High-Resolution Proteomics Unravel a Native Functional Complex of Cav1.3, SK3, and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Midbrain Dopaminergic Neurons
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals
2.2. Membrane Solubilization
2.3. Antibodies
2.4. Protein Co-Immunoprecipitation Followed by Immunoblot
2.5. Immunoblots
2.6. Immunoaffinity Purification Followed by LC-MS/MS
2.7. Mass Spectrometry
2.8. MS Data Analysis and Statistics
2.9. Proximity Ligation In Situ Assay (PLA)
2.10. Image Analysis/Quantification of PLA Signal
3. Results
3.1. Cav1.3-SK3-HCN Channel Complex Detection
3.2. Identification of Proteins Co-Purified with Midbrain Ion Channels Using LC-MS/MS Mass Spectrometry
3.2.1. Characterization of the L-Type Calcium Channel Complexes
3.2.2. Characterization of the SK3 Potassium Channel Complex
3.2.3. Characterization of the HCN Channel Complexes
3.2.4. Characterization of the Kv4.3 Potassium Channel Complex
3.3. Identification of the Cav1.3-SK3-HCN Complex in SNc DA Neurons Using Proximity Ligation Assay
4. Discussion
4.1. Limitations and Perspectives
4.2. L-Type Calcium Channel Interactants
4.3. SK Channel Interactants
4.4. HCN Channel Interactants
4.5. The Surprising Absence of Interactants for Kv4.3
4.6. Putative Physiological and Physiopathological Meaning of the Ion Channel Partnerships
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gantz, S.C.; Ford, C.P.; Morikawa, H.; Williams, J.T. The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area. Annu. Rev. Physiol. 2018, 80, 219–241. [Google Scholar] [CrossRef]
- Ortner, N.J. Voltage-Gated Ca2+ Channels in Dopaminergic Substantia Nigra Neurons: Therapeutic Targets for Neuroprotection in Parkinson’s Disease? Front. Synaptic Neurosci. 2021, 13, 636103. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.N.; Sanchez-Padilla, J.; Wokosin, D.; Kondapalli, J.; Ilijic, E.; Schumacker, P.T.; Surmeier, D.J. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 2010, 468, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Takada, M.; Kang, Y.; Imanishi, M. Immunohistochemical localization of voltage-gated calcium channels in substantia nigra dopamine neurons. Eur. J. Neurosci. 2001, 13, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Dufour, M.A.; Woodhouse, A.; Goaillard, J.-M. Somatodendritic ion channel expression in substantia nigra pars compacta dopaminergic neurons across postnatal development. J. Neurosci. Res. 2014, 92, 981–999. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, S.; Flatman, J.A.; Engberg, I. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J. Physiol. 1993, 466, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.S.; Guzman, J.N.; Ilijic, E.; Mercer, J.N.; Rick, C.; Tkatch, T.; Meredith, G.E.; Surmeier, D.J. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 2007, 447, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Choi, Y.M.; Jang, J.Y.; Chung, S.; Kang, Y.K.; Park, M.K. Nonselective cation channels are essential for maintaining intracellular Ca2+ levels and spontaneous firing activity in the midbrain dopamine neurons. Pflüg. Arch.-Eur. J. Physiol. 2007, 455, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.N.; Sánchez-Padilla, J.; Chan, C.S.; Surmeier, D.J. Robust Pacemaking in Substantia Nigra Dopaminergic Neurons. J. Neurosci. 2009, 29, 11011–11019. [Google Scholar] [CrossRef]
- Xu, W.; Lipscombe, D. Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. Off. J. Soc. Neurosci. 2001, 21, 5944–5951. [Google Scholar] [CrossRef]
- Shepard, P.D.; Bunney, B.S. Repetitive firing properties of putative dopamine-containing neurons in vitro: Regulation by an apamin-sensitive Ca2+-activated K+ conductance. Exp. Brain Res. 1991, 86, 141–150. [Google Scholar] [CrossRef]
- Wolfart, J.; Neuhoff, H.; Franz, O.; Roeper, J. Differential Expression of the Small-Conductance, Calcium-Activated Potassium Channel SK3 Is Critical for Pacemaker Control in Dopaminergic Midbrain Neurons. J. Neurosci. 2001, 21, 3443–3456. [Google Scholar] [CrossRef] [PubMed]
- Sarpal, D.; Koenig, J.I.; Adelman, J.P.; Brady, D.; Prendeville, L.C.; Shepard, P.D. Regional distribution of SK3 mRNA-containing neurons in the adult and adolescent rat ventral midbrain and their relationship to dopamine-containing cells. Synapse 2004, 53, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Deignan, J.; Luján, R.; Bond, C.; Riegel, A.; Watanabe, M.; Williams, J.T.; Maylie, J.; Adelman, J.P. SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons. Neuroscience 2012, 217, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.J.; Callaway, J.C. Coupled Oscillator Model of the Dopaminergic Neuron of the Substantia Nigra. J. Neurophysiol. 2000, 83, 3084–3100. [Google Scholar] [CrossRef] [PubMed]
- Wolfart, J.; Roeper, J. Selective Coupling of T-Type Calcium Channels to SK Potassium Channels Prevents Intrinsic Bursting in Dopaminergic Midbrain Neurons. J. Neurosci. 2002, 22, 3404–3413. [Google Scholar] [CrossRef] [PubMed]
- Seutin, V.; Massotte, L.; Renette, M.F.; Dresse, A. Evidence for a modulatory role of Ih on the firing of a subgroup of midbrain dopamine neurons. Neuroreport 2001, 12, 255–258. [Google Scholar] [CrossRef]
- Neuhoff, H.; Neu, A.; Liss, B.; Roeper, J. I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Franz, O.; Liss, B.; Neu, A.; Roeper, J. Single-cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarization-activated cyclic nucleotide-gated ion channels (Ih) in central neurons. Eur. J. Neurosci. 2000, 12, 2685–2693. [Google Scholar] [CrossRef]
- Liss, B.; Franz, O.; Sewing, S.; Bruns, R.; Neuhoff, H.; Roeper, J. Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J. 2001, 20, 5715–5724. [Google Scholar] [CrossRef]
- Amendola, J.; Woodhouse, A.; Martin-Eauclaire, M.-F.; Goaillard, J.-M. Ca2+/cAMP-Sensitive Covariation of IA and IH Voltage Dependences Tunes Rebound Firing in Dopaminergic Neurons. J. Neurosci. 2012, 32, 2166–2181. [Google Scholar] [CrossRef] [PubMed]
- Serôdio, P.; Rudy, B. Differential Expression of Kv4 K+ Channel Subunits Mediating Subthreshold Transient K+ (A-Type) Currents in Rat Brain. J. Neurophysiol. 1998, 79, 1081–1091. [Google Scholar] [CrossRef]
- Ding, S.; Matta, S.G.; Zhou, F.-M. Kv3-Like Potassium Channels Are Required for Sustained High-Frequency Firing in Basal Ganglia Output Neurons. J. Neurophysiol. 2011, 105, 554–570. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.; Baudot, P.; Formisano-Tréziny, C.; Dufour, M.A.; Temporal, S.; Lasserre, M.; Marquèze-Pouey, B.; Gabert, J.; Kobayashi, K.; Goaillard, J.-M. Neurotransmitter identity and electrophysiological phenotype are genetically coupled in midbrain dopaminergic neurons. Sci. Rep. 2018, 8, 13637. [Google Scholar] [CrossRef]
- Müller, C.S.; Haupt, A.; Bildl, W.; Schindler, J.; Knaus, H.-G.; Meissner, M.; Rammner, B.; Striessnig, J.; Flockerzi, V.; Fakler, B.; et al. Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc. Natl. Acad. Sci. USA 2010, 107, 14950–14957. [Google Scholar] [CrossRef]
- Weiss, N.; Zamponi, G.W. The T-type calcium channelosome. Pflug. Arch. 2024, 476, 163–177. [Google Scholar] [CrossRef]
- Platzer, J.; Engel, J.; Schrott-Fischer, A.; Stephan, K.; Bova, S.; Chen, H.; Zheng, H.; Striessnig, J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000, 102, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Gray, E.G.; Whittaker, V.P. The isolation of nerve endings from brain: An electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 1962, 96, 79–88. [Google Scholar]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
- Lim, M.Y.; Paulo, J.A.; Gygi, S.P. Evaluating False Transfer Rates from the Match-between-Runs Algorithm with a Two-Proteome Model. J. Proteome Res. 2019, 18, 4020–4026. [Google Scholar] [CrossRef]
- Tyanova, S.; Cox, J. Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. Methods Mol. Biol. 2018, 1711, 133–148. [Google Scholar] [CrossRef]
- Rudolph, J.D.; Cox, J. A Network Module for the Perseus Software for Computational Proteomics Facilitates Proteome Interaction Graph Analysis. J. Proteome Res. 2019, 18, 2052–2064. [Google Scholar] [CrossRef]
- Mellacheruvu, D.; Wright, Z.; Couzens, A.L.; Lambert, J.-P.; St-Denis, N.A.; Li, T.; Miteva, Y.V.; Hauri, S.; Sardiu, M.E.; Low, T.Y.; et al. The CRAPome: A contaminant repository for affinity purification–mass spectrometry data. Nat. Methods 2013, 10, 730–736. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
- Dunham, W.H.; Mullin, M.; Gingras, A.-C. Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics 2012, 12, 1576–1590. [Google Scholar] [CrossRef]
- Cristea, I.M.; Williams, R.; Chait, B.T.; Rout, M.P. Fluorescent proteins as proteomic probes. Mol. Cell. Proteom. 2005, 4, 1933–1941. [Google Scholar] [CrossRef] [PubMed]
- Oeffinger, M.; Wei, K.E.; Rogers, R.; DeGrasse, J.A.; Chait, B.T.; Aitchison, J.D.; Rout, M.P. Comprehensive analysis of diverse ribonucleoprotein complexes. Nat. Methods 2007, 4, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Blum, D.; Reuter, M.; Schliebs, W.; Tomaschewski, J.; Erdmann, R.; Wagner, R. Membrane binding and pore forming insertion of PEX5 into horizontal lipid bilayer. Biol. Chem. 2023, 404, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Ortner, N.J.; Pinggera, A.; Hofer, N.T.; Siller, A.; Brandt, N.; Raffeiner, A.; Vilusic, K.; Lang, I.; Blum, K.; Obermair, G.J.; et al. RBP2 stabilizes slow Cav1.3 Ca2+ channel inactivation properties of cochlear inner hair cells. Pflug. Arch. 2020, 472, 3–25. [Google Scholar] [CrossRef]
- Brockmann, M.M.; Maglione, M.; Willmes, C.G.; Stumpf, A.; Bouazza, B.A.; Velasquez, L.M.; Grauel, M.K.; Beed, P.; Lehmann, M.; Gimber, N.; et al. RIM-BP2 primes synaptic vesicles via recruitment of Munc13-1 at hippocampal mossy fiber synapses. eLife 2019, 8, e43243. [Google Scholar] [CrossRef]
- Harvey, R.D.; Hell, J.W. CaV1.2 signaling complexes in the heart. J. Mol. Cell. Cardiol. 2013, 58, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Reyes, S.; Fu, Y.; Double, K.; Thompson, L.; Kirik, D.; Paxinos, G.; Halliday, G.M. GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. J. Comp. Neurol. 2012, 520, 2591–2607. [Google Scholar] [CrossRef] [PubMed]
- Lavine, N.; Ethier, N.; Oak, J.N.; Pei, L.; Liu, F.; Trieu, P.; Rebois, R.V.; Bouvier, M.; Hebert, T.E.; Van Tol, H.H.M. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J. Biol. Chem. 2002, 277, 46010–46019. [Google Scholar] [CrossRef] [PubMed]
- Borgkvist, A.; Mosharov, E.V.; Sulzer, D. Calcium currents regulate dopamine autoreceptors. Brain 2014, 137, 2113–2115. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Sun, L.; Lin, X.; Liu, G.; Yu, J.; Parisiadou, L.; Xie, C.; Ding, J.; Cai, H. A calcineurin- and NFAT-dependent pathway is involved in α-synuclein-induced degeneration of midbrain dopaminergic neurons. Hum. Mol. Genet. 2014, 23, 6567–6574. [Google Scholar] [CrossRef] [PubMed]
- Amery, L.; Sano, H.; Mannaerts, G.P.; Snider, J.; Van Looy, J.; Fransen, M.; Van Veldhoven, P.P. Identification of PEX5p-related novel peroxisome-targeting signal 1 (PTS1)-binding proteins in mammals. Biochem. J. 2001, 357, 635–646. [Google Scholar] [CrossRef]
- Chen, S.; Liang, M.C.; Chia, J.N.; Ngsee, J.K.; Ting, A.E. Rab8b and Its Interacting Partner TRIP8b Are Involved in Regulated Secretion in AtT20 Cells*. J. Biol. Chem. 2001, 276, 13209–13216. [Google Scholar] [CrossRef] [PubMed]
- Popova, N.V.; Plotnikov, A.; Deev, I.E.; Petrenko, A.G. Interaction of calcium-independent latrotoxin receptor with intracellular adapter protein TRIP8b. Dokl. Biochem. Biophys. 2007, 414, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Bhattacharjee, A.; Taylor, J.T.; Zhang, M.; Keyser, B.M.; Marrero, L.; Li, M. [Ca2+]i regulates trafficking of Cav1.3 (α1D Ca2+ channel) in insulin-secreting cells. Am. J. Physiol.-Cell Physiol. 2004, 286, C213–C221. [Google Scholar] [CrossRef]
- Karnabi, E.; Qu, Y.; Yue, Y.; Boutjdir, M. Calreticulin negatively regulates the surface expression of Cav1.3 L-type calcium channel. Biochem. Biophys. Res. Commun. 2013, 437, 497–501. [Google Scholar] [CrossRef]
- Gregory, F.D.; Bryan, K.E.; Pangršič, T.; Calin-Jageman, I.E.; Moser, T.; Lee, A. Harmonin inhibits presynaptic Cav1.3 Ca2+ channels in mouse inner hair cells. Nat. Neurosci. 2011, 14, 1109–1111. [Google Scholar] [CrossRef]
- Grimaldo, L.; Sandoval, A.; Duran, P.; Gómez Flores-Ramos, L.; Felix, R. The ubiquitin E3 ligase Parkin regulates neuronal CaV1.3 channel functional expression. J. Neurophysiol. 2022, 128, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Schredelseker, J.; Di Biase, V.; Obermair, G.J.; Felder, E.T.; Flucher, B.E.; Franzini-Armstrong, C.; Grabner, M. The β1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle. Proc. Natl. Acad. Sci. USA 2005, 102, 17219–17224. [Google Scholar] [CrossRef]
- Altier, C.; Garcia-Caballero, A.; Simms, B.; You, H.; Chen, L.; Walcher, J.; Tedford, H.W.; Hermosilla, T.; Zamponi, G.W. The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat. Neurosci. 2011, 14, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Kadurin, I.; Ferron, L.; Rothwell, S.W.; Meyer, J.O.; Douglas, L.R.; Bauer, C.S.; Lana, B.; Margas, W.; Alexopoulos, O.; Nieto-Rostro, M.; et al. Proteolytic maturation of α2δ represents a checkpoint for activation and neuronal trafficking of latent calcium channels. eLife 2016, 5, e21143. [Google Scholar] [CrossRef] [PubMed]
- Hibino, H.; Pironkova, R.; Onwumere, O.; Vologodskaia, M.; Hudspeth, A.J.; Lesage, F. RIM—binding proteins (RBPs) couple Rab3—interacting molecules (RIMs) to voltage—gated Ca2+ channels. Neuron 2002, 34, 411–423. [Google Scholar] [CrossRef]
- Raab-Graham, K.F.; Haddick, P.C.G.; Jan, Y.N.; Jan, L.Y. Activity- and mTOR-Dependent Suppression of Kv1.1 Channel mRNA Translation in Dendrites. Science 2006, 314, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Campanac, E.; Gasselin, C.; Baude, A.; Rama, S.; Ankri, N.; Debanne, D. Enhanced intrinsic excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits. Neuron 2013, 77, 712–722. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Anderson, A.E. mTOR-dependent alterations of Kv1.1 subunit expression in the neuronal subset-specific Pten knockout mouse model of cortical dysplasia with epilepsy. Sci. Rep. 2018, 8, 3568. [Google Scholar] [CrossRef]
- Lugo, J.N.; Smith, G.D.; Arbuckle, E.P.; White, J.; Holley, A.J.; Floruta, C.M.; Ahmed, N.; Gomez, M.C.; Okonkwo, O. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins. Front. Mol. Neurosci. 2014, 7, 27. [Google Scholar] [CrossRef]
- Hsieh, L.S.; Wen, J.H.; Nguyen, L.H.; Zhang, L.; Getz, S.; Torres-Reveron, J.; Wang, Y.; Spencer, D.D.; Bordey, A. Ectopic HCN4 expression drives mTOR-dependent epilepsy in mice. Sci. Transl. Med. 2020, 12, eabc1492. [Google Scholar] [CrossRef] [PubMed]
- Hisatsune, C.; Shimada, T.; Miyamoto, A.; Lee, A.; Yamagata, K. Tuberous Sclerosis Complex (TSC) Inactivation Increases Neuronal Network Activity by Enhancing Ca2+ Influx via L-Type Ca2+ Channels. J. Neurosci. 2021, 41, 8134–8149. [Google Scholar] [CrossRef]
- Kosillo, P.; Doig, N.M.; Ahmed, K.M.; Agopyan-Miu, A.H.C.W.; Wong, C.D.; Conyers, L.; Threlfell, S.; Magill, P.J.; Bateup, H.S. Tsc1-mTORC1 signaling controls striatal dopamine release and cognitive flexibility. Nat. Commun. 2019, 10, 5426. [Google Scholar] [CrossRef] [PubMed]
- Benkert, J.; Hess, S.; Roy, S.; Beccano-Kelly, D.; Wiederspohn, N.; Duda, J.; Simons, C.; Patil, K.; Gaifullina, A.; Mannal, N.; et al. Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson’s disease. Nat. Commun. 2019, 10, 5094. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.G.; Sanderson, J.L.; Gorski, J.A.; Scott, J.D.; Catterall, W.A.; Sather, W.A.; Dell’Acqua, M.L. AKAP-Anchored PKA Maintains Neuronal L-type Calcium Channel Activity and NFAT Transcriptional Signaling. Cell Rep. 2014, 7, 1577–1588. [Google Scholar] [CrossRef]
- Maximov, A.; Südhof, T.C.; Bezprozvanny, I. Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 1999, 274, 24453–24456. [Google Scholar] [CrossRef] [PubMed]
- Leonoudakis, D.; Conti, L.R.; Radeke, C.M.; McGuire, L.M.M.; Vandenberg, C.A. A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. J. Biol. Chem. 2004, 279, 19051–19063. [Google Scholar] [CrossRef] [PubMed]
- Eichel, C.A.; Beuriot, A.; Chevalier, M.Y.E.; Rougier, J.-S.; Louault, F.; Dilanian, G.; Amour, J.; Coulombe, A.; Abriel, H.; Hatem, S.N.; et al. Lateral Membrane-Specific MAGUK CASK Down-Regulates NaV1.5 Channel in Cardiac Myocytes. Circ. Res. 2016, 119, 544–556. [Google Scholar] [CrossRef]
- Jeyifous, O.; Waites, C.L.; Specht, C.G.; Fujisawa, S.; Schubert, M.; Lin, E.; Marshall, J.; Aoki, C.; de Silva, T.; Montgomery, J.M.; et al. SAP97 and CASK mediate sorting of N-Methyl-D-Aspartate Receptors through a novel secretory pathway. Nat. Neurosci. 2009, 12, 1011–1019. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Qian, K.-Y.; Nurrish, S.; Zeng, X.-T.; Zeng, W.-X.; Wang, J.; Kaplan, J.M.; Tong, X.-J.; Hu, Z. CASK and FARP localize two classes of post-synaptic ACh receptors thereby promoting cholinergic transmission. PLoS Genet. 2022, 18, e1010211. [Google Scholar] [CrossRef]
- George, G.; Singh, S.; Lokappa, S.B.; Varkey, J. Gene co-expression network analysis for identifying genetic markers in Parkinson’s disease—A three-way comparative approach. Genomics 2019, 111, 819–830. [Google Scholar] [CrossRef]
- Notomi, T.; Shigemoto, R. Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J. Comp. Neurol. 2004, 471, 241–276. [Google Scholar] [CrossRef] [PubMed]
- Weiser, M.; de Miera, E.V.-S.; Kentros, C.; Moreno, H.; Franzen, L.; Hillman, D.; Baker, H.; Rudy, B. Differential expression of Shaw-related K+ channels in the rat central nervous system. J. Neurosci. 1994, 14, 949–972. [Google Scholar] [CrossRef]
- Chang, S.Y.; Zagha, E.; Kwon, E.S.; Ozaita, A.; Bobik, M.; Martone, M.E.; Ellisman, M.H.; Heintz, N.; Rudy, B. Distribution of Kv3.3 potassium channel subunits in distinct neuronal populations of mouse brain. J. Comp. Neurol. 2007, 502, 953–972. [Google Scholar] [CrossRef] [PubMed]
- Gunthorpe, M.J. Timing is everything: Structural insights into the disease-linked Kv3 channels controlling fast action-potential firing in the brain. Nat. Commun. 2022, 13, 4086. [Google Scholar] [CrossRef] [PubMed]
- Hasenstaub, A.; Otte, S.; Callaway, E.; Sejnowski, T.J. Metabolic cost as a unifying principle governing neuronal biophysics. Proc. Natl. Acad. Sci. USA 2010, 107, 12329–12334. [Google Scholar] [CrossRef]
- Combe, C.L.; Gasparini, S. Ih from synapses to networks: HCN channel functions and modulation in neurons. Prog. Biophys. Mol. Biol. 2021, 166, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.-W.; Jia, F.; Abbas, S.Y.; Hofmann, F.; Ludwig, A.; Goldstein, P.A. Dendritic HCN2 channels constrain glutamate-driven excitability in reticular thalamic neurons. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 8719–8732. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Saito, M.; Won, J.; Bae, J.Y.; Sato, H.; Toyoda, H.; Kuramoto, E.; Kogo, M.; Tanaka, T.; Kaneko, T.; et al. Inhibition of GluR Current in Microvilli of Sensory Neurons via Na+-Microdomain Coupling Among GluR, HCN Channel, and Na+/K+ Pump. Front. Cell. Neurosci. 2018, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Pasquale, E.D.; Keegan, K.D.; Noebels, J.L. Increased Excitability and Inward Rectification in Layer V Cortical Pyramidal Neurons in the Epileptic Mutant Mouse Stargazer. J. Neurophysiol. 1997, 77, 621–631. [Google Scholar] [CrossRef]
- Letts, V.A.; Felix, R.; Biddlecome, G.H.; Arikkath, J.; Mahaffey, C.L.; Valenzuela, A.; Bartlett, F.S.; Mori, Y.; Campbell, K.P.; Frankel, W.N. The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat. Genet. 1998, 19, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, M.E.; Nargeot, J. Genesis and Regulation of the Heart Automaticity. Physiol. Rev. 2008, 88, 919–982. [Google Scholar] [CrossRef] [PubMed]
- Bender, R.A.; Baram, T.Z. Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Prog. Neurobiol. 2008, 86, 129–140. [Google Scholar] [CrossRef]
- Abbas, S.Y.; Ying, S.-W.; Goldstein, P.A. Compartmental distribution of hyperpolarization-activated cyclic-nucleotide-gated channel 2 and hyperpolarization-activated cyclic-nucleotide-gated channel 4 in thalamic reticular and thalamocortical relay neurons. Neuroscience 2006, 141, 1811–1825. [Google Scholar] [CrossRef] [PubMed]
- Pai, V.P.; Willocq, V.; Pitcairn, E.J.; Lemire, J.M.; Paré, J.-F.; Shi, N.-Q.; McLaughlin, K.A.; Levin, M. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner. Biol. Open 2017, 6, 1445–1457. [Google Scholar] [CrossRef]
- Nakashima, N.; Ishii, T.M.; Bessho, Y.; Kageyama, R.; Ohmori, H. Hyperpolarisation-activated cyclic nucleotide-gated channels regulate the spontaneous firing rate of olfactory receptor neurons and affect glomerular formation in mice. J. Physiol. 2013, 591, 1749–1769. [Google Scholar] [CrossRef]
- Bender, R.A.; Brewster, A.; Santoro, B.; Ludwig, A.; Hofmann, F.; Biel, M.; Baram, T.Z. Differential and age-dependent expression of hyperpolarization-activated, cyclic nucleotide-gated cation channel isoforms 1-4 suggests evolving roles in the developing rat hippocampus. Neuroscience 2001, 106, 689–698. [Google Scholar] [CrossRef]
- Battefeld, A.; Rocha, N.; Stadler, K.; Bräuer, A.U.; Strauss, U. Distinct perinatal features of the hyperpolarization-activated non-selective cation current I(h) in the rat cortical plate. Neural Develop. 2012, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Osterloh, J.M.; Yang, J.; Rooney, T.M.; Fox, A.N.; Adalbert, R.; Powell, E.H.; Sheehan, A.E.; Avery, M.A.; Hackett, R.; Logan, M.A.; et al. dSarm/Sarm1 Is Required for Activation of an Injury-Induced Axon Death Pathway. Science 2012, 337, 481–484. [Google Scholar] [CrossRef]
- Waller, T.J.; Collins, C.A. Multifaceted roles of SARM1 in axon degeneration and signaling. Front. Cell. Neurosci. 2022, 16, 958900. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Lin, C.-W.; Chang, C.-Y.; Jiang, S.-T.; Hsueh, Y.-P. Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J. Cell Biol. 2011, 193, 769–784. [Google Scholar] [CrossRef] [PubMed]
- Izadifar, A.; Courchet, J.; Virga, D.M.; Verreet, T.; Hamilton, S.; Ayaz, D.; Misbaer, A.; Vandenbogaerde, S.; Monteiro, L.; Petrovic, M.; et al. Axon morphogenesis and maintenance require an evolutionary conserved safeguard function of Wnk kinases antagonizing Sarm and Axed. Neuron 2021, 109, 2864–2883. [Google Scholar] [CrossRef]
- Bauer Huang, S.L.; Saheki, Y.; VanHoven, M.K.; Torayama, I.; Ishihara, T.; Katsura, I.; van der Linden, A.; Sengupta, P.; Bargmann, C.I. Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans. Neural Develop. 2007, 2, 24. [Google Scholar] [CrossRef]
- Troemel, E.R.; Sagasti, A.; Bargmann, C.I. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 1999, 99, 387–398. [Google Scholar] [CrossRef]
- Gantz, S.C.; Bean, B.P. Cell-autonomous excitation of midbrain dopamine neurons by endocannabinoid-dependent lipid signaling. Neuron 2017, 93, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Amorós, I.; Barana, A.; Caballero, R.; Gómez, R.; Osuna, L.; Lillo, M.P.; Tamargo, J.; Delpón, E. Endocannabinoids and cannabinoid analogues block human cardiac Kv4.3 channels in a receptor-independent manner. J. Mol. Cell. Cardiol. 2010, 48, 201–210. [Google Scholar] [CrossRef]
- Cardozo, D.L.; Bean, B.P. Voltage-dependent calcium channels in rat midbrain dopamine neurons: Modulation by dopamine and GABAB receptors. J. Neurophysiol. 1995, 74, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- de Vrind, V.; Scuvée-Moreau, J.; Drion, G.; Hmaied, C.; Philippart, F.; Engel, D.; Seutin, V. Interactions between calcium channels and SK channels in midbrain dopamine neurons and their impact on pacemaker regularity: Contrasting roles of N- and L-type channels. Eur. J. Pharmacol. 2016, 788, 274–279. [Google Scholar] [CrossRef]
- Maurya, S.; Mills, R.W.; Kahnert, K.; Chiang, D.Y.; Bertoli, G.; Lundegaard, P.R.; Duran, M.P.-H.; Zhang, M.; Rothenberg, E.; George, A.L.; et al. Outlining cardiac ion channel protein interactors and their signature in the human electrocardiogram. Nat. Cardiovasc. Res. 2023, 2, 673–692. [Google Scholar] [CrossRef]
- Bissen, D.; Foss, F.; Acker-Palmer, A. AMPA receptors and their minions: Auxiliary proteins in AMPA receptor trafficking. Cell. Mol. Life Sci. 2019, 76, 2133–2169. [Google Scholar] [CrossRef]
- Brechet, A.; Buchert, R.; Schwenk, J.; Boudkkazi, S.; Zolles, G.; Siquier-Pernet, K.; Schaber, I.; Bildl, W.; Saadi, A.; Bole-Feysot, C.; et al. AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability. Nat. Commun. 2017, 8, 15910. [Google Scholar] [CrossRef] [PubMed]
- Casas, M.; Murray, K.D.; Hino, K.; Vierra, N.C.; Simó, S.; Trimmer, J.S.; Dixon, R.E.; Dickson, E.J. NPC1-dependent alterations in KV2.1–CaV1.2 nanodomains drive neuronal death in models of Niemann-Pick Type C disease. Nat. Commun. 2023, 14, 4553. [Google Scholar] [CrossRef] [PubMed]
- Grosch, J.; Winkler, J.; Kohl, Z. Early Degeneration of Both Dopaminergic and Serotonergic Axons—A Common Mechanism in Parkinson’s Disease. Front. Cell. Neurosci. 2016, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Summers, D.W.; DiAntonio, A.; Milbrandt, J. Mitochondrial Dysfunction Induces Sarm1-Dependent Cell Death in Sensory Neurons. J. Neurosci. 2014, 34, 9338–9350. [Google Scholar] [CrossRef] [PubMed]
- Sur, M.; Dey, P.; Sarkar, A.; Bar, S.; Banerjee, D.; Bhat, S.; Mukherjee, P. Sarm1 induction and accompanying inflammatory response mediates age-dependent susceptibility to rotenone-induced neurotoxicity. Cell Death Discov. 2018, 4, 114. [Google Scholar] [CrossRef] [PubMed]
- Peters, O.M.; Weiss, A.; Metterville, J.; Song, L.; Logan, R.; Smith, G.A.; Schwarzschild, M.A.; Mueller, C.; Brown, R.H.; Freeman, M. Genetic diversity of axon degenerative mechanisms in models of Parkinson’s disease. Neurobiol. Dis. 2021, 155, 105368. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Phoo, M.T.Z.; Ochi, T.; Tomonobu, N.; Yamamoto, K.-I.; Kinoshita, R.; Miyazaki, I.; Nishibori, M.; Asanuma, M.; Sakaguchi, M. Phosphorylated SARM1 is involved in the pathological process of rotenone-induced neurodegeneration. J. Biochem. 2023, 174, 533–548. [Google Scholar] [CrossRef]
- Murata, H.; Sakaguchi, M.; Kataoka, K.; Huh, N. SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria. Mol. Biol. Cell 2013, 24, 2772–2784. [Google Scholar] [CrossRef] [PubMed]
- Loreto, A.; Di Stefano, M.; Gering, M.; Conforti, L. Wallerian Degeneration Is Executed by an NMN-SARM1-Dependent Late Ca2+ Influx but Only Modestly Influenced by Mitochondria. Cell Rep. 2015, 13, 2539–2552. [Google Scholar] [CrossRef]
- Garcia-Junco-Clemente, P.; Chow, D.K.; Tring, E.; Lazaro, M.T.; Trachtenberg, J.T.; Golshani, P. Overexpression of calcium-activated potassium channels underlies cortical dysfunction in a model of PTEN-associated autism. Proc. Natl. Acad. Sci. USA 2013, 110, 18297–18302. [Google Scholar] [CrossRef]
- Liu, Q.; Remmelzwaal, S.; Heck, A.J.R.; Akhmanova, A.; Liu, F. Facilitating identification of minimal protein binding domains by cross-linking mass spectrometry. Sci. Rep. 2017, 7, 13453. [Google Scholar] [CrossRef] [PubMed]
- Götze, M.; Iacobucci, C.; Ihling, C.H.; Sinz, A. A Simple Cross-Linking/Mass Spectrometry Workflow for Studying System-wide Protein Interactions. Anal. Chem. 2019, 91, 10236–10244. [Google Scholar] [CrossRef] [PubMed]
- Pollock, N.L.; Rai, M.; Simon, K.S.; Hesketh, S.J.; Teo, A.C.K.; Parmar, M.; Sridhar, P.; Collins, R.; Lee, S.C.; Stroud, Z.N.; et al. SMA-PAGE: A new method to examine complexes of membrane proteins using SMALP nano-encapsulation and native gel electrophoresis. Biochim. Biophys. Acta BBA-Biomembr. 2019, 1861, 1437–1445. [Google Scholar] [CrossRef]
- Patel, J.H.; Pollock, N.L.; Maher, J.; Rothnie, A.J.; Allen, M.C. The function of BK channels extracted and purified within SMALPs. Biochem. J. 2022, 479, 1609–1619. [Google Scholar] [CrossRef] [PubMed]
Experiment | Antigen | Host | Type | Companies | Reference | RRID | Concentration ug/mL |
---|---|---|---|---|---|---|---|
Prot A/G | Cav1.3 | Rabbit | polyclonal | Alomone | ACC-005 | AB_2039775 | 7 |
Prot A/G | Kv43 | Mouse | monoclonal | Antibodies Incorporated | 75-017 | AB_2131966 | 12 |
Prot A/G | SK3 | Rabbit | polyclonal | Alomone | APC-025 | AB_2040130 | 7 |
IB | Cav1.3 | Rabbit | polyclonal | Alomone | ACC-005 | AB_2039775 | 1.6 |
IB | HCN2 | Rabbit | polyclonal | Alomone | APC-030 | AB_2313726 | 0.85 |
IB | HCN4 | Mouse | monoclonal | Antibodies Incorporated | 75-150 | AB_2248534 | 1 |
IB | HCN4 | Rabbit | polyclonal | Alomone | APC-052 | AB_2039906 | 1.3 |
IB | Kv4.3 | Rabbit | polyclonal | Alomone | APC-017 | AB_2040178 | 1.6 |
IB | Sarm1 | Rabbit | polyclonal | Novus Bio | NBP1-77200 | AB_11038887 | 1 |
IB | SK3 | Rabbit | polyclonal | Alomone | APC-025 | AB_2040130 | 1.6 |
MS | Cav1.2 | Rabbit | polyclonal | Alomone | ACC-003 | AB_2039771 | ND |
MS | Cav1.3 | Rabbit | polyclonal | Alomone | ACC-005 | AB_2039775 | ND |
MS | HCN2 | Rabbit | polyclonal | Alomone | APC-030 | AB_2313726 | ND |
MS | HCN4 | Rabbit | polyclonal | Alomone | APC-052 | AB_2039906 | ND |
MS | Kv4.3 | Rabbit | polyclonal | Alomone | APC-017 | AB_2040178 | ND |
MS | SK3 | Rabbit | polyclonal | Alomone | APC-025 | AB_2040130 | ND |
PLA-1 | Cav1.3 | Mouse | monoclonal | Antibodies Incorporated | 75-080 | AB_10673964 | 10 |
PLA-2 | HCN2 | Rabbit | polyclonal | Alomone | APC-030 | AB_2313726 | 4 |
PLA-1 | HCN2 | Mouse | monoclonal | Antibodies Incorporated | 75-111 | AB_2279449 | 10 |
PLA-2 | SK2 | Rabbit | polyclonal | Alomone | APC-028 | AB_2040126 | 4 |
PLA-1 | HCN2 | Mouse | monoclonal | Antibodies Incorporated | 75-111 | AB_2279449 | 10 |
PLA-2 | SK3 | Rabbit | polyclonal | Alomone | APC-025 | AB_2040130 | 4 |
PLA-1 | HCN2 | Mouse | monoclonal | Antibodies Incorporated | 75-111 | AB_2279449 | 10 |
PLA-2 | Kv4.3 | Rabbit | polyclonal | Alomone | APC-017 | AB_2040178 | 2 |
PLA-1 | Cav1.3 | Mouse | monoclonal | Antibodies Incorporated | 75-080 | AB_10673964 | 10 |
PLA-2 | SK3 | Rabbit | polyclonal | Alomone | APC-025 | AB_2040130 | 4 |
PLA-1 | Tsc1 | Mouse | monoclonal | Thermo Fisher | 37-0400 | AB_2533292 | 2.5; 5 |
PLA-2 | SK3 | Rabbit | polyclonal | Alomone | APC-025 | AB_2040130 | 8; 4 |
PLA-1 | Tsc1 | Mouse | monoclonal | Thermo Fisher | 37-0400 | AB_2533292 | 2.5; 5 |
PLA-2 | SK2 | Rabbit | polyclonal | Alomone | APC-028 | AB_2040126 | 8; 4 |
PLA-1 | Sarm1 | Mouse | monoclonal | Novus Bio | NBP1-39550 | AB_2183996 | 10 |
PLA-2 | HCN4 | Rabbit | polyclonal | Alomone | APC-052 | AB_2039906 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belghazi, M.; Iborra, C.; Toutendji, O.; Lasserre, M.; Debanne, D.; Goaillard, J.-M.; Marquèze-Pouey, B. High-Resolution Proteomics Unravel a Native Functional Complex of Cav1.3, SK3, and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Midbrain Dopaminergic Neurons. Cells 2024, 13, 944. https://doi.org/10.3390/cells13110944
Belghazi M, Iborra C, Toutendji O, Lasserre M, Debanne D, Goaillard J-M, Marquèze-Pouey B. High-Resolution Proteomics Unravel a Native Functional Complex of Cav1.3, SK3, and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Midbrain Dopaminergic Neurons. Cells. 2024; 13(11):944. https://doi.org/10.3390/cells13110944
Chicago/Turabian StyleBelghazi, Maya, Cécile Iborra, Ophélie Toutendji, Manon Lasserre, Dominique Debanne, Jean-Marc Goaillard, and Béatrice Marquèze-Pouey. 2024. "High-Resolution Proteomics Unravel a Native Functional Complex of Cav1.3, SK3, and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Midbrain Dopaminergic Neurons" Cells 13, no. 11: 944. https://doi.org/10.3390/cells13110944
APA StyleBelghazi, M., Iborra, C., Toutendji, O., Lasserre, M., Debanne, D., Goaillard, J. -M., & Marquèze-Pouey, B. (2024). High-Resolution Proteomics Unravel a Native Functional Complex of Cav1.3, SK3, and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Midbrain Dopaminergic Neurons. Cells, 13(11), 944. https://doi.org/10.3390/cells13110944