Tumor-Infiltrating T Cells in Skin Basal Cell Carcinomas and Squamous Cell Carcinomas: Global Th1 Preponderance with Th17 Enrichment—A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Processing and Stimulation of Cytokine Production
2.2. Flow Cytometry
2.3. Immunohistochemistry (IHC)
2.4. Statistical Analyses
3. Results
3.1. Patients and Clinical Samples
3.2. BCC and SCC Share a Similar Inflammatory Immunophenotype
3.3. Th17 in the NMSC Tumor Microenvironment
3.4. T Cells Infiltrate the Periphery of BCCs and SCCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dacosta Byfield, S.; Chen, D.; Yim, Y.M.; Reyes, C. Age Distribution of Patients with Advanced Non-Melanoma Skin Cancer in the United States. Arch. Dermatol. Res. 2013, 305, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Amôr, N.G.; Santos, P.S.d.S.; Campanelli, A.P. The Tumor Microenvironment in SCC: Mechanisms and Therapeutic Opportunities. Front. Cell Dev. Biol. 2021, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Muzic, J.G.; Schmitt, A.R.; Wright, A.C.; Alniemi, D.T.; Zubair, A.S.; Olazagasti Lourido, J.M.; Sosa Seda, I.M.; Weaver, A.L.; Baum, C.L. Incidence and Trends of Basal Cell Carcinoma and Cutaneous Squamous Cell Carcinoma: A Population-Based Study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin. Proc. 2017, 92, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous Squamous Cell Carcinoma: Incidence, Risk Factors, Diagnosis, and Staging. J. Am. Acad. Dermatol. 2018, 78, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, S.; McCullough, B.; Schmults, C.D.; Blitzblau, R.; Chair, V.; Aasi, S.Z.; Alam, M.; Lurie, R.; Amini, A.; Bibee, K.; et al. NCCN Guidelines Version 2.2024 Basal Cell Skin Cancer. Available online: https://www.nccn.org/home/member- (accessed on 5 March 2024).
- Schmults, C.D.; Blitzblau, R.; Aasi, S.Z.; Alam, M.; Andersen, J.S.; Baumann, B.C.; Bordeaux, J.; Chen, P.L.; Chin, R.; Contreras, C.M.; et al. Squamous Cell Skin Cancer, Version 1.2022 Featured Updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2021, 19, 1382–1394. [Google Scholar] [CrossRef] [PubMed]
- Vallini, G.; Calabrese, L.; Canino, C.; Trovato, E.; Gentileschi, S.; Rubegni, P.; Tognetti, L. Signaling Pathways and Therapeutic Strategies in Advanced Basal Cell Carcinoma. Cells 2023, 12, 2534. [Google Scholar] [CrossRef] [PubMed]
- Caudill, J.; Thomas, J.E.; Burkhart, C.G. The Risk of Metastases from Squamous Cell Carcinoma of the Skin. Int. J. Dermatol. 2022, 62, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Nelson, T.G.; Ashton, R.E. Low Incidence of Metastasis and Recurrence from Cutaneous Squamous Cell Carcinoma Found in a UK Population: Do We Need to Adjust Our Thinking on This Rare but Potentially Fatal Event? J. Surg. Oncol. 2017, 116, 783–788. [Google Scholar] [CrossRef]
- Ko, J.S. The Immunology of Melanoma. Clin. Lab. Med. 2017, 37, 449–471. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Teng, M.W.L.; Smyth, M.J. Cancer Immunoediting and Resistance to T Cell-Based Immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 151–167. [Google Scholar] [CrossRef]
- Gubin, M.M.; Vesely, M.D. Cancer Immunoediting in the Era of Immuno-Oncology. Clin. Cancer Res. 2022, 28, 3917–3928. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Tlsty, T.D.; Coussens, L.M. Tumor Stroma and Regulation of Cancer Development. Annu. Rev. Pathol. Mech. Dis. 2006, 1, 119–150. [Google Scholar] [CrossRef]
- Guo, S.; Deng, C.-X. Effect of Stromal Cells in Tumor Microenvironment on Metastasis Initiation. Int. J. Biol. Sci. 2018, 14, 2083–2093. [Google Scholar] [CrossRef]
- Barnes, T.A.; Amir, E. HYPE or HOPE: The Prognostic Value of Infiltrating Immune Cells in Cancer. Br. J. Cancer 2017, 117, 451–460. [Google Scholar] [CrossRef]
- Leffers, N.; Gooden, M.J.M.; De Jong, R.A.; Hoogeboom, B.N.; Ten Hoor, K.A.; Hollema, H.; Boezen, H.M.; Van Der Zee, A.G.J.; Daemen, T.; Nijman, H.W. Prognostic Significance of Tumor-Infiltrating T-Lymphocytes in Primary and Metastatic Lesions of Advanced Stage Ovarian Cancer. Cancer Immunol. Immunother. 2009, 58, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, S.H.; Freeman, G.J.; Dranoff, G.; Sharpe, A.H. Coinhibitory Pathways in Immunotherapy for Cancer. Annu. Rev. Immunol. 2016, 34, 539–573. [Google Scholar] [CrossRef] [PubMed]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8+ T Cells in Cancer and Cancer Immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef]
- Walter, A.; Barysch, M.J.; Behnke, S.; Dziunycz, P.; Schmid, B.; Ritter, E.; Gnjatic, S.; Kristiansen, G.; Moch, H.; Knuth, A.; et al. Cancer-Testis Antigens and Immunosurveillance in Human Cutaneous Squamous Cell and Basal Cell Carcinomas. Clin. Cancer Res. 2010, 16, 3562–3570. [Google Scholar] [CrossRef] [PubMed]
- Kaporis, H.G.; Guttman-Yassky, E.; Lowes, M.A.; Haider, A.S.; Fuentes-Duculan, J.; Darabi, K.; Whynot-Ertelt, J.; Khatcherian, A.; Cardinale, I.; Novitskaya, I.; et al. Human Basal Cell Carcinoma Is Associated with Foxp3 þ T Cells in a Th2 Dominant Microenvironment. J. Investig. Dermatol. 2007, 127, 2391–2398. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Huang, S.J.; Murphy, G.F.; Mollet, I.G.; Hijnen, D.; Muthukuru, M.; Schanbacher, C.F.; Edwards, V.; Miller, D.M.; Kim, J.E.; et al. Human Squamous Cell Carcinomas Evade the Immune Response by Down-Regulation of Vascular E-Selectin and Recruitment of Regulatory T Cells. J. Exp. Med. 2008, 205, 2221–2234. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Veitch, M.; Kelly, G.A.; Tuong, Z.K.; Cruz, J.G.; Frazer, I.H.; Wells, J.W. IFN-γ Critically Enables the Intratumoural Infiltration of CXCR3+ CD8+ T Cells to DRive Squamous Cell Carcinoma Regression. Cancers 2021, 13, 2131. [Google Scholar] [CrossRef]
- Huang, S.J.; Hijnen, D.; Murphy, G.F.; Kupper, T.S.; Calarese, A.W.; Mollet, I.G.; Schanbacher, C.F.; Miller, D.M.; Schmults, C.D.; Clark, R.A. Imiquimod Enhances IFN- c Production and Effector Function of T Cells Infiltrating Human Squamous Cell Carcinomas of the Skin. J. Investig. Dermatol. 2009, 129, 2676–2685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.R.; Ghezelbash, S.; Xie, P.; Fotovati, M.; Litvinov, I.V.; Lefrançois, P. Comparison of the Basal Cell Carcinoma (BCC) Tumour Microenvironment to Other Solid Malignancies. Cancers 2023, 15, 305. [Google Scholar] [CrossRef] [PubMed]
- van der Leun, A.M.; Thommen, D.S.; Schumacher, T.N. CD8+ T Cell States in Human Cancer: Insights from Single-Cell Analysis. Nat. Rev. Cancer 2020, 20, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Haabeth, O.A.W.; Lorvik, K.B.; Hammarström, C.; Donaldson, I.M.; Haraldsen, G.; Bogen, B.; Corthay, A. Inflammation Driven by Tumour-Specific Th1 Cells Protects against B-Cell Cancer. Nat. Commun. 2011, 2, 240. [Google Scholar] [CrossRef] [PubMed]
- Chraa, D.; Naim, A.; Olive, D.; Badou, A. T Lymphocyte Subsets in Cancer Immunity: Friends or Foes. J. Leukoc. Biol. 2019, 105, 243–255. [Google Scholar] [CrossRef]
- Palucka, A.K.; Coussens, L.M. The Basis of Oncoimmunology. Cell 2016, 164, 1233–1247. [Google Scholar] [CrossRef] [PubMed]
- Stout, R.D.; Bottomly, K. Antigen-Specific Activation of Effector Macrophages by IFN-Gamma Producing (TH1) T Cell Clones. Failure of IL-4-Producing (TH2) T Cell Clones to Activate Effector Function in Macrophages. J. Immunol. 1989, 142, 760–765. [Google Scholar] [CrossRef]
- Girardi, M.; Oppenheim, D.; Glusac, E.J.; Filler, R.; Balmain, A.; Tigelaar, R.E.; Hayday, A.C. Characterizing the Protective Component of the Aβ T Cell Response to Transplantable Squamous Cell Carcinoma. J. Investig. Dermatol. 2004, 122, 699–706. [Google Scholar] [CrossRef]
- Wong, D.A.; Bishop, G.A.; Lowes, M.A.; Cooke, B.; Barnetson, R.S.; Halliday, G.M. Cytokine Profiles in Spontaneously Regressing Basal Cell Carcinomas. Br. J. Dermatol. 2000, 143, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, C.; Orlandi, A.; Costanza, G.; Di Stefani, A.; Piccioni, A.; Di Cesare, A.; Chiricozzi, A.; Ferlosio, A.; Peris, K.; Fargnoli, M.C. Expression of IL-23/Th17-Related Cytokines in Basal Cell Carcinoma and in the Response to Medical Treatments. PLoS ONE 2017, 12, e0183415. [Google Scholar] [CrossRef] [PubMed]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Peter, K.S.; Shankaran, V.; et al. IFN-γ-Related MRNA Profile Predicts Clinical Response to PD-1 Blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Zhang, H.; Preston, S.; Martin, K.; Zhou, B.; Vadalia, N.; Gamero, A.M.; Soboloff, J.; Tempera, I.; Zaidi, M.R. Interferon-γ Signaling in Melanocytes and Melanoma Cells Regulates Expression of CTLA-4. Cancer Res. 2018, 78, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Chiang, E.; Stafford, H.; Buell, J.; Ramesh, U.; Amit, M.; Nagarajan, P.; Migden, M.; Yaniv, D. Review of the Tumor Microenvironment in Basal and Squamous Cell Carcinoma. Cancers 2023, 15, 2453. [Google Scholar] [CrossRef] [PubMed]
- DeNardo, D.G.; Ruffell, B. Macrophages as Regulators of Tumour Immunity and Immunotherapy. Nat. Rev. Immunol. 2019, 19, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Modlin, R.L.; Moy, R.L.; Dubinett, S.M.; McHugh, T.; Nickoloff, B.J.; Uyemura, K. IL-10 Production in Cutaneous Basal and Squamous Cell Carcinomas. A Mechanism for Evading the Local T Cell Immune Response. J. Immunol. 1995, 155, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, M.; Modlin, R.L.; Ohmen, J.D.; Moy, R.L. Local Expression of Antiinflammatory Cytokines in Cancer. J. Clin. Investig. 1993, 91, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Lefrançois, P.; Xie, P.; Gunn, S.; Gantchev, J.; Villarreal, A.M.; Sasseville, D.; Litvinov, I.V. In Silico Analyses of the Tumor Microenvironment Highlight Tumoral Inflammation, a Th2 Cytokine Shift and a Mesenchymal Stem Cell-like Phenotype in Advanced in Basal Cell Carcinomas. J. Cell Commun. Signal 2020, 14, 245–254. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Miyara, M.; Costantino, C.M.; Hafler, D.A. FOXP3 + Regulatory T Cells in the Human Immune System. Nat. Rev. Immunol. 2010, 10, 490–500. [Google Scholar] [CrossRef]
- Togashi, Y.; Nishikawa, H. Regulatory T Cells: Molecular and Cellular Basis for Immunoregulation. Curr. Top. Microbiol. Immunol. 2017, 410, 27. [Google Scholar] [CrossRef]
- Togashi, Y.; Shitara, K.; Nishikawa, H. Regulatory T Cells in Cancer Immunosuppression—Implications for Anticancer Therapy. Nat. Rev. Clin. Oncol. 2019, 16, 356–371. [Google Scholar] [CrossRef]
- Ahmadzadeh, M.; Felipe-Silva, A.; Heemskerk, B.; Powell, D.J.; Wunderlich, J.R.; Merino, M.J.; Rosenberg, S.A. FOXP3 Expression Accurately Defines the Population of Intratumoral Regulatory T Cells That Selectively Accumulate in Metastatic Melanoma Lesions. Blood 2008, 112, 4953–4960. [Google Scholar] [CrossRef]
- Solis-Castillo, L.A.; Garcia-Romo, G.S.; Diaz-Rodriguez, A.; Reyes-Hernandez, D.; Tellez-Rivera, E.; Rosales-Garcia, V.H.; Mendez-Cruz, A.R.; Jimenez-Flores, J.R.; Villafana-Vazquez, V.H.; Pedroza-Gonzalez, A. Tumor-Infiltrating Regulatory T Cells, CD8/Treg Ratio, and Cancer Stem Cells Are Correlated with Lymph Node Metastasis in Patients with Early Breast Cancer. Breast Cancer 2020, 27, 837–849. [Google Scholar] [CrossRef]
- Takada, K.; Kashiwagi, S.; Goto, W.; Asano, Y.; Takahashi, K.; Takashima, T.; Tomita, S.; Ohsawa, M.; Hirakawa, K.; Ohira, M. Use of the Tumor-Infiltrating CD8 to FOXP3 Lymphocyte Ratio in Predicting Treatment Responses to Combination Therapy with Pertuzumab, Trastuzumab, and Docetaxel for Advanced HER2-Positive Breast Cancer. J. Transl. Med. 2018, 16, 86. [Google Scholar] [CrossRef]
- Sideras, K.; Galjart, B.; Vasaturo, A.; Pedroza-Gonzalez, A.; Biermann, K.; Mancham, S.; Nigg, A.L.; Hansen, B.E.; Stoop, H.A.; Zhou, G.; et al. Prognostic Value of Intra-Tumoral CD8+/FoxP3+ Lymphocyte Ratio in Patients with Resected Colorectal Cancer Liver Metastasis. J. Surg. Oncol. 2018, 118, 68–76. [Google Scholar] [CrossRef]
- Omland, S.H.; Nielsen, P.S.; Gjerdrum, L.M.R.; Gniadecki, R. Immunosuppressive Environment in Basal Cell Carcinoma: The Role of Regulatory T Cells. Acta Derm. Venereol. 2016, 96, 917–921. [Google Scholar] [CrossRef]
- Ressler, J.M.; Zila, N.; Korosec, A.; Yu, J.; Silmbrod, R.; Bachmayr, V.; Tittes, J.; Strobl, J.; Lichtenberger, B.M.; Hoeller, C.; et al. Myofibroblast Stroma Differentiation in Infiltrative Basal Cell Carcinoma Is Accompanied by Regulatory T-Cells. J. Cutan. Pathol. 2023, 50, 544–551. [Google Scholar] [CrossRef]
- Azzimonti, B.; Zavattaro, E.; Provasi, M.; Vidali, M.; Conca, A.; Catalano, E.; Rimondini, L.; Colombo, E.; Valente, G. Intense Foxp3+CD25+ Regulatory T-Cell Infiltration Is Associated with High-Grade Cutaneous Squamous Cell Carcinoma and Counterbalanced by CD8+/Foxp3+CD25+ Ratio. Br. J. Dermatol. 2015, 172, 64–73. [Google Scholar] [CrossRef]
- Silva-Santos, B.; Serre, K.; Norell, H. Γδ T Cells in Cancer. Nat. Rev. Immunol. 2015, 15, 683–691. [Google Scholar] [CrossRef]
- Bailey, S.R.; Nelson, M.H.; Himes, R.A.; Li, Z.; Mehrotra, S.; Paulos, C.M. Th17 Cells in Cancer: The Ultimate Identity Crisis. Front. Immunol. 2014, 5, 276. [Google Scholar] [CrossRef] [PubMed]
- Asadzadeh, Z.; Mohammadi, H.; Safarzadeh, E.; Hemmatzadeh, M.; Mahdian-shakib, A.; Jadidi-Niaragh, F.; Azizi, G.; Baradaran, B. The Paradox of Th17 Cell Functions in Tumor Immunity. Cell Immunol. 2017, 322, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guo, J.; Cai, Z.; Li, B.; Sun, L.; Shen, Y.; Wang, S.; Wang, Z.; Wang, Z.; Wang, Y.; et al. Th9 Cell Differentiation and Its Dual Effects in Tumor Development. Front. Immunol. 2020, 11, 1026. [Google Scholar] [CrossRef] [PubMed]
- Ferrarini, M.; Ferrero, E.; Dagna, L.; Poggi, A.; Zocchi, M.R. Human Γδ T Cells: A Nonredundant System in the Immune-Surveillance against Cancer. Trends Immunol. 2002, 23, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Nussbaumer, O.; Koslowski, M. The Emerging Role of Γδ T Cells in Cancer Immunotherapy. Immunooncol. Technol. 2019, 1, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Mensurado, S.; Blanco-Domínguez, R.; Silva-Santos, B. The Emerging Roles of Γδ T Cells in Cancer Immunotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Silva-Santos, B.; Mensurado, S.; Coffelt, S.B. Γδ T Cells: Pleiotropic Immune Effectors with Therapeutic Potential in Cancer. Nat. Rev. Cancer 2019, 19, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Chabab, G.; Barjon, C.; Bonnefoy, N.; Lafont, V. Pro-Tumor Γδ T Cells in Human Cancer: Polarization, Mechanisms of Action, and Implications for Therapy. Front. Immunol. 2020, 11, 2186. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Restifo, N.P. TH17 Cells in Tumour Immunity and Immunotherapy. Nat. Rev. Immunol. 2010, 10, 248–256. [Google Scholar] [CrossRef]
- Nardinocchi, L.; Sonego, G.; Passarelli, F.; von Volkmann, K. Interleukin-17 and Interleukin-22 Promote Tumor Progression in Human Nonmelanoma Skin Cancer. Eur. J. Immunol. 2015, 45, 922–931. [Google Scholar] [CrossRef]
- He, D.; Li, H.; Yusuf, N.; Elmets, C.A.; Athar, M.; Katiyar, S.K.; Xu, H. IL-17 Mediated Inflammation Promotes Tumor Growth and Progression in the Skin. PLoS ONE 2012, 7, e32126. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yi, T.; Zhang, W.; Yu, H.; Pardoll, D.M. IL-17 Enhances Tumor Development in Carcinogen-Induced Skin Cancer. Cancer Res. 2010, 70, 10112–10120. [Google Scholar] [CrossRef] [PubMed]
- Salazar, Y.; Zheng, X.; Brunn, D.; Raifer, H.; Picard, F.; Zhang, Y.; Winter, H.; Guenther, S.; Weigert, A.; Weigmann, B.; et al. Microenvironmental Th9 and Th17 Lymphocytes Induce Metastatic Spreading in Lung Cancer. J. Clin. Investig. 2020, 130, 3560–3575. [Google Scholar] [CrossRef] [PubMed]
- Purwar, R.; Schlapbach, C.; Xiao, S.; Kang, H.S.; Elyaman, W.; Jiang, X.; Jetten, A.M.; Khoury, S.J.; Fuhlbrigge, R.C.; Kuchroo, V.K.; et al. Robust Tumor Immunity to Melanoma Mediated by Interleukin-9–Producing T Cells. Nat. Med. 2012, 18, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Kilgour, J.M.; Jia, J.L.; Sarin, K.Y. Review of the Molecular Genetics of Basal Cell Carcinoma; Inherited Susceptibility, Somatic Mutations, and Targeted Therapeutics. Cancers 2021, 13, 3870. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Wirth, L.J.; Flaherty, K.; Lawrence, D.P.; Demehri, S.; Kraft, S.; Foreman, R.; Clark, J.R.; Cohen, J.V.; Kim, Y.; et al. Immune Checkpoint Inhibition (ICI) in Advanced Cutaneous Squamous Cell Carcinoma (CSCC): Clinical Response and Correlative Biomarker Analysis. J. Clin. Oncol. 2018, 36, 9564. [Google Scholar] [CrossRef]
- Lipson, E.J.; Lilo, M.T.; Ogurtsova, A.; Esandrio, J.; Xu, H.; Brothers, P.; Schollenberger, M.; Sharfman, W.H.; Taube, J.M. Basal Cell Carcinoma: PD-L1/PD-1 Checkpoint Expression and Tumor Regression after PD-1 Blockade. J. Immunother. Cancer 2017, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Ligtenberg, K.G.; Hu, J.K.; Damsky, W.; Olino, K.; Kluger, H.; Clune, J.; Cowper, S.E.; Panse, G.; Leventhal, J.; Weiss, S.A. Neoadjuvant Anti–Programmed Cell Death 1 Therapy for Locally Advanced Basal Cell Carcinoma in Treatment-Naive Patients: A Case Series. JAAD Case Rep. 2020, 6, 628–633. [Google Scholar] [CrossRef]
- Basset-Seguin, N.; Maubec, E. Recent Advanced in the Treatment of Advanced SCC Tumors. Cancers 2022, 14, 550. [Google Scholar] [CrossRef]
- Chen, O.M.; Kim, K.; Steele, C.; Wilmas, K.M.; Aboul-Fettouh, N.; Burns, C.; Doan, H.Q.; Silapunt, S.; Migden, M.R. Advances in Management and Therapeutics of Cutaneous Basal Cell Carcinoma. Cancers 2022, 14, 3720. [Google Scholar] [CrossRef]
- Potestio, L.; Scalvenzi, M.; Lallas, A.; Martora, F.; Guerriero, L.; Fornaro, L.; Marano, L.; Villani, A. Efficacy and Safety of Cemiplimab for the Management of Non-Melanoma Skin Cancer: A Drug Safety Evaluation. Cancers 2024, 16, 1732. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.P. Autoimmuno-Anti-Tumor Immunity—Understanding the Immune Responses against “Self” and “Altered-Self”. Front. Immunol. 2014, 5, 123574. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; et al. Type, Density, and Location of Immune Cells within Human Colorectal Tumors Predict Clinical Outcome. Science 2006, 313, 1960–1964. [Google Scholar] [CrossRef] [PubMed]
- Bottomley, M.J.; Thomson, J.; Harwood, C.; Leigh, I. The Role of the Immune System in Cutaneous Squamous Cell Carcinoma. Int. J. Mol. Sci. 2019, 20, 2009. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fujita, H.; Mitsui, H.; Yanofsky, V.R.; Fuentes-Duculan, J.; Pettersen, J.S.; Suárez-Fariñas, M.; Gonzalez, J.; Wang, C.Q.F.; Krueger, J.G.; et al. Increased Tc22 and Treg/CD8 Ratio Contribute to Aggressive Growth of Transplant Associated Squamous Cell Carcinoma. PLoS ONE 2013, 8, e62154. [Google Scholar] [CrossRef] [PubMed]
- Preston, C.C.; Maurer, M.J.; Oberg, A.L.; Visscher, D.W.; Kalli, K.R.; Hartmann, L.C.; Goode, E.L.; Knutson, K.L. The Ratios of CD8+ T Cells to CD4+CD25+ FOXP3+ and FOXP3- T Cells Correlate with Poor Clinical Outcome in Human Serous Ovarian Cancer. PLoS ONE 2013, 8, e95063. [Google Scholar] [CrossRef] [PubMed]
- Corthay, A. Does the Immune System Naturally Protect against Cancer? Front. Immunol. 2014, 5, 197. [Google Scholar] [CrossRef] [PubMed]
- Wheless, L.; Jacks, S.; Mooneyham Potter, K.A.; Leach, B.C.; Cook, J. Skin Cancer in Organ Transplant Recipients: More than the Immune System. J. Am. Acad. Dermatol. 2014, 71, 359–365. [Google Scholar] [CrossRef]
- Lanz, J.; Bouwes Bavinck, J.N.; Westhuis, M.; Quint, K.D.; Harwood, C.A.; Nasir, S.; Van-De-Velde, V.; Proby, C.M.; Ferrándiz, C.; Genders, R.E.; et al. Aggressive Squamous Cell Carcinoma in Organ Transplant Recipients. JAMA Dermatol. 2019, 155, 66–71. [Google Scholar] [CrossRef]
- Collins, L.; Asfour, L.; Stephany, M.; Lear, J.T.; Stasko, T. Management of Non-Melanoma Skin Cancer in Transplant Recipients. Clin. Oncol. 2019, 31, 779–788. [Google Scholar] [CrossRef]
- van Baar, M.L.M.; Guminski, A.D.; Ferguson, P.M.; Martin, L.K. Pembrolizumab for Cutaneous Squamous Cell Carcinoma: Report of a Case of Inoperable Squamous Cell Carcinoma with Complete Response to Pembrolizumab Complicated by Granulomatous Inflammation. JAAD Case Rep. 2019, 5, 491–494. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, V.; Salvini, C.; Chiarugi, A.; Paglierani, M.; Maio, V.; Nicoletti, P.; Santucci, M.; Carli, P.; Massi, D. In Vivo Characterization of the Inflammatory Infiltrate and Apoptotic Status in Imiquimod-Treated Basal Cell Carcinoma. Int. J. Dermatol. 2009, 48, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Jameson, S.C.; Masopust, D. Understanding Subset Diversity in T Cell Memory. Immunity 2018, 48, 214–226. [Google Scholar] [CrossRef]
- Sallusto, F.; Geginat, J.; Lanzavecchia, A. Central Memory and Effector Memory T Cell Subsets: Function, Generation, and Maintenance. Annu. Rev. Immunol. 2004, 22, 745–763. [Google Scholar] [CrossRef] [PubMed]
- Gocher, A.M.; Workman, C.J.; Vignali, D.A.A. Interferon-γ: Teammate or Opponent in the Tumour Microenvironment? Nat. Rev. Immunol. 2022, 22, 158–172. [Google Scholar] [CrossRef]
- Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front. Immunol. 2018, 9, 847. [Google Scholar] [CrossRef] [PubMed]
- Belai, E.B.; de Oliveira, C.E.; Gasparoto, T.H.; Ramos, R.N.; Torres, S.A.; Garlet, G.P.; Cavassani, K.A.; Silva, J.S.; Campanelli, A.P. PD-1 Blockage Delays Murine Squamous Cell Carcinoma Development. Carcinogenesis 2014, 35, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Borsetto, D.; Tomasoni, M.; Payne, K.; Polesel, J.; Deganello, A.; Bossi, P.; Tysome, J.R.; Masterson, L.; Tirelli, G.; Tofanelli, M.; et al. Prognostic Significance of Cd4+ and Cd8+ Tumor-Infiltrating Lymphocytes in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. Cancers 2021, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- Ohue, Y.; Nishikawa, H. Regulatory T (Treg) Cells in Cancer: Can Treg Cells Be a New Therapeutic Target? Cancer Sci. 2019, 110, 2080–2089. [Google Scholar] [CrossRef]
- Ramos, R.N.; Oliveira, C.E.; Gasparoto, T.H.; Malaspina, T.S.d.S.; Belai, E.B.; Cavassani, K.A.; Garlet, G.P.; da Silva, J.S.; Campanelli, A.P. Cd25+ T Cell Depletion Impairs Murine Squamous Cell Carcinoma Development via Modulation of Antitumor Immune Responses. Carcinogenesis 2012, 33, 902–909. [Google Scholar] [CrossRef]
- Castillo-González, R.; Cibrian, D.; Sánchez-Madrid, F. Dissecting the Complexity of Γδ T-Cell Subsets in Skin Homeostasis, Inflammation, and Malignancy. J. Allergy Clin. Immunol. 2021, 147, 2030–2042. [Google Scholar] [CrossRef]
- Raverdeau, M.; Cunningham, S.P.; Harmon, C.; Lynch, L. Γδ T Cells in Cancer: A Small Population of Lymphocytes with Big Implications. Clin. Trans. Immunol. 2019, 8, e01080. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, G.; Zhang, J.; Wu, X.; Chen, X. The Dual Roles of Human Γδ T Cells: Anti-Tumor or Tumor-Promoting. Front. Immunol. 2021, 11, 619954. [Google Scholar] [CrossRef]
- Lai, C.; Coltart, G.; Shapanis, A.; Healy, C.; Alabdulkareem, A.; Selvendran, S.; Theaker, J.; Sommerlad, M.; Rose-Zerilli, M.; Al-Shamkhani, A.; et al. CD8+CD103+ Tissue-Resident Memory T Cells Convey Reduced Protective Immunity in Cutaneous Squamous Cell Carcinoma. J. Immunother. Cancer 2021, 9, e001807. [Google Scholar] [CrossRef]
- Watanabe, R.; Gehad, A.; Yang, C.; Scott, L.L.; Teague, J.E.; Schlapbach, C.; Elco, C.P.; Huang, V.; Matos, T.R.; Kupper, T.S.; et al. Human Skin Is Protected by Four Functionally and Phenotypically Discrete Populations of Resident and Recirculating Memory T Cells. Sci. Transl. Med. 2015, 7, 279ra39. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Chong, B.; Mirchandani, N.; Brinster, N.K.; Yamanaka, K.; Dowgiert, R.K.; Kupper, T.S. The Vast Majority of CLA+ T Cells Are Resident in Normal Skin. J. Immunol. 2006, 176, 4431–4439. [Google Scholar] [CrossRef]
- Clark, R.A.; Watanabe, R.; Teague, J.E.; Schlapbach, C.; Tawa, M.C.; Adams, N.; Dorosario, A.A.; Chaney, K.S.; Cutler, C.S.; Leboeuf, N.R.; et al. Skin Effector Memory T Cells Do Not Recirculate and Provide Immune Protection in Alemtuzumab-Treated CTCL Patients. Sci. Transl. Med. 2012, 8, 117ra7. [Google Scholar] [CrossRef]
- Duhen, T.; Duhen, R.; Montler, R.; Moses, J.; Moudgil, T.; De Miranda, N.F.; Goodall, C.P.; Blair, T.C.; Fox, B.A.; McDermott, J.E.; et al. Co-Expression of CD39 and CD103 Identifies Tumor-Reactive CD8 T Cells in Human Solid Tumors. Nat. Commun. 2018, 9, 2724. [Google Scholar] [CrossRef]
- Li, H.; van der Leun, A.M.; Yofe, I.; Lubling, Y.; Gelbard-Solodkin, D.; van Akkooi, A.C.J.; van den Braber, M.; Rozeman, E.A.; Haanen, J.B.A.G.; Blank, C.U.; et al. Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma. Cell 2019, 176, 775–789.e18. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Elements of Cancer Immunity and the Cancer-Immune Set Point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Yost, K.E.; Satpathy, A.T.; Wells, D.K.; Qi, Y.; Wang, C.; Kageyama, R.; McNamara, K.L.; Granja, J.M.; Sarin, K.Y.; Brown, R.A.; et al. Clonal Replacement of Tumor-Specific T Cells Following PD-1 Blockade. Nat. Med. 2019, 25, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Gehad, A.; Teague, J.E.; Matos, T.R.; Huang, V.; Yang, C.; Watanabe, R.; O’Malley, J.T.; Trimble, C.L.; Kupper, T.S.; Clark, R.A. A Primary Role for Human Central Memory Cells in Tissue Immunosurveillance. Blood Adv. 2018, 2, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.A.; Bevan, M.J. Effector and Memory CTL Differentiation. Annu. Rev. Immunol. 2007, 25, 171–192. [Google Scholar] [CrossRef]
- Omland, S.H.; Hamrouni, A.; Gniadecki, R. High Diversity of the T-Cell Receptor Repertoire of Tumor-Infiltrating Lymphocytes in Basal Cell Carcinoma. Exp. Dermatol. 2017, 26, 454–456. [Google Scholar] [CrossRef]
BCC | SCC | Normal Skin | |
---|---|---|---|
n (%) | 118 (65.2%) | 33 (18.2%) | 30 (16.6%) |
Age in years, mean (SD) | 73.5 (±11.6) | 84.6 (±7.8) | 43.3 (±9.5) |
F, n (%)/M, n (%) | 55 (46.6%)/63 (53.4%) | 13 (39.4%)/20 (60.6%) | 19 (63.3%)/11 (36.7%) |
Lesion location | |||
Head/neck, n (%) | 102 (86.4%) | 27 (82%) | 1 (3.3%) |
Trunk/limbs, n (%) | 16 (13.6%) | 6 (18%) | 29 (96.7%) |
Tumor subtype | Superficial = 13 (11%) Nodular = 41 (34.7%) Micronodular/infiltrative = 49 (41.5%) Other = 15 (12.7%) | Bowen = 5 (15.2%) Well differentiated = 14 (42.4%) Moderately/poorly differentiated = 9 (27.3%) Other = 5 (15.2%) |
BCC (n = 111) | SCC (n = 33) | NS (n = 29) | p-Value † | |
---|---|---|---|---|
CD3+CD45RO+ %, median (range) | 98.9 (92.5–99.8) | 98.8 (95.7–99.8) | 93.7 (83.4–96.8) | BCC vs. NS, p < 0.001 *; SCC vs. NS, p < 0.001 * |
CD4+ %, median (range) | 57.0 (29.0–72.0) | 55.0 (33.0–69.0) | 58.0 (22.0–72.0) | BCC vs. SCC vs. NS, ns |
CD8+ %, median (range) | 22.0 (5.0–47.0) | 25.0 (7.0–46.0) | 23.0 (8.0–65.0) | BCC vs. SCC vs. NS, ns |
CD4+/CD8+ ratio, median (range) | 2.5 (0.6–14.3) | 2.2 (0.8–10.3) | 2.5 (0.3–8.6) | BCC vs. SCC vs. NS, ns |
CD4+CD45RO+ %, median (range) | 98.8 (47.7–99.9) | 98.8 (95.8–99.9) | 94.6 (87.9–96.8) | BCC vs. NS, p < 0.001 *; SCC vs. NS, p < 0.001 * |
CD8+IFNγ+ Cells %, median (range) | 52.3 (32.4–73.9) | 56.5 (33.4–73.7) | 32.1 (21.5–43.1) | BCC vs. NS, p < 0.001 *; SCC vs. NS, p < 0.001 * |
γδ T Cells %, median (range) | 1.0 (0.0–4.0) | 1.0 (0.0–3.0) | 2.0 (1.0–5.0) | BCC vs. NS, p = 0.002 *; SCC vs. NS, p = 0.001 * |
BCC (n = 111) | SCC (n = 33) | NS (n = 29) | p-Value † | |
---|---|---|---|---|
Th1 Cells %, median (range) | 32.6 (15.1–48.2) | 33.4 (19.4–49.7) | 21.2 (9.3–37.8) | BCC vs. NS, p < 0.001 *; SCC vs. NS, p < 0.001 * |
Th2 Cells %, median (range) | 8.3 (2.4–15.6) | 7.3 (3.7–13.1) | 19.2 (9.4—30.9) | BCC vs. NS, p < 0.001 *; SCC vs. NS, p < 0.001 * |
Th1/Th2 ratio, median (range) | 3.7 (1.7–16.0) | 4.6 (2.4–10.4) | 1.1 (0.4–2.1) | BCC vs. NS, p < 0.001 *; SCC vs. NS, p < 0.001 * |
Treg Cells %, median (range) | 40.9 (28.3–54.0) | 42.1 (26.8–56.7) | 40.2 (14.0–56.3) | BCC vs. SCC vs. NS, ns |
Th17 Cells %, median (range) | 18.5 (1.9–57.9) | 17.8 (3.5–55.0) | 13.2 (4.1–31.8) | BCC vs. NS, p = 0.001 *; SCC vs. NS, p = 0.007 * |
Th17/Treg %, median (range) | 0.5 (0.1–1.3) | 0.5 (0.1–1.3) | 0.3 (0.2–0.7) | BCC vs. NS, p = 0.005 *. SCC vs. NS, ns |
CD8/Treg %, median (range) | 2.4 (0.4–11.3) | 2.3 (0.4–10.5) | 3.4 (0.8–32.5) | BCC vs. NS, p = 0.008 *; SCC vs. NS, p = 0.015 * |
BCC (n = 12) | SCC (n = 10) | NS (n = 10) | p Value † | |
---|---|---|---|---|
CD3+, median (range) | 2.2 (1.6–2.3) | 2.2 (1.7–2.7) | 0.6 (0.4–1.1) | BCC vs. NS p < 0.001 *; SCC vs. NS p < 0.001 * |
CD4+, median (range) | 2.0 (1.5–2.1) | 2.0 (1.7–2.4) | 0.6 (0.3–1.0) | BCC vs. NS p < 0.001 *; SCC vs. NS p < 0.001 * |
CD8+, median (range) | 1.7 (1.1–2.0) | 1.7 (0.9–2.5) | 0.3 (0.1–0.5) | BCC vs. NS p < 0.001 *; SCC vs. NS p < 0.001 * |
FoxP3+, median (range) | 1.0 (0.3–1.8) | 1.3 (0.8–1.7) | 0.1 (0.1–0.4) | BCC vs. NS p < 0.001 *; SCC vs. NS p < 0.001 * |
CD8+/FoxP3+ Ratio (range) | 1.6 (1.1–3.4) | 1.3 (0.9–2.3) | 1.5 (1.0–3.5) | BCC vs. SCC vs. NS, ns |
CD3+ P, median (range) | 2.9 (2.1–3.0) | 2.8 (2.0–3.0) | - | - |
CD3+ In, median (range) | 0.3 (0.0–0.7) | 0.5 (0.0–2.5) | - | - |
CD4+ P, median (range) | 2.7 (2.1–3.0) | 2.7 (2.0–2.9) | - | - |
CD4+ In, median (range) | 0.3 (0.0–0.7) | 0.4 (0.0–1.5) | - | - |
CD8+ P, median (range) | 2.3 (1.6–2.7) | 2.3 (1.3–2.6) | - | - |
CD8+ In, median (range) | 0.0 (0.0–0.5) | 0.3 (0.0–2.3) | - | - |
FoxP3+ P, median (range) | 1.4 (0.4–2.5) | 1.7 (1.1–2.3) | - | - |
FoxP3+ In, median (range) | 0.0 (0.0–0.3) | 0.0 (0.0–1.0) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, D.; Neves, M.; Silva, D.; Silvestre, A.R.; Nunes, P.B.; Arrobas, F.; Ribot, J.C.; Ferreira, F.; Moita, L.F.; Soares-de-Almeida, L.; et al. Tumor-Infiltrating T Cells in Skin Basal Cell Carcinomas and Squamous Cell Carcinomas: Global Th1 Preponderance with Th17 Enrichment—A Cross-Sectional Study. Cells 2024, 13, 964. https://doi.org/10.3390/cells13110964
Cunha D, Neves M, Silva D, Silvestre AR, Nunes PB, Arrobas F, Ribot JC, Ferreira F, Moita LF, Soares-de-Almeida L, et al. Tumor-Infiltrating T Cells in Skin Basal Cell Carcinomas and Squamous Cell Carcinomas: Global Th1 Preponderance with Th17 Enrichment—A Cross-Sectional Study. Cells. 2024; 13(11):964. https://doi.org/10.3390/cells13110964
Chicago/Turabian StyleCunha, Daniela, Marco Neves, Daniela Silva, Ana Rita Silvestre, Paula Borralho Nunes, Fernando Arrobas, Julie C. Ribot, Fernando Ferreira, Luís F. Moita, Luís Soares-de-Almeida, and et al. 2024. "Tumor-Infiltrating T Cells in Skin Basal Cell Carcinomas and Squamous Cell Carcinomas: Global Th1 Preponderance with Th17 Enrichment—A Cross-Sectional Study" Cells 13, no. 11: 964. https://doi.org/10.3390/cells13110964
APA StyleCunha, D., Neves, M., Silva, D., Silvestre, A. R., Nunes, P. B., Arrobas, F., Ribot, J. C., Ferreira, F., Moita, L. F., Soares-de-Almeida, L., Silva, J. M., Filipe, P., & Ferreira, J. (2024). Tumor-Infiltrating T Cells in Skin Basal Cell Carcinomas and Squamous Cell Carcinomas: Global Th1 Preponderance with Th17 Enrichment—A Cross-Sectional Study. Cells, 13(11), 964. https://doi.org/10.3390/cells13110964