, N.; Martens, J.; Stark, G.B.; Groß, T.; Zimmermann, S.; Finkenzeller, G.; Lampert, F. Direct comparison of the immunogenicity of major histocompatibility complex-I and -II deficient mesenchymal stem cells in vivo. Biol. Chem. 2021, 402, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Eliopoulos, N.; Stagg, J.; Lejeune, L.; Pommey, S.; Galipeau, J. Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 2005, 106, 4057–4065. [Google Scholar] [CrossRef]
- Ichikado, K.; Kotani, T.; Kondoh, Y.; Imanaka, H.; Johkoh, T.; Fujimoto, K.; Nunomiya, S.; Kawayama, T.; Sawada, M.; Jenkins, E.; et al. Clinical efficacy and safety of multipotent adult progenitor cells (invimestrocel) for acute respiratory distress syndrome (ARDS) caused by pneumonia: A randomized, open-label, standard therapy-controlled, phase 2 multicenter study (ONE-BRIDGE). Stem Cell Res. Ther. 2023, 14, 217. [Google Scholar] [CrossRef]
Preclinical Studies | ||||||||
---|---|---|---|---|---|---|---|---|
Bone Marrow MSCs | ||||||||
Year | Model | Source | Effect | Effect 2 | Outcome | Ref. | ||
2003 | BLM mouse | Mouse BM MSCs | Differentiate into AT2-like cells | Decrease matrix metalloproteinases | Reduced inflammation and col I deposition | Proc Natl Acad Sci U S A. 2003;100(14):8407-11. | [51] | |
2005 | Myelo-suppressed BLM mouse (i.e., has increased susceptibility) | Mouse BM MSCs | Localized in the lung with AT2 or other cell phenotypes of the lung | G-CSF and GM-CSF ↑; IL-2, -1β, -4, and INF-γ ↓ | Reduced inflammation and fibrosis | Am J Respir Cell Mol Biol. 2005;33(2):145-52. | [55] | |
2007 | BLM mouse | Mouse BM MSCs | IL-1 receptor antagonist production | Protect from injury by blocking TNF-α (Mφ) and IL-1α (T cells) | Decrease in TNF-alpha and IL-1 alpha | Proc Natl Acad Sci U S A. 2007;104(26):11002-7. | [56] | |
※ | 2008 | BLM mouse (NOD/SCID, NOD/SCID/β2M) | Human BMDCs | BMDCs were more migrated in NOD/SCID/β2M mouse | Am J Physiol Lung Cell Mol Physiol.2008;295(2):L285-92. | [52] | ||
2010 | BLM rat | Rat BM MSCs | NO2 and NO3 ↓ in lung | IL-1β, VEGF, IL-6, TNF-α, and TGF-β ↓ in lung | Reduced inflammation and fibrosis | Respir Res. 2010;11(1):16. | [54] | |
※ | 2013 | BLM rat and human UIP lung | Human BM MSCs (HGF overexpression) | MSC (HGF+, marrow-derived) presented in lung | Wet lung volume and Ashcroft score ↓ | Reduced inflammation and fibrosis | PLoS One. 2013;8(6):e65453. | [53] |
2014 | BLM mouse | Human BM MSCs (UE6E7T-2) and the inhalation of STC1 | STC1 secretion from MSCs by TGF-β | Col synthesis, oxidative stress, TGF-β1, FGF2, and PDGF-B ↓ | Reduced inflammation and fibrosis | Mol Ther. 2015;23(3):549-60. | [57] | |
2015 | BLM rat | Mouse BM MSCs | Differentiate into AT2-like cells (surfactant protein C ↑) | Increase antioxidative capability | Reduced fibrosis | Mol Med Rep. 2015;11(3):1685-92. | [58] | |
※ | 2015 | BLM mouse; MSC and fibroblast coculture | Mouse BM MSCs (hypoxic preconditioning) | HIF-1α, HGF, VEGF, and HO-1 ↑ by hypoxic preconditioning of MSC | HGF, CTGF, and col I amount ↓ in the lung (dominant in preconditioning) | Reduced inflammation and fibrosis | Stem Cell Res Ther. 2015;6(1):97. | [59] |
※ | 2016 | BLM mouse | Mouse BM MSCs (HGF overexpression) and MSC CM (probably HGF) | MSC CM: apoptosis inhibition | MSC: IL-1β ↓ and HGF ↑; MSC ΔHGF: none | Reduced inflammation and fibrosis | Stem Cells Transl Med. 2016;5(10):1307-1318. | [60] |
※ | 2017 | BLM mouse | Mouse BM MSCs (Oncostatin M preconditioning) | HGF ↑ by oncostatin M preconditioning of MSC | Col III, CTGF, MMP9, TIMP1, and TGF-β1 ↓ in the lung (dominant in preconditioning) | Reduced inflammation and fibrosis | Stem Cells Transl Med. 2017;6(3):1006-1017. | [61] |
※ | 2017 | BLM mouse | Human BM MSCs (let-7d [antifibrotic] or miR-154 [profibrotic] overexpression) | Recover quicker from weight loss, col I, and CD45+cells ↓ (let-7d) | Survival rate ↓ (miR-154) | The possibility of miRNA-modified MSC | Am J Physiol Lung Cell Mol Physiol.2017;313(1):L92-L103. | [62] |
※ | 2021 | BLM rat | Rat BM MSCs ± nintedanib | Homing to injured lung | TGF-β/SMAD3 signaling, TNF-α, and IL-6 ↓ (dominant in BM MSCs + nintedanib) | Reduced inflammation and fibrosis | Inflammation. 2020;43(1):123-134. | [64] |
※ | 2021 | BLM mouse | Human BM MSCs with serum-free media | Lung engraftment and Treg ↑ | TGF-β1 and IL-6 ↓ | Reduced inflammation and fibrosis | Stem Cell Res Ther. 2021;12(1):506. | [63] |
Adipose tissue MSCs | ||||||||
Year | Model | Source | Effect | Effect 2 | Outcome | Ref | ||
2014 | BLM mouse | Human AD MSCs | Apoptosis ↓ and TGF-β1 ↓ | The hyperplasia of Club cells, infiltration of the perialveolar ducts by inflammatory cells, septal thickening, enlarged alveoli, Ashcroft score, and hydroxyproline ↓ | Reduced inflammation and fibrosis | Exp Lung Res. 2014;40(3):117-25. | [74] | |
※ | 2015 | BLM mouse | Mouse AD MSCs (young or adult donor) | Fibrosis, MMP-2 activity, oxidative stress, and the markers of apoptosis ↓ (dominant in young) | MMP-2, IGF receptor, and protein kinase B (AKT) ↑ in young donor | Reduced inflammation and fibrosis | Transl Res. 2015;166(6):554-67. | [73] |
2017 | BLM mouse | Mouse AdSC | TNF-α and IL-12 ↓ and apoptosis ↑ (Mφ) | Th2-type CD4+ T cells ↓ and regulatory T cells ↑ | Reduced inflammation and fibrosis | Sci Rep. 2017;7(1):14608. | [72] | |
2023 | BLM mouse | Mouse AD-MSCs and the CM of AD-MSCs | Ashcroft score, hydroxyproline ↓; fibroblast proliferation and migration ↑ (in vitro MSC and CM) | TGF-β, αSMA, and Col I ↓ (in vitro, CM); CM is a key? | Reduced inflammation and fibrosis | Sci Rep. 2023;13(1):13183. | [75] | |
Placental MSCs | ||||||||
Year | Model | Source | Effect | Effect 2 | Outcome | Ref | ||
2009 | BLM mouse | Human placenta-derived cells, 50% mesenchymal cells (AMSCs + CMSCs), and 50% epithelial cells (hAECs) | Homing to injured lung | Neutrophil infiltration and the severity of lung fibrosis ↓ | Reduced inflammation and fibrosis | Cell Transplant. 2009;18(4):405-22. | [67] | |
2009 | BLM mouse | Human UC MSC | TGF-β, IL-10, INF-γ, and col Ia ↓ | MMP2 ↑ | Reduced inflammation and fibrosis | Am J Pathol. 2009;175(1):303-13. | [70] | |
2013 | BLM mouse | Human AM MSC, BM MSCs, and hAECs | IL-1 (AM-MSC), IL-6 (AM-MSC, BM-MSC, hAEC), and TNF-a (AM-MSC) ↓ | MMP-9 (AM-MSC) ↑ and TGF-β (AM MSC, BM MSC, and hAEC) ↓ | Reduced inflammation and fibrosis (AM MSC) | PLoS One. 2013;8(8):e69299. | [69] | |
2013 | BLM mouse | Mouse AFSC | CCL2 ↓; MMP2 (transiently) ↑ | AFSC migration to fibrosis lesion and MMP-2 was associated with the cleavage of CCL2 | Reduced inflammation and fibrosis | PLoS One. 2013;8(8):e71679. | [71] | |
2017 | BLM mouse (MyD88-deficient) | Human PL MSC | ΔmyD88 in BLM mouse indicates reduced fibrosis (MyD88 might be related to fibrosis) | Hydroxyproline, MyD88, and TGF-β signaling ↓ | Reduced inflammation and fibrosis | Mol Immunol. 2017:90:11-21. | [68] | |
2023 | BLM rat | Human UC MSC vs. human AD MSC | Lung function and blood oxygen saturation ↑; cell number and myofibroblast activation ↓ (BALF) in UC-MSC | MMP-9 and Toll-like receptor-4 (alveolar regeneration) ↑ in UC MSC | Reduced inflammation and fibrosis | Int J Mol Sci. 2023;24(8):6948. | [81] | |
iPS | ||||||||
Year | Model | Source | Effect | Effect 2 | Outcome | Ref | ||
2013 | BLM mouse | Mouse iPSCs and iPSC CM | Ashcroft score, col I, hydroxyprolines, and neutrophil ↓ | IL-1, IL-2, IL-10, TNF-α, and MCP1 ↓; IP-10 ↑ | Reduced inflammation and fibrosis, and survival ↑ | Shock. 2013;39(3):261-70. | [7] | |
2014 | BLM mouse | Mouse iPSC and iPSC-derived AT1- and AT2-like cells | iPSCs and differentiated cells migrate to the injured region | IL-6 (BALF), TNF-α (BALF), and hydroxyproline ↓ (iPSC-derived AT2 > iPSC) | Reduced inflammation and fibrosis | Stem Cells Transl Med. 2014;3(6):675-85. | [8] | |
2016 | BLM mouse | Mouse iPSCs | MMP-2, IL-1β, IL-6, iNOS, NO, and COX2 ↓ | TGF-β1/Smad2/3 signaling and epithelial to mesenchymal transition ↓ | Reduced inflammation and fibrosis | Front Pharmacol. 2016:7:430. | [9] | |
2023 | BLM mouse | Mouse iPSCs | Hydroxyproline ↓ | Wnt, β-Catenin, and LEF ↑; DKK1 ↓ in the lung | Reduced inflammation and fibrosis | Stem Cell Res Ther. 2023;14(1):343. | [6] | |
AT2 | ||||||||
Year | Model | Source | Effect | Effect 2 | Outcome | Ref | ||
2007 | BLM rat | Rat AT2 | Homing to injured lung | Lung hydroxyproline ↓ | Reduced inflammation and fibrosis | Am J Respir Crit Care Med. 2007;176(12):1261-8. | [77] | |
2014 | BLM rat | Rat AT2 | Homing to injured lung | The recovery of surfactant proteins | Reduced inflammation and fibrosis | J Heart Lung Transplant. 2014;33(7):758-65. | [78] | |
The others | ||||||||
Year | Model | Source | Effect | Effect 2 | Outcome | Ref | ||
2009 | Lethally irradiated BLM mouse | Lineage negative HSCs + KGF overexpression | Proliferative AT2 (surfactant protein C ↑) | TNF-α, CCL-2, and CCL-9 ↓ | Reduced inflammation and fibrosis | PLoS One. 2009;4(11):e8013. | [76] | |
2009 | BLM mouse | PEPCs (epithelial progenitor cells) | PEPCs were of bone marrow origin; differentiated into AT2-like (SP-C+); inducible nitric oxide synthase ↑ | IL-4, IL-6, IL-13, and TNF-α, MCP1 ↓ (day 7); TGF-β, fibronectin, and col I↓ (day 21) | Reduced inflammation and fibrosis | Am J Respir Crit Care Med. 2009;179(10):939-49. | [80] | |
2011 | BLM mouse | Mouse LuMSCs | BLM depletes the endogenous LuMSCs that regulate effector T-cell proliferation | Ashcroft score and survival ↑ | Reduced inflammation and fibrosis | Stem Cells. 2011;29(4):725-35. | [66] | |
2012 | BLM mouse | Human ESCs (H7)-derived AT1, AT2, and Clara-like cell mixture | Col Ia, TGF-β1, FGF, and VEGF-A ↓ | Col amount ↓ | The possibility of using ESCs to treat fibrosis | PLoS One. 2012;7(3):e33165. | [65] | |
2020 | BLM rat | rat LCS (MSC, AT1, AT2, and club cell) | Homing to injured lung, Ashcroft score ↓ | Apoptosis ↓ and angiogenesis ↑; the protection of AT1 and AT2 cells | Reduced inflammation and fibrosis | Stem Cells Transl Med. 2020;9(7):786-798. | [79] | |
2023 | BLM mouse | DW MSCs (derived from human ESCs) | Ashcroft score and col amount ↓; Acta2, col Ia, CTGF, TGF-β, and IL-1b ↓, | Anti-apoptotic effects by transferring their mitochondria | Reduced inflammation and fibrosis | Immune Netw. 2023;23(6):e45. | [82] |
Clinical Trials | |||||||||
---|---|---|---|---|---|---|---|---|---|
Year | Patients | Source | Phase | Endpoint | Administration | Outcome | Ref. | ||
2013 | IPF (FVC > 50% and DLCO > 35%) | Human AD-MSC SVF (autologous) | Phase Ib, non-randomized, and non-placebo | n = 14 | Adverse events within 12 months | Intratracheal | No cases of serious or clinically meaningful adverse events | J Transl Med. 2013:11:171. | [91] |
2014 | IPF (moderately severe) | Human PL-MSC (allogeneic) 1 × 106 vs. 2 × 106 cells | Phase Ib and non-placebo | n = 8 | Observation: lung function, 6 min walk test, and CT | Intravenous | Lung function, 6 min walk test, and CT scan were unchanged at 6 months | Respirology. 2014;19(7):1013-8. | [93] |
2016 | IPF (moderate and progressive) | Human AT2 | Phase I, non-randomized, and non-placebo | n = 16 | Adverse events within 12 months | Intratracheal | No significant adverse events and no deterioration in pulmonary function or respiratory symptoms | Chest. 2016;150(3):533-43. | [89] |
2017 | IPF (mild to moderate) | Human BM-MSC (allogeneic), 2 × 107, 1 × 108, and 2 × 108 cells | Phase I and non-placebo (AETHER trial) | n = 9 | Safety and serious adverse events at 4 weeks | Intravenous | No treatment-emergent serious adverse events | Chest. 2017;151(5):971-981. | [94] |
2018 | IPF (80% > FVC > 55% and DLco > 35%) | Human AD-MSC SVF (autologous) | Phase Ib, non-randomized, and non-placebo Follow-up of the phase I study (J Transl Med. 2013) | n = 14 | Observation: mortality, progression-free survival, lung function, and exercise capacity within 54 months | Intratracheal | Two-year median survival and progression rates are close to epidemiological data. | Clin Respir J. 2018;12(6):2084-2089. | [92] |
2019 | IPF (mild to moderate) | Human BM-MSC (allogeneic) 2 × 107 vs. 1 × 108 cells | Phase I and non-placebo (data from AETHER trial) | n = 9 | Compare CT changes with pulmonary function | Intravenous | Slower progression of lung fibrosis and DLCO in the 1 × 108 group | Eur Rev Med Pharmacol Sci. 2019;23(17):7568-7572. | [95] |
2020 | IPF (rapid progressive course of severe to moderate) | Human BM-MSC (allogeneic) 2 × 108 cells | Phase I/IIA, randomized, vs. placebo | n = 20 | Safety, tolerability, and efficacy | Intravenous | No significant adverse effects; 6 min walk distance (13 wks) ↑, DLCO (26 wks) ↑, and FVC (39 wks) ↑ in BM MSC | Stem Cells Transl Med. 2020;9(1):6-16. | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, Y.; Niho, S.; Shimizu, Y. Cell-Based Therapy for Fibrosing Interstitial Lung Diseases, Current Status, and Potential Applications of iPSC-Derived Cells. Cells 2024, 13, 893. https://doi.org/10.3390/cells13110893
Nakamura Y, Niho S, Shimizu Y. Cell-Based Therapy for Fibrosing Interstitial Lung Diseases, Current Status, and Potential Applications of iPSC-Derived Cells. Cells. 2024; 13(11):893. https://doi.org/10.3390/cells13110893
Chicago/Turabian StyleNakamura, Yusuke, Seiji Niho, and Yasuo Shimizu. 2024. "Cell-Based Therapy for Fibrosing Interstitial Lung Diseases, Current Status, and Potential Applications of iPSC-Derived Cells" Cells 13, no. 11: 893. https://doi.org/10.3390/cells13110893
APA StyleNakamura, Y., Niho, S., & Shimizu, Y. (2024). Cell-Based Therapy for Fibrosing Interstitial Lung Diseases, Current Status, and Potential Applications of iPSC-Derived Cells. Cells, 13(11), 893. https://doi.org/10.3390/cells13110893