End Organ Affection in Sickle Cell Disease
Abstract
:1. Introduction
2. Epidemiology
2.1. Prevalence
2.2. Gender Variation
2.3. Mortality Rates
3. End-Organ Damage
3.1. Vaso-Occlusive Crises and Bone Disease
3.2. Acute Chest Syndrome
3.3. Sickle Cell Nephropathy
3.3.1. Hyposthenuria
3.3.2. Hematuria
3.3.3. Proteinuria
3.3.4. Chronic Kidney Disease (CKD) and End-Stage Renal Disease (ESRD)
3.3.5. Glomerular Hypertrophy
3.3.6. Renal Tubular Acidosis
4. Thrombosis
4.1. Stroke
4.2. Cardiovascular Complications
4.3. Venous Thromboembolism
5. Pain
6. Molecular Pathogenesis of Lung Damage in SCD
6.1. P-Selectin
6.2. Platelet
6.3. Signal Pathways
7. Mechanism of SCD Nephropathy
7.1. Medullary Region Pathogenesis
7.2. Endothelial Dysfunction
7.3. Oxidative Stress
8. Mechanism of Pulmonary Hypertension in SCD
8.1. Hemolysis
8.2. Hypoxia
8.3. Coagulation and Thrombosis
9. Mechanism of Thrombosis in SCD
10. Treatment of SCD
10.1. General
10.1.1. Hydration
10.1.2. Hydroxyurea
10.2. Management of End-Organ Damage
10.2.1. VOC and Pain
10.2.2. Primary Pulmonary Hypertension
10.2.3. Renal Complications
10.3. Disease-Modifying Therapies in SCD
10.3.1. L-Glutamine
10.3.2. Crizanlizumab
10.3.3. Voxeletor
10.4. Stem Cell and Gene Editing Therapies
11. Implications for Healthcare
12. Conclusions
Funding
Conflicts of Interest
References
- Sundd, P.; Gladwin, M.T.; Novelli, E.M. Pathophysiology of Sickle Cell Disease. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 263–292. [Google Scholar] [CrossRef] [PubMed]
- Piel, F.B. The Present and Future Global Burden of the Inherited Disorders of Hemoglobin. Hematol. Oncol. Clin. N. Am. 2016, 30, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.M.; McHugh, T.A.; Oron, A.P.; Teply, C.; Lonberg, N.; Tella, V.V.; Wilner, L.B.; Fuller, K.; Hagins, H.; Aboagye, R.G.; et al. Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: A systematic analysis from the Global Burden of Disease Study 2021. Lancet Haematol. 2023, 10, e585–e599. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; De Franceschi, L.; Colombatti, R.; Rigano, P.; Perrotta, S.; Voi, V.; Palazzi, G.; Fidone, C.; Quota, A.; Graziadei, G.; et al. Current challenges in the management of patients with sickle cell disease—A report of the Italian experience. Orphanet J. Rare Dis. 2019, 14, 120. [Google Scholar] [CrossRef] [PubMed]
- Hassell, K.L. Population estimates of sickle cell disease in the U.S. Am. J. Prev. Med. 2010, 38 (Suppl. S4), S512–S521. [Google Scholar] [CrossRef] [PubMed]
- Sickle Cell Disease. Available online: https://www.cdc.gov/sickle-cell/index.html (accessed on 6 July 2023).
- Campbell, A.D.; Colombatti, R.; Andemariam, B.; Strunk, C.; Tartaglione, I.; Piccone, C.M.; Manwani, D.; Asare, E.V.; Boruchov, D.; Farooq, F.; et al. An Analysis of Racial and Ethnic Backgrounds Within the CASiRe International Cohort of Sickle Cell Disease Patients: Implications for Disease Phenotype and Clinical Research. J. Racial Ethn. Health Disparities 2021, 8, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, A.; Olayemi, A.; Ogbonda, S.; Nair, K.; Wang, J.C. Racial and ethnic differences in sickle cell disease within the United States: From demographics to outcomes. Eur. J. Haematol. 2023, 110, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Platt, O.S.; Brambilla, D.J.; Rosse, W.F.; Milner, P.F.; Castro, O.; Steinberg, M.H.; Klug, P.P. Mortality In Sickle Cell Disease—Life Expectancy and Risk Factors for Early Death. N. Engl. J. Med. 1994, 330, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- Ceglie, G.; Di Mauro, M.; Tarissi De Jacobis, I.; de Gennaro, F.; Quaranta, M.; Baronci, C.; Villani, A.; Palumbo, G. Gender-Related Differences in Sickle Cell Disease in a Pediatric Cohort: A Single-Center Retrospective Study. Front. Mol. Biosci. 2019, 6, 140. [Google Scholar] [CrossRef]
- Payne, A.B.; Mehal, J.M.; Chapman, C.; Haberling, D.L.; Richardson, L.C.; Bean, C.J.; Hooper, W.C. Trends in Sickle Cell Disease-Related Mortality in the United States, 1979 to 2017. Ann. Emerg. Med. 2020, 76 (Suppl. S3), S28–S36. [Google Scholar] [CrossRef]
- Ware, R.E.; de Montalembert, M.; Tshilolo, L.; Abboud, M.R. Sickle cell disease. Lancet 2017, 390, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Powars, D.R.; Chan, L.S.; Hiti, A.; Ramicone, E.; Johnson, C. Outcome of sickle cell anemia: A 4-decade observational study of 1056 patients. Medicine 2005, 84, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Powars, D.; Weiss, J.; Chan, L.; Schroeder, W. Is there a threshold level of fetal hemoglobin that ameliorates morbidity in sickle cell anemia? Blood 1984, 63, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Fitzhugh, C.D.; Hsieh, M.M.; Allen, D.; Coles, W.A.; Seamon, C.; Ring, M.; Zhao, X.; Minniti, C.P.; Rodgers, G.P.; Schechter, A.N.; et al. Hydroxyurea-Increased Fetal Hemoglobin Is Associated with Less Organ Damage and Longer Survival in Adults with Sickle Cell Anemia. PLoS ONE 2015, 10, e0141706. [Google Scholar] [CrossRef] [PubMed]
- Lubeck, D.; Agodoa, I.; Bhakta, N.; Danese, M.; Pappu, K.; Howard, R.; Gleeson, M.; Halperin, M.; Lanzkron, S. Estimated Life Expectancy and Income of Patients With Sickle Cell Disease Compared With Those Without Sickle Cell Disease. JAMA Netw. Open 2019, 2, e1915374. [Google Scholar] [CrossRef]
- Platt, O.S.; Thorington, B.D.; Brambilla, D.J.; Milner, P.F.; Rosse, W.F.; Vichinsky, E.; Kinney, T.R. Pain in Sickle Cell Disease. N. Engl. J. Med. 1991, 325, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Darbari, D.S.; Sheehan, V.A.; Ballas, S.K. The vaso-occlusive pain crisis in sickle cell disease: Definition, pathophysiology, and management. Eur. J. Haematol. 2020, 105, 237–246. [Google Scholar] [CrossRef]
- Van Tuijn, C.F.J.; Van Beers, E.J.; Schnog, J.J.B.; Biemond, B.J. Pain rate and social circumstances rather than cumulative organ damage determine the quality of life in adults with sickle cell disease. Am. J. Hematol. 2010, 85, 532–535. [Google Scholar] [CrossRef]
- Mahadeo, K.M.; Oyeku, S.; Taragin, B.; Rajpathak, S.N.; Moody, K.; Santizo, R.; Catherine Driscoll, M. Increased prevalence of osteonecrosis of the femoral head in children and adolescents with sickle-cell disease. Am. J. Hematol. 2011, 86, 806–808. [Google Scholar] [CrossRef]
- Ballas, S.K.; Gupta, K.; Adams-Graves, P. Sickle cell pain: A critical reappraisal. Blood 2012, 120, 3647–3656. [Google Scholar] [CrossRef]
- Panepinto, J.A.; Brousseau, D.C.; Hillery, C.A.; Scott, J.P. Variation in hospitalizations and hospital length of stay in children with vaso-occlusive crises in sickle cell disease. Pediatr. Blood Cancer 2005, 44, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.U.; Glaros, A.K.; Lee, S.; Wang, T.; Bhojwani, R.; Morris, E.; Donohue, B.; Paulose, J.; Iorga, Ş.R.; Nellesen, D. A systematic literature review of frequency of vaso-occlusive crises in sickle cell disease. Orphanet J. Rare Dis. 2021, 16, 460. [Google Scholar] [CrossRef]
- Farooq, S.; Abu Omar, M.; Salzman, G.A. Acute chest syndrome in sickle cell disease. Hosp. Pract. (1995) 2018, 46, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Vichinsky, E.P.; Neumayr, L.D.; Earles, A.N.; Williams, R.; Lennette, E.T.; Dean, D.; Nickerson, B.; Orringer, E.; McKie, V.; Bellevue, R.; et al. Causes and Outcomes of the Acute Chest Syndrome in Sickle Cell Disease. N. Engl. J. Med. 2000, 342, 1855–1865. [Google Scholar] [CrossRef]
- Miller, A.C.; Gladwin, M.T. Pulmonary Complications of Sickle Cell Disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1154–1165. [Google Scholar] [CrossRef]
- Castro, O.; Brambilla, D.J.; Thorington, B.; Reindorf, C.A.; Scott, R.B.; Gillette, P.; Vera, J.C.; Levy, P.S. The acute chest syndrome in sickle cell disease: Incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood 1994, 84, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Yeruva, S.L.H.; Paul, Y.; Oneal, P.; Nouraie, M. Renal Failure in Sickle Cell Disease: Prevalence, Predictors of Disease, Mortality and Effect on Length of Hospital Stay. Hemoglobin 2016, 40, 295–299. [Google Scholar] [CrossRef]
- Dharnidharka, V.R.; Dabbagh, S.; Atiyeh, B.; Simpson, P.; Sarnaik, S. Prevalence of microalbuminuria in children with sickle cell disease. Pediatr. Nephrol. 1998, 12, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Drawz, P.; Ayyappan, S.; Nouraie, M.; Saraf, S.; Gordeuk, V.; Hostetter, T.; Gladwin, M.T.; Little, J. Kidney Disease among Patients with Sickle Cell Disease, Hemoglobin SS and SC. Clin. J. Am. Soc. Nephrol. 2016, 11, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Guasch, A.; Navarrete, J.; Nass, K.; Zayas, C.F. Glomerular involvement in adults with sickle cell hemoglobinopathies: Prevalence and clinical correlates of progressive renal failure. J. Am. Soc. Nephrol. 2006, 17, 2228–2235. [Google Scholar] [CrossRef]
- López Revuelta, K.; Ricard Andrés, M.P. Kidney abnormalities in sickle cell disease. Nefrol. (Engl. Ed.) 2011, 31, 591–601. [Google Scholar] [CrossRef]
- Scheinman, J.I. Sickle cell disease and the kidney. Nat. Clin. Pract. Nephrol. 2009, 5, 78–88. [Google Scholar] [CrossRef]
- Wong, W.Y.; Elliott-Mills, D.; Powars, D. Renal failure in sickle cell anemia. Hematol. Oncol. Clin. N. Am. 1996, 10, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Falk, R.J.; Scheinman, J.; Phillips, G.; Orringer, E.; Johnson, A.; Jennette, J.C. Prevalence and Pathologic Features of Sickle Cell Nephropathy and Response to Inhibition of Angiotensin-Converting Enzyme. N. Engl. J. Med. 1992, 326, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Bakir, A.A.; Hathiwala, S.C.; Ainis, H.; Hryhorczuk, D.O.; Rhee, H.L.; Levy, P.S.; Dunea, G. Prognosis of the nephrotic syndrome in sickle glomerulopathy. A retrospective study. Am. J. Nephrol. 1987, 7, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Galloway-Blake, K.; Reid, M.; Walters, C.; Jaggon, J.; Lee, M. Clinical Factors Associated With Morbidity and Mortality in Patients Admitted with Sickle Cell Disease. West Indian Med. J. 2015, 63, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Hamideh, D.; Alvarez, O. Sickle cell disease related mortality in the United States (1999–2009). Pediatr. Blood Cancer 2013, 60, 1482–1486. [Google Scholar] [CrossRef] [PubMed]
- Ware, R.E.; Rees, R.C.; Sarnaik, S.A.; Iyer, R.V.; Alvarez, O.A.; Casella, J.F.; Shulkin, B.L.; Shalaby-Rana, E.; Strife, C.F.; Miller, J.H.; et al. Renal Function in Infants with Sickle Cell Anemia: Baseline Data from the BABY HUG Trial. J. Pediatr. 2010, 156, 66–70.e1. [Google Scholar] [CrossRef] [PubMed]
- Batlle, D.; Itsarayoungyuen, K.; Arruda, J.A.; Kurtzman, N.A. Hyperkalemic hyperchloremic metabolic acidosis in sickle cell hemoglobinopathies. Am. J. Med. 1982, 72, 188–192. [Google Scholar] [CrossRef]
- Ohene-Frempong, K.; Weiner, S.J.; Sleeper, L.A.; Miller, S.T.; Embury, S.; Moohr, J.W.; Wethers, D.L.; Pegelow, C.H.; Gill, F.M. Cerebrovascular accidents in sickle cell disease: Rates and risk factors. Blood 1998, 91, 288–294. [Google Scholar]
- Musallam, K.M.; Khoury, R.A.; Abboud, M.R. Cerebral infarction in children with sickle cell disease: A concise overview. Hemoglobin 2011, 35, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Strouse, J.J.; Jordan, L.C.; Lanzkron, S.; Casella, J.F. The excess burden of stroke in hospitalized adults with sickle cell disease. Am. J. Hematol. 2009, 84, 548–552. [Google Scholar] [CrossRef]
- Vichinsky, E.P.; Neumayr, L.D.; Gold, J.I.; Weiner, M.W.; Rule, R.R.; Truran, D.; Kasten, J.; Eggleston, B.; Kesler, K.; McMahon, L.; et al. Neuropsychological dysfunction and neuroimaging abnormalities in neurologically intact adults with sickle cell anemia. JAMA 2010, 303, 1823–1831. [Google Scholar] [CrossRef] [PubMed]
- Hariman, L.M.; Griffith, E.R.; Hurtig, A.L.; Keehn, M.T. Functional outcomes of children with sickle-cell disease affected by stroke. Arch. Phys. Med. Rehabil. 1991, 72, 498–502. [Google Scholar] [PubMed]
- Kaur, K.; Huang, Y.; Raman, S.V.; Kraut, E.; Desai, P. Myocardial injury and coronary microvascular disease in sickle cell disease. Haematologica 2021, 106, 2018–2021. [Google Scholar] [CrossRef] [PubMed]
- Mehari, A.; Gladwin, M.T.; Tian, X.; Machado, R.F.; Kato, G.J. Mortality in Adults With Sickle Cell Disease and Pulmonary Hypertension. JAMA 2012, 307, 1254. [Google Scholar] [CrossRef]
- Simonneau, G.; Gatzoulis, M.A.; Adatia, I.; Celermajer, D.; Denton, C.; Ghofrani, A.; Gomez Sanchez, M.A.; Krishna Kumar, R.; Landzberg, M.; Machado, R.F.; et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62 (Suppl. S25), D34–D41. [Google Scholar] [CrossRef] [PubMed]
- Castro, O.; Hoque, M.; Brown, B.D. Pulmonary hypertension in sickle cell disease: Cardiac catheterization results and survival. Blood 2003, 101, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Naik, R.P.; Streiff, M.B.; Haywood, C.; Nelson, J.A.; Lanzkron, S. Venous Thromboembolism in Adults with Sickle Cell Disease: A Serious and Under-recognized Complication. Am. J. Med. 2013, 126, 443–449. [Google Scholar] [CrossRef]
- Brousseau, D.C. Acute Care Utilization and Rehospitalizations for Sickle Cell Disease. JAMA 2010, 303, 1288. [Google Scholar] [CrossRef]
- Ghosh, S.; Flage, B.; Weidert, F.; Ofori-Acquah, S.F. P-selectin plays a role in haem-induced acute lung injury in sickle mice. Br. J. Haematol. 2019, 186, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Bennewitz, M.F.; Jimenez, M.A.; Vats, R.; Tutuncuoglu, E.; Jonassaint, J.; Kato, G.J.; Gladwin, M.T.; Sundd, P. Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [PubMed]
- Anea, C.B.; Lyon, M.; Lee, I.A.; Gonzales, J.N.; Adeyemi, A.; Falls, G.; Kutlar, A.; Brittain, J.E. Pulmonary platelet thrombi and vascular pathology in acute chest syndrome in patients with sickle cell disease. Am. J. Hematol. 2016, 91, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.A.; Novelli, E.; Shaw, G.D.; Sundd, P. Glycoprotein Ibα inhibitor (CCP-224) prevents neutrophil-platelet aggregation in Sickle Cell Disease. Blood Adv. 2017, 1, 1712–1716. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.D.; Desai, A.A.; Sysol, J.R.; Abbasi, T.; Patel, A.R.; Lang, R.M.; Gupta, A.; Garcia, J.G.N.; Gordeuk, V.R.; Machado, R.F. Genome-Wide Analysis Identifies IL-18 and FUCA2 as Novel Genes Associated with Diastolic Function in African Americans with Sickle Cell Disease. PLoS ONE 2016, 11, e0163013. [Google Scholar] [CrossRef] [PubMed]
- Novelli, E.M.; Little-Ihrig, L.; Knupp, H.E.; Rogers, N.M.; Yao, M.; Baust, J.J.; Meijles, D.; St. Croix, C.M.; Ross, M.A.; Pagano, P.J.; et al. Vascular TSP1-CD47 signaling promotes sickle cell-associated arterial vasculopathy and pulmonary hypertension in mice. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2019, 316, L1150–L1164. [Google Scholar] [CrossRef] [PubMed]
- Isenberg, J.S.; Frazier, W.A.; Roberts, D.D. Thrombospondins: From structure to therapeutics. Cell. Mol. Life Sci. 2008, 65, 728–742. [Google Scholar] [CrossRef] [PubMed]
- Menon, A.V.; Liu, J.; Tsai, H.P.; Zeng, L.; Yang, S.; Asnani, A.; Kim, J. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood 2022, 139, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Reichel, C.A.; Rehberg, M.; Lerchenberger, M.; Berberich, N.; Bihari, P.; Khandoga, A.G.; Zahler, S.; Krombach, F. Ccl2 and Ccl3 Mediate Neutrophil Recruitment via Induction of Protein Synthesis and Generation of Lipid Mediators. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1787–1793. [Google Scholar] [CrossRef]
- Nath, K.A.; Hebbel, R.P. Sickle cell disease: Renal manifestations and mechanisms. Nat. Rev. Nephrol. 2015, 11, 161–171. [Google Scholar] [CrossRef]
- Nath, K.A.; Katusic, Z.S.; Gladwin, M.T. The Perfusion Paradox and Vascular Instability in Sickle Cell Disease. Microcirculation 2004, 11, 179–193. [Google Scholar] [CrossRef]
- Ataga, K.I.; Brittain, J.E.; Jones, S.K.; May, R.; Delaney, J.; Strayhorn, D.; Desai, P.; Redding-Lallinger, R.; Key, N.S.; Orringer, E.P. Association of soluble fms-like tyrosine kinase-1 with pulmonary hypertension and haemolysis in sickle cell disease. Br. J. Haematol. 2011, 152, 485–491. [Google Scholar] [CrossRef]
- Brett Heimlich, J.; Speed, J.S.; O’Connor, P.M.; Pollock, J.S.; Townes, T.M.; Meiler, S.E.; Kutlar, A.; Pollock, D.M. Endothelin-1 contributes to the progression of renal injury in sickle cell disease via reactive oxygen species. Br. J. Pharmacol. 2016, 173, 386–395. [Google Scholar] [CrossRef]
- Kasztan, M.; Fox, B.M.; Speed, J.S.; De Miguel, C.; Gohar, E.Y.; Townes, T.M.; Kutlar, A.; Pollock, J.S.; Pollock, D.M. Long-Term Endothelin-A Receptor Antagonism Provides Robust Renal Protection in Humanized Sickle Cell Disease Mice. J. Am. Soc. Nephrol. 2017, 28, 2443–2458. [Google Scholar] [CrossRef]
- Tharaux, P.L.; Hagège, I.; Placier, S.; Vayssairat, M.; Kanfer, A.; Girot, R.; Dussaule, J.C. Urinary endothelin-1 as a marker of renal damage in sickle cell disease. Nephrol. Dial. Transplant. 2005, 20, 2408–2413. [Google Scholar] [CrossRef]
- Dimmeler, S.; Dernbach, E.; Zeiher, A.M. Phosphorylation of the endothelial nitric oxide synthase at Ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 2000, 477, 258–262. [Google Scholar] [CrossRef]
- Saraf, S.L.; Zhang, X.; Kanias, T.; Lash, J.P.; Molokie, R.E.; Oza, B.; Lai, C.; Rowe, J.H.; Gowhari, M.; Hassan, J.; et al. Haemoglobinuria is associated with chronic kidney disease and its progression in patients with sickle cell anaemia. Br. J. Haematol. 2014, 164, 729–739. [Google Scholar] [CrossRef]
- Saraf, S.L.; Sysol, J.R.; Susma, A.; Setty, S.; Zhang, X.; Gudehithlu, K.P.; Arruda, J.A.L.; Singh, A.K.; Machado, R.F.; Gordeuk, V.R. Progressive glomerular and tubular damage in sickle cell trait and sickle cell anemia mouse models. Transl. Res. 2018, 197, 1–11. [Google Scholar] [CrossRef]
- Dunn, L.L.; Midwinter, R.G.; Ni, J.; Hamid, H.A.; Parish, C.R.; Stocker, R. New Insights into Intracellular Locations and Functions of Heme Oxygenase-1. Antioxid. Redox Signal. 2014, 20, 1723–1742. [Google Scholar] [CrossRef]
- Ofori-Acquah, S.F.; Hazra, R.; Orikogbo, O.O.; Crosby, D.; Flage, B.; Ackah, E.B.; Lenhart, D.; Tan, R.J.; Vitturi, D.A.; Paintsil, V.; et al. Hemopexin deficiency promotes acute kidney injury in sickle cell disease. Blood 2020, 135, 1044–1048. [Google Scholar] [CrossRef]
- Roy, S.; Rai, P.; Eiymo Mwa Mpollo, M.-S.; Chang, K.-H.; Rizvi, T.; Shanmukhappa, S.K.; Vandenheuvel, K.; Aronow, B.; Inagami, T.; Cancelas, J.A.; et al. Angiotensin receptor signaling in sickle cell anemia has a reno-protective effect on urine concentrating ability but results in sickle glomerulopathy. Am. J. Hematol. 2018, 93, E177–E181. [Google Scholar] [CrossRef]
- Ataga, K.I.; Derebail, V.K.; Archer, D.R. The glomerulopathy of sickle cell disease. Am. J. Hematol. 2014, 89, 907–914. [Google Scholar] [CrossRef]
- Sureshbabu, A.; Muhsin, S.A.; Choi, M.E. TGF-β signaling in the kidney: Profibrotic and protective effects. Am. J. Physiol.-Ren. Physiol. 2016, 310, F596–F606. [Google Scholar] [CrossRef]
- Charrin, E.; Faes, C.; Sotiaux, A.; Skinner, S.; Pialoux, V.; Joly, P.; Connes, P.; Martin, C. Receptor for Advanced Glycation End Products Antagonism Blunts Kidney Damage in Transgenic Townes Sickle Mice. Front. Physiol. 2019, 10, 880. [Google Scholar] [CrossRef]
- Rojas, A.; Romay, S.; González, D.; Herrera, B.; Delgado, R.; Otero, K. Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products. Circ. Res. 2000, 86, E50–E54. [Google Scholar] [CrossRef]
- Tan, A.L.; Forbes, J.M.; Cooper, M.E. AGE, RAGE, and ROS in diabetic nephropathy. Semin. Nephrol. 2007, 27, 130–143. [Google Scholar] [CrossRef]
- Reiter, C.D.; Wang, X.; Tanus-Santos, J.E.; Hogg, N.; Cannon, R.O., 3rd; Schechter, A.N.; Gladwin, M.T. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 2002, 8, 1383–1389. [Google Scholar] [CrossRef]
- Villagra, J.; Shiva, S.; Hunter, L.A.; Machado, R.F.; Gladwin, M.T.; Kato, G.J. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood 2007, 110, 2166–2172. [Google Scholar] [CrossRef]
- Fijalkowska, I.; Xu, W.; Comhair, S.A.; Janocha, A.J.; Mavrakis, L.A.; Krishnamachary, B.; Zhen, L.; Mao, T.; Richter, A.; Erzurum, S.C.; et al. Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am. J. Pathol. 2010, 176, 1130–1138. [Google Scholar] [CrossRef]
- Ataga, K.I.; Moore, C.G.; Hillery, C.A.; Jones, S.; Whinna, H.C.; Strayhorn, D.; Sohier, C.; Hinderliter, A.; Parise, L.V.; Orringer, E.P. Coagulation activation and inflammation in sickle cell disease-associated pulmonary hypertension. Haematologica 2008, 93, 20–26. [Google Scholar] [CrossRef]
- Stockman, J.A.; Nigro, M.A.; Mishkin, M.M.; Oski, F.A. Occlusion of Large Cerebral Vessels in Sickle-Cell Anemia. N. Engl. J. Med. 1972, 287, 846–849. [Google Scholar] [CrossRef]
- Diggs, L.W. The crisis in sickle cell anemia; hematologic studies. Am. J. Clin. Pathol. 1956, 26, 1109–1118. [Google Scholar] [CrossRef]
- Shet, A.S.; Aras, O.; Gupta, K.; Hass, M.J.; Rausch, D.J.; Saba, N.; Koopmeiners, L.; Key, N.S.; Hebbel, R.P. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 2003, 102, 2678–2683. [Google Scholar] [CrossRef]
- Westerman, M.P.; Green, D.; Gilman-Sachs, A.; Beaman, K.; Freels, S.; Boggio, L.; Allen, S.; Zuckerman, L.; Schlegel, R.; Williamson, P. Antiphospholipid antibodies, proteins C and S, and coagulation changes in sickle cell disease. J. Lab. Clin. Med. 1999, 134, 352–362. [Google Scholar] [CrossRef]
- Green, D.; Scott, J.P. Is sickle cell crisis a thrombotic event? Am. J. Hematol. 1986, 23, 317–321. [Google Scholar] [CrossRef]
- Nsiri, B.; Gritli, N.; Bayoudh, F.; Messaoud, T.; Fattoum, S.; Machghoul, S. Abnormalities of coagulation and fibrinolysis in homozygous sickle cell disease. Hematol. Cell Ther. 1996, 38, 279–284. [Google Scholar] [CrossRef]
- Mousa, S.A.; Al Momen, A.; Al Sayegh, F.; Al Jaouni, S.; Nasrullah, Z.; Al Saeed, H.; Alabdullatif, A.; Al Sayegh, M.; Al Zahrani, H.; Hegazi, M.; et al. Management of painful vaso-occlusive crisis of sickle-cell anemia: Consensus opinion. Clin. Appl. Thromb. Hemost. 2010, 16, 365–376. [Google Scholar] [CrossRef]
- Yawn, B.P.; Buchanan, G.R.; Afenyi-Annan, A.N.; Ballas, S.K.; Hassell, K.L.; James, A.H.; Jordan, L.; Lanzkron, S.M.; Lottenberg, R.; Savage, W.J.; et al. Management of Sickle Cell Disease. JAMA 2014, 312, 1033. [Google Scholar] [CrossRef]
- Gladwin, M.T.; Vichinsky, E. Pulmonary complications of sickle cell disease. N. Engl. J. Med. 2008, 359, 2254–2265. [Google Scholar] [CrossRef]
- Quinn, C.T.; Saraf, S.L.; Gordeuk, V.R.; Fitzhugh, C.D.; Creary, S.E.; Bodas, P.; George, A.; Raj, A.B.; Nero, A.C.; Terrell, C.E.; et al. Losartan for the nephropathy of sickle cell anemia: A phase-2, multicenter trial. Am. J. Hematol. 2017, 92, E520–E528. [Google Scholar] [CrossRef]
- Brawley, O.W.; Cornelius, L.J.; Edwards, L.R.; Gamble, V.N.; Green, B.L.; Inturrisi, C.E.; James, A.H.; Laraque, D.; Mendez, M.H.; Montoya, C.J.; et al. NIH consensus development statement on hydroxyurea treatment for sickle cell disease. NIH Consens. State Sci. Statements 2008, 25, 1–30. [Google Scholar] [PubMed]
- Montgomery, R.; Zibari, G.; Hill, G.S.; Ratner, L.E. Renal transplantation in patients with sickle cell nephropathy. Transplantation 1994, 58, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Niihara, Y.; Miller, S.T.; Kanter, J.; Lanzkron, S.; Smith, W.R.; Hsu, L.L.; Gordeuk, V.R.; Viswanathan, K.; Sarnaik, S.; Osunkwo, I.; et al. A Phase 3 Trial of l-Glutamine in Sickle Cell Disease. N. Engl. J. Med. 2018, 379, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Ataga, K.I.; Kutlar, A.; Kanter, J.; Liles, D.; Cancado, R.; Friedrisch, J.; Guthrie, T.H.; Knight-Madden, J.; Alvarez, O.A.; Gordeuk, V.R.; et al. Crizanlizumab for the Prevention of Pain Crises in Sickle Cell Disease. N. Engl. J. Med. 2017, 376, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Abboud, M.R.; Howard, J.; Cançado, R.; Smith, W.R.; Güvenç, B.; Espurz, N.; Weill, M.; de Montalembert, M. Crizanlizumab versus Placebo, with or without Hydroxyurea/Hydroxycarbamide, in Adolescent and Adult Patients with Sickle Cell Disease and Vaso-Occlusive Crises: A Randomized, Double-Blind, Phase III Study (STAND). Blood 2019, 134, 998. [Google Scholar] [CrossRef]
- Vichinsky, E.; Hoppe, C.C.; Ataga, K.I.; Ware, R.E.; Nduba, V.; El-Beshlawy, A.; Hassab, H.; Achebe, M.M.; Alkindi, S.; Brown, R.C.; et al. A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease. N. Engl. J. Med. 2019, 381, 509–519. [Google Scholar] [CrossRef]
- Germino-Watnick, P.; Hinds, M.; Le, A.; Chu, R.; Liu, X.; Uchida, N. Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells 2022, 11, 1843. [Google Scholar] [CrossRef] [PubMed]
- Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.-S.; Domm, J.; Eustace, B.K.; Foell, J.; De La Fuente, J.; Grupp, S.; Handgretinger, R.; et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N. Engl. J. Med. 2021, 384, 252–260. [Google Scholar] [CrossRef]
- Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease (accessed on 8 December 2023).
- Ballas, S.K. The cost of health care for patients with sickle cell disease. Am. J. Hematol. 2009, 84, 320–322. [Google Scholar] [CrossRef]
- Johnson, K.M.; Jiao, B.; Ramsey, S.D.; Bender, M.A.; Devine, B.; Basu, A. Lifetime medical costs attributable to sickle cell disease among nonelderly individuals with commercial insurance. Blood Adv. 2023, 7, 365–374. [Google Scholar] [CrossRef]
- Winn, A.; Basu, A.; Ramsey, S.D. A Framework for a Health Economic Evaluation Model for Patients with Sickle Cell Disease to Estimate the Value of New Treatments in the United States of America. Pharmacoecon. Open 2023, 7, 313–320. [Google Scholar] [CrossRef] [PubMed]
Demographic Race | % |
---|---|
Black or African American | 93.5 |
Caucasian | 3.4 |
Asian | 0.3 |
Latino or Hispanic | 2.4 |
Native American | 0.3 |
Middle Eastern | 0.2 |
Race | Ghana | US | UK | Italy |
---|---|---|---|---|
N = 877 | % | % | % | % |
Black | 100 | 90.9 | 91.5 | 76.5 |
Asian | 0 | 0.4 | 0 | 2.5 |
Caucasian | 0 | 3.1 | 2.9 | 21 |
Arab | 0 | 0.8 | 0 | 0 |
Hispanic | 0 | 4.3 | 5.6 | 0 |
Other | 0 | 1.2 | 0 | 0 |
Ethnicity | Prevalence |
---|---|
Blacks | 69,889 (93.4%) |
Hispanics | 3603 (4.8%) |
Whites | 1325 (1.8%) |
Total | 74,817 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bathla, T.; Lotfollahzadeh, S.; Quisel, M.; Mehta, M.; Malikova, M.; Chitalia, V.C. End Organ Affection in Sickle Cell Disease. Cells 2024, 13, 934. https://doi.org/10.3390/cells13110934
Bathla T, Lotfollahzadeh S, Quisel M, Mehta M, Malikova M, Chitalia VC. End Organ Affection in Sickle Cell Disease. Cells. 2024; 13(11):934. https://doi.org/10.3390/cells13110934
Chicago/Turabian StyleBathla, Tanvi, Saran Lotfollahzadeh, Matthew Quisel, Mansi Mehta, Marina Malikova, and Vipul C. Chitalia. 2024. "End Organ Affection in Sickle Cell Disease" Cells 13, no. 11: 934. https://doi.org/10.3390/cells13110934
APA StyleBathla, T., Lotfollahzadeh, S., Quisel, M., Mehta, M., Malikova, M., & Chitalia, V. C. (2024). End Organ Affection in Sickle Cell Disease. Cells, 13(11), 934. https://doi.org/10.3390/cells13110934