Unveiling the Roles of Cysteine Proteinases F and W: From Structure to Pathological Implications and Therapeutic Targets
Abstract
:1. Introduction
2. Structure of Cysteine Proteinases F and W
3. Involvement of CTSF and CTSW in Malignancies
3.1. CTSF
3.2. CTSW
4. Involvement of CTSF and CTSW in Immune Response and Neurological Conditions
4.1. Immune Response
4.2. Neurological Conditions
4.3. Aging and Diabetes
5. Inhibitors of CTSF
5.1. Endogenous Inhibitors
Cystatin Family
5.2. Thyropins (p41 Fragment)
5.3. Propeptide-like Inhibitors
5.4. Synthetic Inhibitors
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mijanović, O.; Jakovleva, A.; Branković, A.; Zdravkova, K.; Pualic, M.; Belozerskaya, T.A.; Nikitkina, A.I.; Parodi, A.; Zamyatnin, A.A., Jr. Cathepsin K in Pathological Conditions and New Therapeutic and Diagnostic Perspectives. Int. J. Mol. Sci. 2022, 23, 13762. [Google Scholar] [CrossRef] [PubMed]
- Wex, T.; Levy, B.; Smeekens, S.; Ansorge, S.; Desnick, R.; Bromme, D. Genomic Structure, Chromosomal Localization, and Expression of Human Cathepsin W. Biochem. Biophys. Res. Commun. 1998, 248, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cysteine proteinases: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta BBA—Proteins Proteom. 2012, 1824, 68–88. [Google Scholar] [CrossRef] [PubMed]
- Wex, T.; Levy, B.; Wex, 1.; Brömme, D. Human Cathepsins W and F form A New Subgroup of Cathepsins that is Evolu-tionary Separated from the Cathepsin B- and L-Like Cysteine Proteases. In Cellular Peptidases in Immune Functions and Diseases 2; Langner, J., Ansorge, S., Eds.; Kluwer Academic Publishers: Dordrecht, Neatherlands, 2002; Volume 477, pp. 271–280. [Google Scholar] [CrossRef]
- Linnevers, C.; Smeekens, S.; Brömme, D. Human cathepsin W, a putative cysteine protease predominantly expressed in CD8+ T-lymphocytes. FEBS Lett. 1997, 405, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Dalton, J.P.; Robinson, M.W.; Brindley, P.J.; Cathepsin, W. Handbook of Proteolytic Enzymes, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Wex, T.; Levy, B.; Wex, H.; Brömme, D. Human Cysteine proteinases F and W: A New Subgroup of Cysteine proteinases. Biochem. Biophys. Res. Commun. 1999, 259, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, G.-P.; Yao, P.M.; Li, Z.; Chapman, H.A.; Brömme, D. Human Cathepsin F. J. Biol. Chem. 1998, 273, 32000–32008. [Google Scholar] [CrossRef] [PubMed]
- Santamaría, I.; Velasco, G.; Pendás, A.M.; Paz, A.; López-Otín, C. Molecular Cloning and Structural and Functional Characterization of Human Cathepsin F, a New Cysteine Proteinase of the Papain Family with a Long Propeptide Domain. J. Biol. Chem. 1999, 274, 13800–13809. [Google Scholar] [CrossRef] [PubMed]
- Kamphuis, I.; Drenth, J.; Baker, E. Comparative Studies Based on the High-resolution Structures of Papain and Actinidin, and on Amino Acid Sequence Information for Cysteine proteinases B and H, and Stem Bromelain. J. Mol. Biol. 1985, 182, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Fengler, A.; Brandt, W. Development and Validation of Homology Models of Human Cysteine proteinases K, S, H, and F. In Cellular Peptidases in Immune Functions and Diseases 2; Langner, J., Ansorge, S., Eds.; Kluwer Academic Publishers: Dordrecht, Neatherlands, 2002; Volume 477, pp. 255–260. [Google Scholar] [CrossRef]
- Nägler, D.K.; Sulea, T.; Ménard, R. Full-Length cDNA of Human Cathepsin F Predicts the Presence of a Cystatin Domain at the N-terminus of the Cysteine Protease Zymogen. Biochem. Biophys. Res. Commun. 1999, 257, 313–318. [Google Scholar] [CrossRef]
- Yadati, T.; Houben, T.; Bitorina, A.; Shiri-Sverdlov, R. The Ins and Outs of Cysteine proteinases: Physiological Function and Role in Disease Management. Cells 2020, 9, 1679. [Google Scholar] [CrossRef]
- Buhling, F.; Kellner, U.; Guenther, D.; Kahl, S.; Brömme, D.; Weber, E.; Malfertheiner, P.; Wex, T. Characterization of Novel Anti-Cathepsin W Antibodies and Cellular Distribution of Cathepsin W in the Gastrointestinal Tract. Biol. Chem. 2002, 383, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, C.; Peitz, U.; Treiber, G.; Wilhelmsen, S.; Malfertheiner, P.; Wex, T. Identification of a novel isoform predominantly expressed in gastric tissue and a triple-base pair polymorphism of the cathepsin W gene. Biochem. Biophys. Res. Commun. 2004, 321, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Raab, A.-K.; Mönkemüller, K.; Kandulski, A.; Weber, E.; Malfertheiner, P.; Wex, T. Expression pattern of cathepsinW-isoforms in peripheral blood and gastroesophageal mucosa of patients with gastroesophageal reflux disease. Biol. Chem. 2011, 392, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Zhao, Y.; Kou, Y.-W.; Shao, H.; Guo, L.; Bao, C.-H.; Jiang, B.-C.; Chen, X.-Y.; Dai, J.-W.; Tong, Y.-X.; et al. Cathepsin F Knockdown Induces Proliferation and Inhibits Apoptosis in Gastric Cancer Cells. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2018, 26, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Vidak, E.; Javoršek, U.; Vizovišek, M.; Turk, B. Cysteine Cysteine proteinases and their Extracellular Roles: Shaping the Microenvironment. Cells 2019, 8, 264. [Google Scholar] [CrossRef] [PubMed]
- Novinec, M.; Lenarčič, B.; Turk, B. Cysteine Cathepsin Activity Regulation by Glycosaminoglycans. BioMed Res. Int. 2014, 2014, 309718. [Google Scholar] [CrossRef]
- Wex, T.; Bühling, F.; Wex, H.; Günther, D.; Malfertheiner, P.; Weber, E.; Brömme, D. Human Cathepsin W, a Cysteine Protease Predominantly Expressed in NK Cells, Is Mainly Localized in the Endoplasmic Reticulum. J. Immunol. 2001, 167, 2172–2178. [Google Scholar] [CrossRef] [PubMed]
- Wex, T.; Wex, H.; Hartig, R.; Wilhelmsen, S.; Malfertheiner, P. Functional involvement of cathepsin W in the cytotoxic activity of NK-92 cells. FEBS Lett. 2003, 552, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Quesnel, A.; Karagiannis, G.S.; Filippou, P.S. Extracellular proteolysis in glioblastoma progression and therapeutics. Biochim. et Biophys. Acta (BBA)—Rev. Cancer 2020, 1874, 188428. [Google Scholar] [CrossRef]
- Ondr, J.K.; Pham, C.T.N. Characterization of Murine Cathepsin W and Its Role in Cell-mediated Cytotoxicity. J. Biol. Chem. 2004, 279, 27525–27533. [Google Scholar] [CrossRef]
- Mijanović, O.; Branković, A.; Panin, A.N.; Savchuk, S.; Timashev, P.; Ulasov, I.; Lesniak, M.S. Cathepsin B: A sellsword of cancer progression. Cancer Lett. 2019, 449, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yu, B.; Fang, P.; Wang, J. Inhibiting autophagy before it starts. Autophagy 2023, 20, 923–924. [Google Scholar] [CrossRef] [PubMed]
- Dohchin, A.; Suzuki J ichi Seki, H.; Masutani, M.; Shiroto, H.; Kawakami, Y. Immunostained cysteine proteinases B and L correlate with depth of invasion and different metastatic pathways in early stage gastric carcinoma. Cancer 2000, 89, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Berquin, I.M.; Sloane, B.F. Cysteine proteases and tumor progression. Perspect. Drug Discov. Des. 1995, 2, 371–388. [Google Scholar] [CrossRef]
- Frolova, A.S.; Tikhomirova, N.K.; Kireev, I.I.; Zernii, E.Y.; Parodi, A.; Ivanov, K.I.; Zamyatnin, A.A. Expression, Intracellular Localization, and Maturation of Cysteine Proteinases in Renal Embryonic and Cancer Cell Lines. Biochemistry 2023, 88, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Liu, W.; Xu, M.; Qin, H.; Liu, C.; Zhang, R.; Zhou, S.; Li, E.; Liu, Z.; Wang, Q. Cathepsin F and Fibulin-1 as novel diagnostic biomarkers for brain metastasis of non-small cell lung cancer. Br. J. Cancer 2022, 126, 1795–1805. [Google Scholar] [CrossRef]
- Song, L.; Wang, X.; Cheng, W.; Wu, Y.; Liu, M.; Liu, R.; Zhang, S.; Xia, H.; Liu, H.; Tai, X.; et al. Expression signature, prognosis value and immune characteristics of cathepsin F in non-small cell lung cancer identified by bioinformatics assessment. BMC Pulm. Med. 2021, 21, 420. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mei, J.; Zhang, Y.; He, X.; Zheng, X.; Tan, J.; Jia, Q.; Li, N.; Li, D.; Wang, Y.; et al. Cathepsin F genetic variant is associated with familial papillary thyroid cancer. Am. J. Med. Sci. 2022, 364, 414–424. [Google Scholar] [CrossRef]
- Kitahara, C.M.; Sosa, J.A. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 2016, 12, 646–653. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Li, J.; Zhang, H.; Guo, S.; Yan, M.; Zhu, Z.; Lan, B.; Ding, Y.; Xu, M.; et al. Identification of Serum Biomarkers for Gastric Cancer Diagnosis Using a Human Proteome Microarray. Mol. Cell. Proteom. 2016, 15, 614–623. [Google Scholar] [CrossRef]
- Zheng, L.; Cao, J.; Liu, L.; Xu, H.; Chen, L.; Kang, L.; Gao, L. Long noncoding RNA LINC00982 upregulates CTSF expression to inhibit gastric cancer progression via the transcription factor HEY. Am. J. Physiol. Liver Physiol. 2021, 320, G816–G828. [Google Scholar] [CrossRef]
- Zhang, G.; Yin, Z.; Fang, J.; Wu, A.; Chen, G.; Cao, K. Construction of the novel immune risk scoring system related to CD8+ T cells in uterine corpus endometrial carcinoma. Cancer Cell Int. 2023, 23, 124. [Google Scholar] [CrossRef]
- Shen, S.; Tu, C.; Shen, H.; Li, J.; Frangou, C.; Zhang, J.; Qu, J. Comparative Proteomics Analysis of Exosomes Identifies Key Pathways and Protein Markers Related to Breast Cancer Metastasis. Int. J. Mol. Sci. 2023, 24, 4033. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, F.; Chen, P.; Liu, S.; Song, Z.; Ma, X. Identification of a six-gene signature with prognostic value for patients with endometrial carcinoma. Cancer Med. 2018, 7, 5632–5642. [Google Scholar] [CrossRef]
- Zhang, Y.; Manjunath, M.; Yan, J.; Baur, B.A.; Zhang, S.; Roy, S.; Song, J.S. The Cancer-Associated Genetic Variant Rs3903072 Modulates Immune Cells in the Tumor Microenvironment. Front. Genet. 2019, 10, 754. [Google Scholar] [CrossRef]
- Pan, B.; Yue, Y.; Ding, W.; Sun, L.; Xu, M.; Wang, S. A novel prognostic signatures based on metastasis- and immune-related gene pairs for colorectal cancer. Front. Immunol. 2023, 14, 1161382. [Google Scholar] [CrossRef]
- Chen, P.; Yang, Y.; Zhang, Y.; Jiang, S.; Li, X.; Wan, J. Identification of prognostic immune-related genes in the tumor microenvironment of endometrial cancer. Aging 2020, 12, 3371–3387. [Google Scholar] [CrossRef]
- Khojasteh-Leylakoohi, F.; Mohit, R.; Khalili-Tanha, N.; Asadnia, A.; Naderi, H.; Pourali, G.; Yousefli, Z.; Khalili-Tanha, G.; Khazaei, M.; Maftooh, M.; et al. Down Regulation of Cathepsin W Is Associated with Poor Prognosis in Pancreatic Cancer. Sci. Rep. 2023, 13, 16678. [Google Scholar] [CrossRef]
- Olayinka, J.T.; Nagarkar, A.; Ma, D.J.; Wong, N.B.; Romasco, A.; Piedra-Mora, C.; Wrijil, L.; David, C.N.; Gardner, H.L.; Robinson, N.A.; et al. Cathepsin W, T-cell receptor-associated transmembrane adapter 1, lymphotactin and killer cell lectin like receptor K1 are sensitive and specific RNA biomarkers of canine epitheliotropic lymphoma. Front. Veter-Sci. 2023, 10, 1225764. [Google Scholar] [CrossRef]
- Lee, K.K.; Rishishwar, L.; Ban, D.; Nagar, S.D.; Mariño-Ramírez, L.; McDonald, J.F.; Jordan, I.K. Association of Genetic Ancestry and Molecular Signatures with Cancer Survival Disparities: A Pan-Cancer Analysis. Cancer Res. 2022, 82, 1222–1233. [Google Scholar] [CrossRef]
- Brown, J.; Matutes, E.; Singleton, A.; Price, C.; Molgaard, H.; Buttle, D.; Enver, T. Lymphopain, a cytotoxic T and natural killer cell-associated cysteine proteinase. Leukemia 1998, 12, 1771–1781. [Google Scholar] [CrossRef]
- Öörni, K.; Sneck, M.; Brömme, D.; Pentikäinen, M.O.; Lindstedt, K.A.; Mäyränpää, M.; Aitio, H.; Kovanen, P.T. Cysteine Protease Cathepsin F Is Expressed in Human Atherosclerotic Lesions, Is Secreted by Cultured Macrophages, and Modifies Low Density Lipoprotein Particles in Vitro. J. Biol. Chem. 2004, 279, 34776–34784. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Zhang, Q.Y.; Weiss, S.J. Pericellular mobilization of the tissue-destructive cysteine proteinases, cysteine proteinases B, L, and S, by human monocyte-derived macrophages. Proc. Natl. Acad. Sci. USA 1995, 92, 3849–3853. [Google Scholar] [CrossRef]
- Kaakinen, R.; Lindstedt, K.A.; Sneck, M.; Kovanen, P.T.; Öörni, K. Angiotensin II increases expression and secretion of cathepsin F in cultured human monocyte-derived macrophages: An angiotensin II type 2 receptor-mediated effect. Atherosclerosis 2007, 192, 323–327. [Google Scholar] [CrossRef]
- Conus, S.; Simon, H. Cathepsins and their involvement in immune responses. Swiss Med. Wkly. 2010, 140, w13042. [Google Scholar] [CrossRef]
- Shi, G.-P.; Bryant, R.A.; Riese, R.; Verhelst, S.; Driessen, C.; Li, Z.; Bromme, D.; Ploegh, H.L.; Chapman, H.A. Role for Cathepsin F in Invariant Chain Processing and Major Histocompatibility Complex Class II Peptide Loading by Macrophages. J. Exp. Med. 2000, 191, 1177–1186. [Google Scholar] [CrossRef]
- Pires, D.; Marques, J.; Pombo, J.P.; Carmo, N.; Bettencourt, P.; Neyrolles, O.; Lugo-Villarino, G.; Anes, E. Role of Cysteine proteinases in Mycobacterium tuberculosis Survival in Human Macrophages. Sci. Rep. 2016, 6, 32247. [Google Scholar] [CrossRef]
- Kumar, B.V.; Connors, T.J.; Farber, D.L. Human T Cell Development, Localization, and Function throughout Life. Immunity 2018, 48, 202–213. [Google Scholar] [CrossRef]
- Bhandoola, A.; Kithiganahalli, B.; Granger, L.; Singer, A. Programming for cytotoxic effector function occurs concomitantly with CD4 extinction during CD8+ T cell differentiation in the thymus. Int. Immunol. 2000, 12, 1035–1040. [Google Scholar] [CrossRef]
- Stoeckle, C.; Gouttefangeas, C.; Hammer, M.; Weber, E.; Melms, A.; Tolosa, E. Cathepsin W expressed exclusively in CD8+ T cells and NK cells, is secreted during target cell killing but is not essential for cytotoxicity in human CTLs. Exp. Hematol. 2009, 37, 266–275. [Google Scholar] [CrossRef]
- Kuester, D.; Vieth, M.; Peitz, U.; Kahl, S.; Stolte, M.; Roessner, A.; Weber, E.; Malfertheiner, P.; Wex, T. Upregulation of cathepsin W-expressing T cells is specific for autoimmune atrophic gastritis compared to other types of chronic gastritis. World J. Gastroenterol. 2005, 11, 5951–5957. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Kim, G.; Luo, J.; Hori, S.; Wu, C. Cathepsin W restrains peripheral regulatory T cells for mucosal immune quiescence. Sci. Adv. 2023, 9, eadf3924. [Google Scholar] [CrossRef]
- Bühling, F.; Peitz, U.; Krüger, S.; Küster, D.; Vieth, M.; Gebert, I.; Roessner, A.; Weber, E.; Malfertheiner, P.; Wex, T. Cysteine proteinases K, L, B, X and W are differentially expressed in normal and chronically inflamed gastric mucosa. Biol. Chem. 2004, 385, 439–445. [Google Scholar] [CrossRef]
- Gunther, S.C.; Martinez-Romero, C.; Borau, M.S.; Pham, C.T.N.; Garcia-Sastre, A.; Stertz, S. Proteomic Identification of Potential Target Proteins of Cathepsin W for Its Development as a Drug Target for Influenza. Microbiol. Spectr. 2022, 10, e0092122. [Google Scholar] [CrossRef]
- Edinger, T.O.; Pohl, M.O.; Yángüez, E.; Stertz, S. Cathepsin W Is Required for Escape of Influenza A Virus from Late Endosomes. mBio 2015, 6, e00297-15. [Google Scholar] [CrossRef]
- Imeri, J.; Desterke, C.; Marcoux, P.; Chaker, D.; Oudrhiri, N.; Fund, X.; Faivre, J.; Bennaceur-Griscelli, A.; Turhan, A.G. Case report: Long-term voluntary Tyrosine Kinase Inhibitor (TKI) discontinuation in chronic myeloid leukemia (CML): Molecular evidence of an immune surveillance. Front. Oncol. 2023, 13, 1117781. [Google Scholar] [CrossRef]
- Hsu, A.; Podvin, S.; Hook, V. Lysosomal Cathepsin Protease Gene Expression Profiles in the Human Brain During Normal Development. J. Mol. Neurosci. 2018, 65, 420–431. [Google Scholar] [CrossRef]
- Tang, C.-H.; Lee, J.-W.; Galvez, M.G.; Robillard, L.; Mole, S.E.; Chapman, H.A. Murine Cathepsin F Deficiency Causes Neuronal Lipofuscinosis and Late-Onset Neurological Disease. Mol. Cell. Biol. 2006, 26, 2309–2316. [Google Scholar] [CrossRef]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef]
- Mijanovic, O.; Petushkova, A.I.; Brankovic, A.; Turk, B.; Solovieva, A.B.; Nikitkina, A.I.; Bolevich, S.; Timashev, P.S.; Parodi, A.; Zamyatnin, A.A., Jr. Cathepsin D—Managing the Delicate Balance. Pharmaceutics 2021, 13, 837. [Google Scholar] [CrossRef]
- Smith, K.R.; Dahl, H.-H.M.; Canafoglia, L.; Andermann, E.; Damiano, J.; Morbin, M.; Bruni, A.C.; Giaccone, G.; Cossette, P.; Saftig, P.; et al. Cathepsin F variants cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 2013, 22, 1417–1423. [Google Scholar] [CrossRef]
- Bras, J.; Djaldetti, R.; Alves, A.M.; Mead, S.; Darwent, L.; Lleo, A.; Molinuevo, J.L.; Blesa, R.; Singleton, A.; Hardy, J.; et al. Exome sequencing in a consanguineous family clinically diagnosed with early-onset Alzheimer’s disease identifies a homozygous CTSF mutation. Neurobiol. Aging 2016, 46, 236.e1–236.e6. [Google Scholar] [CrossRef]
- van der Zee, J.; Mariën, P.; Crols, R.; Van Mossevelde, S.; Dillen, L.; Perrone, F.; Engelborghs, S.; Verhoeven, J.; D’Aes, T.; Groote, C.C.-D.; et al. Mutated CTSF in adult-onset neuronal ceroid lipofuscinosis and FTD. Neurol. Genet. 2016, 2, e102. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Yuan, Y.; Lian, Y.; Xie, N.; Ming, L.; Wang, C.; Xu, H.; Yuan, Y.; Lian, Y.; et al. Novel compound heterozygous variants causing Kufs disease type B. Int. J. Neurosci. 2018, 128, 573–576. [Google Scholar] [CrossRef]
- Gultekin, M.; Tufekcioglu, Z.; Baydemir, R. Novel frameshift CTSF variant causing kufs disease type B mimicking frontotemporal dementia-parkinsonism. Neurocase 2022, 28, 107–109. [Google Scholar] [CrossRef]
- Di Fabio, R.; Moro, F.; Pestillo, L.; Meschini, M.C.; Pezzini, F.; Doccini, S.; Casali, C.; Pierelli, F.; Simonati, A.; Santorelli, F.M. Pseudo-dominant inheritance of a novel CTSF variant associated with type B Kufs disease. Neurology 2014, 83, 1769–1770. [Google Scholar] [CrossRef]
- Peters, J.; Rittger, A.; Weisner, R.; Knabbe, J.; Zunke, F.; Rothaug, M.; Damme, M.; Berkovic, S.F.; Blanz, J.; Saftig, P.; et al. Lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) is a substrate of cathepsin-F, a cysteine protease mutated in type-B-Kufs-disease. Biochem. Biophys. Res. Commun. 2015, 457, 334–340. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Zhu, M.-Y.; Yuan, Z.-F.; Ren, X.-Y.; Guo, X.-T.; Hua, Y.; Xu, L.; Zhao, C.-Y.; Jiang, L.-H.; Zhang, X.; et al. Proteomic profiling of cerebrospinal fluid in pediatric myelin oligodendrocyte glycoprotein antibody-associated disease. World J. Pediatr. 2022, 20, 259–271. [Google Scholar] [CrossRef]
- Hor, J.Y.; Fujihara, K. Epidemiology of myelin oligodendrocyte glycoprotein antibody-associated disease: A review of prevalence and incidence worldwide. Front. Neurol. 2023, 14, 1260358. [Google Scholar] [CrossRef] [PubMed]
- Takaya, K.; Asou, T.; Kishi, K. Cathepsin F is a potential marker for senescent human skin fibroblasts and keratinocytes associated with skin aging. GeroScience 2023, 45, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Julian, T.H.; Cooper-Knock, J.; MacGregor, S.; Guo, H.; Aslam, T.; Sanderson, E.; Black, G.C.M.; Sergouniotis, P.; Smith, L.E.H. Phenome-wide Mendelian randomisation analysis identifies causal factors for age-related macular degeneration. eLife 2023, 12, e82546. [Google Scholar] [CrossRef]
- Yao, C.; Zhou, Y.; Wang, H.; Deng, F.; Chen, Y.; Zhu, X.; Kong, Y.; Pan, L.; Xue, L.; Zhou, X.; et al. Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression. Stem Cell Res. Ther. 2021, 12, 447. [Google Scholar] [CrossRef]
- Korpos, É.; Kadri, N.; Kappelhoff, R.; Wegner, J.; Overall, C.M.; Weber, E.; Holmberg, D.; Cardell, S.; Sorokin, L. The Peri-islet Basement Membrane, a Barrier to Infiltrating Leukocytes in Type 1 Diabetes in Mouse and Human. Diabetes 2013, 62, 531–542. [Google Scholar] [CrossRef]
- Saghizadeh, M.; Epifantseva, I.; Hemmati, D.M.; Ghiam, C.A.; Brunken, W.J.; Ljubimov, A.V. Enhanced Wound Healing, Kinase and Stem Cell Marker Expression in Diabetic Organ-Cultured Human Corneas Upon MMP-10 and Cathepsin F Gene Silencing. Investig. Opthalmology Vis. Sci. 2013, 54, 8172–8180. [Google Scholar] [CrossRef]
- Schechter, I.; Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27, 157–162. [Google Scholar] [CrossRef]
- Ochieng, J.; Chaudhuri, G. Cystatin Superfamily. J. Health Care Poor Underserved 2010, 21, 51–70. [Google Scholar] [CrossRef]
- Abrahamson, M.; Alvarez-Fernandez, M.; Nathanson, C.-M. Cystatins. Biochem. Soc. Symp. 2003, 70, 179–199. [Google Scholar] [CrossRef]
- Fonovič, M.; Brömme, D.; Turk, V.; Turk, B. Human cathepsin F: Expression in baculovirus system, characterization and inhibition by protein inhibitors. Biol. Chem. 2004, 385, 505–509. [Google Scholar] [CrossRef]
- Langerholc, T.; Zavašnik-Bergant, V.; Turk, B.; Turk, V.; Abrahamson, M.; Kos, J. Inhibitory properties of cystatin F and its lo-calization in U937 promonocyte cells. FEBS J. 2005, 272, 1535–1545. [Google Scholar] [CrossRef]
- Miheliĕ, M.; Doberšek, A.; Gunĕar, G.; Turk, D. Inhibitory fragment from the p41 form of invariant chain can regulate activity of cysteine cysteine proteinases in antigen presentation. J. Biol. Chem. 2008, 283, 14453–14460. [Google Scholar] [CrossRef] [PubMed]
- Reis, F.C.G.; Costa, T.F.R.; Sulea, T.; Mezzetti, A.; Scharfstein, J.; Brömme, D.; Ménard, R.; Lima, A.P.C.A. The propeptide of cruzipain—A potent selective inhibitor of the trypanosomal enzymes cruzipain and brucipain, and of the human enzyme cathepsin F. FEBS J. 2007, 274, 1224–1234. [Google Scholar] [CrossRef]
- Bode, W.; Huber, R. Structural basis of the endoproteinase–protein inhibitor interaction. Biochim. et Biophys. Acta (BBA)—Protein Struct. Mol. Enzym. 2000, 1477, 241–252. [Google Scholar] [CrossRef]
- Lenarcic, B.; Bevec, T. Thyropins--new structurally related proteinase inhibitors. Biol. Chem. 1998, 379, 105–111. [Google Scholar]
- Rzychon, M.; Chmiel, D.; Stec-Niemczyk, J. Modes of inhibition of cysteine proteases. Acta Biochim. Pol. 2004, 51, 861–873. [Google Scholar]
- Schmitz, J.; Furtmann, N.; Ponert, M.; Frizler, M.; Löser, R.; Bartz, U.; Bajorath, J.; Gütschow, M. Active Site Mapping of Human Cathepsin F with Dipeptide Nitrile Inhibitors. ChemMedChem 2015, 10, 1365–1377. [Google Scholar] [CrossRef]
- Ho, J.D.; Meltser, Y.; Buggy, J.J.; Palmer, J.T.; Elrod, K.C.; Chan, H.; Mortara, K.D.; Somoza, J.R. Expression, purification, crystallization and preliminary X-ray diffraction studies of human cathepsin F complexed with an irreversible vinyl sulfone inhibitor. Acta Crystallogr. Sect. D Struct. Biol. 2002, 58, 2187–2190. [Google Scholar] [CrossRef] [PubMed]
- Somoza, J.R.; Palmer, J.T.; Ho, J.D. The Crystal Structure of Human Cathepsin F and Its Implications for the Development of Novel Immunomodulators. J. Mol. Biol. 2002, 322, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Falgueyret, J.-P.; Black, W.C.; Cromlish, W.; Desmarais, S.; Lamontagne, S.; Mellon, C.; Riendeau, D.; Rodan, S.; Tawa, P.; Wesolowski, G.; et al. An activity-based probe for the determination of cysteine cathepsin protease activities in whole cells. Anal. Biochem. 2004, 335, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Rozman-Pungerčar, J.; Kopitar-Jerala, N.; Bogyo, M.; Turk, D.; Vasiljeva, O.; Štefe, I.; Vandenabeele, P.; Brömme, D.; Puizdar, V.; Fonović, M.; et al. Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: When reaction mechanism is more important than specificity. Cell Death Differ. 2003, 10, 881–888. [Google Scholar] [CrossRef]
- Rudzińska, M.; Parodi, A.; Maslova, V.D.; Efremov, Y.M.; Gorokhovets, N.V.; Makarov, V.A.; Popkov, V.A.; Golovin, A.V.; Zernii, E.Y.; Zamyatnin, A.A. Cysteine Cysteine proteinases Inhibition Affects Their Expression and Human Renal Cancer Cell Phenotype. Cancers 2020, 12, 1310. [Google Scholar] [CrossRef]
Gene | Amino Acid Sequence |
---|---|
Human CTSF | EEARWRLSVFVNNMVRAQKIQALDRG |
Mouse CTSF | EEHAHRLDIFAHNLAQAQRLQEEDLG |
Human CTSW | AEYTRRLSIFAHNLAQAQRLQQEDLG |
Mouse CTSW | EEAQWRLTVFARNMIRAQKIQALDRG |
Paragonium westermani | EDDQKRFAIFKDNLVRAQQYQTQEQG |
Caenorhabditis elegans | REVLKRFRVFKKNAKVIRELQKNEQG |
Conserved residues in CTSF |
Cys-113, His-249, and Asn-269, Gln-87, Trp-271, and Trp-275, Gly-153, Gly-154 |
Additional residues in CTSF |
Cys-110, Cys-144, Cys-151, Cys-184, Cys-242, Cys-290 |
Conserved residues in CTSW |
Cys-153, His-291, Asn-331, Gln-19, Trp-177, Gly-67, Gly-68 |
Substituted residues in CTSW |
Tyr-67→Phe Pro-68→Val Val-133→Thr Ala-160→Ser Phe-207→Leu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdravkova, K.; Mijanovic, O.; Brankovic, A.; Ilicheva, P.M.; Jakovleva, A.; Karanovic, J.; Pualic, M.; Pualic, D.; Rubel, A.A.; Savvateeva, L.V.; et al. Unveiling the Roles of Cysteine Proteinases F and W: From Structure to Pathological Implications and Therapeutic Targets. Cells 2024, 13, 917. https://doi.org/10.3390/cells13110917
Zdravkova K, Mijanovic O, Brankovic A, Ilicheva PM, Jakovleva A, Karanovic J, Pualic M, Pualic D, Rubel AA, Savvateeva LV, et al. Unveiling the Roles of Cysteine Proteinases F and W: From Structure to Pathological Implications and Therapeutic Targets. Cells. 2024; 13(11):917. https://doi.org/10.3390/cells13110917
Chicago/Turabian StyleZdravkova, Kristina, Olja Mijanovic, Ana Brankovic, Polina M. Ilicheva, Aleksandra Jakovleva, Jelena Karanovic, Milena Pualic, Dusan Pualic, Aleksandr A. Rubel, Lyudmila V. Savvateeva, and et al. 2024. "Unveiling the Roles of Cysteine Proteinases F and W: From Structure to Pathological Implications and Therapeutic Targets" Cells 13, no. 11: 917. https://doi.org/10.3390/cells13110917
APA StyleZdravkova, K., Mijanovic, O., Brankovic, A., Ilicheva, P. M., Jakovleva, A., Karanovic, J., Pualic, M., Pualic, D., Rubel, A. A., Savvateeva, L. V., Parodi, A., & Zamyatnin, A. A., Jr. (2024). Unveiling the Roles of Cysteine Proteinases F and W: From Structure to Pathological Implications and Therapeutic Targets. Cells, 13(11), 917. https://doi.org/10.3390/cells13110917