MATR3’s Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases
Abstract
:1. Introduction
2. MATR3’s Role in DNA-Related Processes
Interactor | Ref | Interactor | Ref | Interactor | Ref |
---|---|---|---|---|---|
AGO1 | [51] | RPL10A | [12,52] | RPS12 | [12] |
AGO2 | [51] | RPL11 | [12] | RPS13 | [52,53] |
ALYREF | [53] | RPL13/A | [52] | RPS14 | [12] |
BAZ1A | [33] | RPL14 | [52] | RPS15A | [33] |
CHD3 | [33] | RPL15 | [52] | RPS16 | [12] |
CTCF | [10] | RPL17 | [12] | RPS18 | [12,53] |
DDX17 | [54] | RPL18 | [12,52] | RPS2 | [52] |
DUX4 | [55] | RPL18A | [12,33] | RPS23 | [12] |
eEF1a1 | [12] | RPL19 | [12] | RPS27 | [12] |
EFTU | [12] | RPL22 | [12] | RPS3 | [12] |
EIF3C | [52] | RPL23 | [12] | RPS3A | [12,52] |
EIF3CL | [12] | RPL23A | [12] | RPS4X | [12,52] |
EIF3D | [12] | RPL26L1 | [52] | RPS6 | [52] |
EIF3F | [12] | RPL27 | [12,52,53] | RPS7 | [12] |
EIF4A1 | [12] | RPL28 | [12,52] | RPS8 | [12] |
EIF4A3 | [12] | RPL3 | [52] | RPS9 | [12,52] |
ESCO2 | [52,53] | RPL30 | [12] | RRBP1 | [52] |
EXOSC3 | [54] | RPL32 | [12] | RRP12 | [53] |
GARS | [12] | RPL36 | [12] | RSL1D1 | [52] |
H2AX | [42] | RPL38 | [12] | RUVBL1/2 | [39] |
Ku70, Ku80 | [41] | RPL4 | [52] | SAFB | [33,52] |
Neat1 | [21] | RPL5 | [12] | SARNP | [53] |
NONO | [12,41] | RPL6 | [12,52] | SFPQ | [39,41,53] |
PINCR | [56] | RPL7 | [12,52] | SMARCA4 | [33] |
PIT1 | [13] | RPL7A | [52] | SMC3 | [10] |
POLR2A | [40] | RPL8 | [52] | SYDC | [12] |
pre-miR-138-2 | [57] | RPL9 | [12] | SYIC | [12] |
PTBP | [12,15,39,53] | RPLP0 | [53] | SYLC | [12] |
RAD21 | [10] | RPLP2 | [12] | Xist | [36,37] |
RAD50 | [39] | RPS11 | [52,53] | ZAP (ZC3HAV1) | [52,54] |
RPL10 | [12,33,52] |
3. MATR3’s Role in RNA-Related Processes
4. Regulation of MATR3 Degradation
5. MATR3’s Role in the Regulation of Development and Differentiation
6. MATR3 in the Context of Disease
6.1. Matrin-3 Mutations in Amyotrophic Lateral Sclerosis
Associated Disease * | HGVS.c (NM_199189.3) | HGVS.p (NP_954659.1) | CADD GRCh37-v1.7 | CADD GRCh38-v1.7 | Ref | ||
---|---|---|---|---|---|---|---|
Position (GRCh37) | CADD Score (PHRED) | Position (GRCh38) | CADD Score (PHRED) | ||||
ALS | c.151C>T | p.(Arg51Cys) | 138643255 | 35 | 139307566 | 34 | [72] |
ALS | c.182G>A | p.(Ser61Asn) | 138643286 | 33 | 139307597 | 33 | [72] |
ALS | c.196C>A | p.(Gln66Lys) | 138643300 | 34 | 139307611 | 29.9 | [77] |
ALS | c.214G>A | p.(Ala72Thr) | 138643318 | 31 | 139307629 | 29.4 | [73] |
ALS | c.254C>G | p.(Ser85Cys) | 138643358 | 35 | 139307669 | 35 | [24] |
ALS | c.296C>G | p.(Ser99Cys) | 138643400 | 35 | 139307711 | 35 | [72] |
ALS | c.393C>A | p.(Asp131Glu) | 138643497 | 27 | 139307808 | 32 | [72] |
ALS | c.439A>T | p.(Arg147Trp) | 138643543 | 35 | 139307854 | 35 | [74] |
ALS | c.457G>T | p.(Gly153Cys) | 138643561 | 35 | 139307872 | 35 | [77] |
ALS | c.460C>T | p.(Pro154Ser) | 138643564 | 27.8 | 139307875 | 25.1 | [24] |
ALS | c.545G>A | p.(Arg182Lys) | 138643649 | 34 | 139307960 | 34 | [72] |
ALS | c.561T>G | p.(Asp187Glu) | 138643665 | 28.6 | 139307976 | 32 | [72] |
ALS | c.883A>G | p.(Ile295Val) | 138643987 | 34 | 139308298 | 34 | [72] |
ALS | c.926A>G | p.(His309Arg) | 138650377 | 28.2 | 139314688 | 28.8 | [72] |
ALS | c.949C>T | p.(Arg317Cys) | 138650400 | 34 | 139314711 | 34 | [72] |
ALS | c.998A>G | p.(Asn333Ser) | 138651409 | 19.48 | 139315720 | 18.05 | [72] |
ALS | c.1102C>A | p.(Pro368Thr) | 138651850 | 24.7 | 139316161 | 24.2 | [72] |
ALS | c.1175G>T | p.(Gly392Val) | 138652787 | 25.2 | 139317098 | 25.6 | [72] |
ALS | c.1180G>A | p.(Val394Met) | 138652792 | 22.8 | 139317103 | 22.5 | [75] |
ALS | c.1282C>A | p.(His428Asn) | 138653384 | 28.2 | 139317695 | 25.1 | [72] |
NDD | c.1306G>A | p.(Glu436Lys) | 138653408 | 28.7 | 139317719 | 31 | [25] |
NDD | c.1643T>C | p.(Met548Thr) | 138657627 | 25.5 | 139321938 | 25.7 | [16] |
ALS | c.1786T>A | p.(Ser596Thr) | 138658294 | 20.2 | 139322605 | 18.97 | [72] |
ALS | c.1829C>T | p.(Ser610Phe) | 138658337 | 28.6 | 139322648 | 27 | [76] |
ALS | c.1837G>C | p.(Asp613His) | 138658345 | 26.6 | 139322656 | 25.8 | [72] |
ALS | c.1864A>G | p.(Thr622Ala) | 138658372 | 0.189 | 139322683 | 1.475 | [24] |
ALS | c.1867G>A | p.(Glu623Lys) | 138658375 | 22.3 | 139322686 | 22.8 | [72] |
ALS | c.1879C>G | p.(Gln627Glu) | 138658387 | 20.6 | 139322698 | 18.76 | [72] |
ALS | c.1921G>C | p.(Asp641His) | 138658429 | 23.3 | 139322740 | 23 | [72] |
ALS | c.1948A>C | p.(Met650Leu) | 138658456 | 18.49 | 139322767 | 17.49 | [72] |
ALS | c.1991A>C | p.(Glu664Ala) | 138658499 | 24.3 | 139322810 | 23.6 | [77] |
ALS | c.2062G>T | p.(Ala688Ser) | 138658570 | 7.085 | 139322881 | 8.125 | [72] |
ALS | c.2075A>G | p.(Lys692Arg) | 138658583 | 22.3 | 139322894 | 23.4 | [72] |
ALS | c.2120C>T | p.(Ser707Leu) | 138658628 | 22.2 | 139322939 | 18.97 | [77] |
ALS | c.2135A>G | p.(Lys712Arg) | 138658643 | 22.1 | 139322954 | 24 | [72] |
ALS | c.2203A>G | p.(Ile735Val) | 138661183 | 18.45 | 139325494 | 18.66 | [72] |
ALS | c.2219A>G | p.(Asn740Ser) | 138661199 | 18.61 | 139325510 | 16.56 | [72] |
ALS | c.2234C>T | p.(Ala745Val) | 138661214 | 21.8 | 139325525 | 21 | [72] |
ALS | c.2251G>A | p.(Ala751Thr) | 138661231 | 19.59 | 139325542 | 17.87 | [72] |
ALS | c.2275A>G | p.(Ser759Gly) | 138661255 | 22.3 | 139325566 | 21.8 | [72] |
ALS | c.2360A>G | p.(Asn787Ser) | 138661340 | 21.3 | 139325651 | 20.7 | [77] |
ALS | c.2504A>G | p.(Asn835Ser) | 138665044 | 17.22 | 139329355 | 17.24 | [72] |
6.2. Matrin-3 Mutations in Neurodevelopmental Diseases
6.3. Matrin-3 Dysregulation in Other Diseases
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nakayasu, H.; Berezney, R. Nuclear Matrins: Identification of the Major Nuclear Matrix Proteins. Proc. Natl. Acad. Sci. USA 1991, 88, 10312–10316. [Google Scholar] [CrossRef] [PubMed]
- Belgrader, P.; Dey, R.; Berezney, R. Molecular Cloning of Matrin 3. A 125-Kilodalton Protein of the Nuclear Matrix Contains an Extensive Acidic Domain. J. Biol. Chem. 1991, 266, 9893–9899. [Google Scholar] [CrossRef] [PubMed]
- Hibino, Y.; Nakamura, K.; Asano, S.; Sugano, N. Affinity of a Highly Repetitive Bent DNA for Nuclear Scaffold Proteins from Rat Liver. Biochem. Biophys. Res. Commun. 1992, 184, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Hibino, Y.; Nakamura, K.; Tsukada, S.; Sugano, N. Purification and Characterization of Nuclear Scaffold Proteins Which Bind to a Highly Repetitive Bent DNA from Rat Liver. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 1993, 1174, 162–170. [Google Scholar] [CrossRef]
- Hibino, Y.; Ohzeki, H.; Hirose, N.; Sugano, N. Involvement of Phosphorylation in Binding of Nuclear Scaffold Proteins from Rat Liver to a Highly Repetitive DNA Component. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 1998, 1396, 88–96. [Google Scholar] [CrossRef]
- Hibino, Y.; Ohzeki, H.; Sugano, N.; Hiraga, K. Transcription Modulation by a Rat Nuclear Scaffold Protein, P130, and a Rat Highly Repetitive DNA Component or Various Types of Animal and Plant Matrix or Scaffold Attachment Regions. Biochem. Biophys. Res. Commun. 2000, 279, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Hibino, Y.; Usui, T.; Morita, Y.; Hirose, N.; Okazaki, M.; Sugano, N.; Hiraga, K. Molecular Properties and Intracellular Localization of Rat Liver Nuclear Scaffold Protein P130. Biochim. Biophys. Acta 2006, 1759, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Hisada-Ishii, S.; Ebihara, M.; Kobayashi, N.; Kitagawa, Y. Bipartite Nuclear Localization Signal of Matrin 3 Is Essential for Vertebrate Cells. Biochem. Biophys. Res. Commun. 2007, 354, 72–76. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, X.; Gao, Z.; Ma, X.; Wang, Q.; Xu, X.; Cai, X.; Zhang, Y.; Zhang, Z.; Wei, G.; et al. MATR3 -antisense LINE1 RNA Meshwork Scaffolds Higher-order Chromatin Organization. EMBO Rep. 2023, 24, e57550. [Google Scholar] [CrossRef]
- Cha, H.J.; Uyan, Ö.; Kai, Y.; Liu, T.; Zhu, Q.; Tothova, Z.; Botten, G.A.; Xu, J.; Yuan, G.-C.; Dekker, J.; et al. Inner Nuclear Protein Matrin-3 Coordinates Cell Differentiation by Stabilizing Chromatin Architecture. Nat. Commun. 2021, 12, 6241. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, Q.; Kai, Y.; Bingham, T.; Wang, S.; Cha, H.J.; Mehta, S.; Schlaeger, T.M.; Yuan, G.-C.; Orkin, S.H. Matrin3 Mediates Differentiation through Stabilizing Chromatin Loop-Domain Interactions and YY1 Mediated Enhancer-Promoter Interactions. Nat. Commun. 2024, 15, 1274. [Google Scholar] [CrossRef] [PubMed]
- Pollini, D.; Loffredo, R.; Maniscalco, F.; Cardano, M.; Micaelli, M.; Bonomo, I.; Licata, N.V.; Peroni, D.; Tomaszewska, W.; Rossi, A.; et al. Multilayer and MATR3-Dependent Regulation of mRNAs Maintains Pluripotency in Human Induced Pluripotent Stem Cells. iScience 2021, 24, 102197. [Google Scholar] [CrossRef]
- Skowronska-Krawczyk, D.; Ma, Q.; Schwartz, M.; Scully, K.; Li, W.; Liu, Z.; Taylor, H.; Tollkuhn, J.; Ohgi, K.A.; Notani, D.; et al. Required Enhancer-Matrin-3 Network Interactions for a Homeodomain Transcription Program. Nature 2014, 514, 257–261. [Google Scholar] [CrossRef]
- Shi, L.; Sun, J.; Kinomura, A.; Fukuto, A.; Horikoshi, Y.; Tashiro, S. Matrin3 Promotes Homologous Recombinational Repair by Regulation of RAD51. J. Biochem. 2019, 166, 343–351. [Google Scholar] [CrossRef]
- Coelho, M.B.; Attig, J.; Bellora, N.; König, J.; Hallegger, M.; Kayikci, M.; Eyras, E.; Ule, J.; Smith, C.W. Nuclear Matrix Protein Matrin3 Regulates Alternative Splicing and Forms Overlapping Regulatory Networks with PTB. EMBO J. 2015, 34, 653–668. [Google Scholar] [CrossRef]
- Khan, M.; Chen, X.X.L.; Dias, M.; Santos, J.R.; Kour, S.; You, J.; Van Bruggen, R.; Youssef, M.M.M.; Wan, Y.; Liu, Z.; et al. MATR3 Pathogenic Variants Differentially Impair Its Cryptic Splicing Repression Function. FEBS Lett. 2024, 598, 415–436. [Google Scholar] [CrossRef] [PubMed]
- Uemura, Y.; Oshima, T.; Yamamoto, M.; Reyes, C.J.; Costa Cruz, P.H.; Shibuya, T.; Kawahara, Y. Matrin3 Binds Directly to Intronic Pyrimidine-Rich Sequences and Controls Alternative Splicing. Genes Cells 2017, 22, 785–798. [Google Scholar] [CrossRef] [PubMed]
- Attig, J.; Agostini, F.; Gooding, C.; Chakrabarti, A.M.; Singh, A.; Haberman, N.; Zagalak, J.A.; Emmett, W.; Smith, C.W.J.; Luscombe, N.M.; et al. Heteromeric RNP Assembly at LINEs Controls Lineage-Specific RNA Processing. Cell 2018, 174, 1067–1081.e17. [Google Scholar] [CrossRef]
- Muys, B.R.; Shrestha, R.L.; Anastasakis, D.G.; Pongor, L.; Li, X.L.; Grammatikakis, I.; Polash, A.; Chari, R.; Gorospe, M.; Harris, C.C.; et al. Matrin3 Regulates Mitotic Spindle Dynamics by Controlling Alternative Splicing of CDC14B. Cell Rep. 2023, 42, 112260. [Google Scholar] [CrossRef]
- Niimori-Kita, K.; Tamamaki, N.; Koizumi, D.; Niimori, D. Matrin-3 Is Essential for Fibroblast Growth Factor 2-Dependent Maintenance of Neural Stem Cells. Sci. Rep. 2018, 8, 13412. [Google Scholar] [CrossRef]
- Banerjee, A.; Vest, K.E.; Pavlath, G.K.; Corbett, A.H. Nuclear Poly(A) Binding Protein 1 (PABPN1) and Matrin3 Interact in Muscle Cells and Regulate RNA Processing. Nucleic Acids Res. 2017, 45, 10706–10725. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.M.; Miguez, R.A.; Li, X.; Ho, Y.-S.; Feldman, E.L.; Barmada, S.J. Matrin 3-Dependent Neurotoxicity Is Modified by Nucleic Acid Binding and Nucleocytoplasmic Localization. eLife 2018, 7, e35977. [Google Scholar] [CrossRef] [PubMed]
- Przygodzka, P.; Boncela, J.; Cierniewski, C.S. Matrin 3 as a Key Regulator of Endothelial Cell Survival. Exp. Cell Res. 2011, 317, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.O.; Pioro, E.P.; Boehringer, A.; Chia, R.; Feit, H.; Renton, A.E.; Pliner, H.A.; Abramzon, Y.; Marangi, G.; Winborn, B.J.; et al. Mutations in the Matrin 3 Gene Cause Familial Amyotrophic Lateral Sclerosis. Nat. Neurosci. 2014, 17, 664–666. [Google Scholar] [CrossRef] [PubMed]
- Zech, M.; Seibt, A.; Zumbaum, B.; Klee, D.; Meitinger, T.; Winkelmann, J.; Mayatepek, E.; Wagner, M.; Distelmaier, F. MATR3 Haploinsufficiency and Early-Onset Neurodegeneration. Brain 2021, 144, e72. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Jamal, M.; Zeng, X.; Lei, Y.; Xiao, D.; Wei, Z.; Zhang, C.; Zhang, X.; Pan, S.; Ding, Q.; et al. Matrin-3 Acts as a Potential Biomarker and Promotes Hepatocellular Carcinoma Progression by Interacting with Cell Cycle-Regulating Genes. Cell Cycle 2024, 23, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Nho, S.; Yoon, G.; Seo, J.; Oh, H.; Cho, S.; Kim, H.; Choi, H.; Shim, J.; Chae, J. Licochalcone-H Induces the Apoptosis of Human Oral Squamous Cell Carcinoma Cells via Regulation of Matrin-3. Oncol. Rep. 2018, 41, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, H.; Fukushima, S.; Kimura, T.; Okada, E.; Ishibashi, T.; Mizuhashi, S.; Kanemaru, H.; Kajihara, I.; Makino, K.; Miyashita, A.; et al. Matrin-3 Plays an Important Role in Cell Cycle and Apoptosis for Survival in Malignant Melanoma. J. Dermatol. Sci. 2020, 100, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.J.; Kwon, Y.; Ma, L.; Kim, J. Tumor Suppressive Function of Matrin 3 in the Basal-like Breast Cancer. Biol. Res. 2020, 53, 42. [Google Scholar] [CrossRef]
- Durślewicz, J.; Klimaszewska-Wiśniewska, A.; Jóźwicki, J.; Antosik, P.; Kozerawski, K.; Grzanka, D.; Braun, M. Prognostic Significance of MATR3 in Stage I and II Non-Small Cell Lung Cancer Patients. J. Cancer Res. Clin. Oncol. 2022, 148, 3313–3322. [Google Scholar] [CrossRef]
- Durślewicz, J.; Klimaszewska-Wiśniewska, A.; Antosik, P.; Grzanka, D. Low Expression of MATR3 Is Associated with Poor Survival in Clear Cell Renal Cell Carcinoma. Biomedicines 2023, 11, 326. [Google Scholar] [CrossRef] [PubMed]
- Narwade, N.; Patel, S.; Alam, A.; Chattopadhyay, S.; Mittal, S.; Kulkarni, A. Mapping of Scaffold/Matrix Attachment Regions in Human Genome: A Data Mining Exercise. Nucleic Acids Res. 2019, 47, 7247–7261. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, M.J.; Malyavantham, K.S.; Seifert, B.; Berezney, R. Matrin 3: Chromosomal Distribution and Protein Interactions. J. Cell. Biochem. 2009, 108, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Malyavantham, K.S.; Bhattacharya, S.; Barbeitos, M.; Mukherjee, L.; Xu, J.; Fackelmayer, F.O.; Berezney, R. Identifying Functional Neighborhoods within the Cell Nucleus: Proximity Analysis of Early S-phase Replicating Chromatin Domains to Sites of Transcription, RNA Polymerase II, HP1γ, Matrin 3 and SAF-A. J. Cell. Biochem. 2008, 105, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Fujii, H. Direct Identification of Insulator Components by Insertional Chromatin Immunoprecipitation. PLoS ONE 2011, 6, e26109. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Zhang, Q.C.; da Rocha, S.T.; Flynn, R.A.; Bharadwaj, M.; Calabrese, J.M.; Magnuson, T.; Heard, E.; Chang, H.Y. Systematic Discovery of Xist RNA Binding Proteins. Cell 2015, 161, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Pandya-Jones, A.; Markaki, Y.; Serizay, J.; Chitiashvili, T.; Mancia Leon, W.R.; Damianov, A.; Chronis, C.; Papp, B.; Chen, C.-K.; McKee, R.; et al. A Protein Assembly Mediates Xist Localization and Gene Silencing. Nature 2020, 587, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Martens, J.H.A.; Verlaan, M.; Kalkhoven, E.; Dorsman, J.C.; Zantema, A. Scaffold/Matrix Attachment Region Elements Interact with a P300—Scaffold Attachment Factor A Complex and Are Bound by Acetylated Nucleosomes. Mol. Cell. Biol. 2002, 22, 2598–2606. [Google Scholar] [CrossRef] [PubMed]
- Chi, B.; O’Connell, J.D.; Yamazaki, T.; Gangopadhyay, J.; Gygi, S.P.; Reed, R. Interactome Analyses Revealed That the U1 snRNP Machinery Overlaps Extensively with the RNAP II Machinery and Contains Multiple ALS/SMA-Causative Proteins. Sci. Rep. 2018, 8, 8755. [Google Scholar] [CrossRef]
- Chi, B.; O’Connell, J.D.; Iocolano, A.D.; Coady, J.A.; Yu, Y.; Gangopadhyay, J.; Gygi, S.P.; Reed, R. The Neurodegenerative Diseases ALS and SMA Are Linked at the Molecular Level via the ASC-1 Complex. Nucleic Acids Res. 2018, 46, 11939–11951. [Google Scholar] [CrossRef]
- Salton, M.; Lerenthal, Y.; Wang, S.-Y.; Chen, D.J.; Shiloh, Y. Involvement of Matrin 3 and SFPQ/NONO in the DNA Damage Response. Cell Cycle 2010, 9, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zou, P.; Yao, J.; Yun, D.; Bao, H.; Du, R.; Long, J.; Chen, X. Proteomic Dissection of Cell Type-Specific H2AX-Interacting Protein Complex Associated with Hepatocellular Carcinoma. J. Proteome Res. 2010, 9, 1402–1415. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, S.; Ballif, B.A.; Smogorzewska, A.; McDonald, E.R.; Hurov, K.E.; Luo, J.; Bakalarski, C.E.; Zhao, Z.; Solimini, N.; Lerenthal, Y.; et al. ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science 2007, 316, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Blasius, M.; Forment, J.V.; Thakkar, N.; Wagner, S.A.; Choudhary, C.; Jackson, S.P. A Phospho-Proteomic Screen Identifies Substrates of the Checkpoint Kinase Chk1. Genome Biol. 2011, 12, R78. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, L.; Li, Z.; Li, S.; Dynan, W.S. SFPQ•NONO and XLF Function Separately and Together to Promote DNA Double-Strand Break Repair via Canonical Nonhomologous End Joining. Nucleic Acids Res. 2017, 45, 1848–1859. [Google Scholar] [CrossRef] [PubMed]
- Salton, M.; Elkon, R.; Borodina, T.; Davydov, A.; Yaspo, M.L.; Halperin, E.; Shiloh, Y. Matrin 3 Binds and Stabilizes mRNA. PLoS ONE 2011, 6, e23882. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Cui, S.; Bian, C.; Yu, X. Uhrf2 Is Important for DNA Damage Response in Vascular Smooth Muscle Cells. Biochem. Biophys. Res. Commun. 2013, 441, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Hanaki, S.; Habara, M.; Shimada, M. UV-induced Activation of ATR Is Mediated by UHRF2. Genes. Cells 2021, 26, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, X.; Zeng, S.; Zhang, T.; Cheng, F.; Chen, R.; Duan, C. UHRF2 Promotes DNA Damage Response by Decreasing P21 via RING Finger Domain. Biotechnol. Lett. 2018, 40, 1181–1188. [Google Scholar] [CrossRef]
- Wang, Q.; Goldstein, M.; Alexander, P.; Wakeman, T.P.; Sun, T.; Feng, J.; Lou, Z.; Kastan, M.B.; Wang, X.-F. Rad17 Recruits the MRE11-RAD50-NBS1 Complex to Regulate the Cellular Response to DNA Double-Strand Breaks. EMBO J. 2014, 33, 862–877. [Google Scholar] [CrossRef]
- Höck, J.; Weinmann, L.; Ender, C.; Rüdel, S.; Kremmer, E.; Raabe, M.; Urlaub, H.; Meister, G. Proteomic and Functional Analysis of Argonaute-containing mRNA–Protein Complexes in Human Cells. EMBO Rep. 2007, 8, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Iradi, M.C.G.; Triplett, J.C.; Thomas, J.D.; Davila, R.; Crown, A.M.; Brown, H.; Lewis, J.; Swanson, M.S.; Xu, G.; Rodriguez-Lebron, E.; et al. Characterization of Gene Regulation and Protein Interaction Networks for Matrin 3 Encoding Mutations Linked to Amyotrophic Lateral Sclerosis and Myopathy. Sci. Rep. 2018, 8, 4049. [Google Scholar] [CrossRef] [PubMed]
- Boehringer, A.; Garcia-Mansfield, K.; Singh, G.; Bakkar, N.; Pirrotte, P.; Bowser, R. ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede mRNA Nuclear Export. Sci. Rep. 2017, 7, 14529. [Google Scholar] [CrossRef] [PubMed]
- Erazo, A.; Goff, S.P. Nuclear Matrix Protein Matrin 3 Is a Regulator of ZAP-Mediated Retroviral Restriction. Retrovirology 2015, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Runfola, V.; Giambruno, R.; Caronni, C.; Pannese, M.; Andolfo, A.; Gabellini, D. MATR3 Is an Endogenous Inhibitor of DUX4 in FSHD Muscular Dystrophy. Cell Rep. 2023, 42, 113120. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Gryder, B.; Woods, W.S.; Subramanian, M.; Jones, M.F.; Li, X.L.; Jenkins, L.M.; Shabalina, S.A.; Mo, M.; Dasso, M.; et al. Prosurvival Long Noncoding RNA PINCR Regulates a Subset of P53 Targets in Human Colorectal Cancer Cells by Binding to Matrin 3. eLife 2017, 6, e23244. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Treiber, T.; Meister, G.; Schratt, G. The Nuclear Matrix Protein Matr3 Regulates Processing of the Synaptic microRNA-138-5p. Neurobiol. Learn. Mem. 2019, 159, 36–45. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Kuwasako, K.; Takizawa, M.; Takahashi, M.; Tsuda, K.; Nagata, T.; Watanabe, S.; Tanaka, A.; Kobayashi, N.; Kigawa, T.; et al. 1H, 13C and 15N Resonance Assignments and Solution Structures of the Two RRM Domains of Matrin-3. Biomol. NMR Assign. 2022, 16, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Luo, E.-C.; Nathanson, J.L.; Tan, F.E.; Schwartz, J.L.; Schmok, J.C.; Shankar, A.; Markmiller, S.; Yee, B.A.; Sathe, S.; Pratt, G.A.; et al. Large-Scale Tethered Function Assays Identify Factors That Regulate mRNA Stability and Translation. Nat. Struct. Mol. Biol. 2020, 27, 989–1000. [Google Scholar] [CrossRef]
- Zhang, Z.; Carmichael, G.G. The Fate of dsRNA in the Nucleus: A P54(Nrb)-Containing Complex Mediates the Nuclear Retention of Promiscuously A-to-I Edited RNAs. Cell 2001, 106, 465–475. [Google Scholar] [CrossRef]
- Damianov, A.; Ying, Y.; Lin, C.-H.; Lee, J.-A.; Tran, D.; Vashisht, A.A.; Bahrami-Samani, E.; Xing, Y.; Martin, K.C.; Wohlschlegel, J.A.; et al. Rbfox Proteins Regulate Splicing as Part of a Large Multiprotein Complex LASR. Cell 2016, 165, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Sibley, C.R.; Blazquez, L.; Ule, J. Lessons from Non-Canonical Splicing. Nat. Rev. Genet. 2016, 17, 407–421. [Google Scholar] [CrossRef]
- Gama-Carvalho, M.; Carmo-Fonseca, M. The Rules and Roles of Nucleocytoplasmic Shuttling Proteins. FEBS Lett. 2001, 498, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Hinnebusch, A.G. eIF3: A Versatile Scaffold for Translation Initiation Complexes. Trends Biochem. Sci. 2006, 31, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Giordano, G.; Sánchez-Pérez, A.M.; Montoliu, C.; Berezney, R.; Malyavantham, K.; Costa, L.G.; Calvete, J.J.; Felipo, V. Activation of NMDA Receptors Induces Protein Kinase A-mediated Phosphorylation and Degradation of Matrin 3. Blocking These Effects Prevents NMDA-induced Neuronal Death. J. Neurochem. 2005, 94, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Alexander Valencia, C.; Ju, W.; Liu, R. Matrin 3 Is a Ca2+/Calmodulin-Binding Protein Cleaved by Caspases. Biochem. Biophys. Res. Commun. 2007, 361, 281–286. [Google Scholar] [CrossRef] [PubMed]
- De Marco, G.; Lomartire, A.; Manera, U.; Canosa, A.; Grassano, M.; Casale, F.; Fuda, G.; Salamone, P.; Rinaudo, M.T.; Colombatto, S.; et al. Effects of Intracellular Calcium Accumulation on Proteins Encoded by the Major Genes Underlying Amyotrophic Lateral Sclerosis. Sci. Rep. 2022, 12, 395. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.M.; Van Loveren, H. Matrin 3 Co-Immunoprecipitates with the Heat Shock Proteins Glucose-Regulated Protein 78 (GRP78), GRP75 and Glutathione S-Transferase π Isoform 2 (GSTπ2) in Thymoma Cells. Biochimie 2014, 101, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.M.; Wu, J.J.; Gillies, C.A.; Doctrove, Q.A.; Li, X.; Huang, H.; Tank, E.H.M.; Shakkottai, V.G.; Barmada, S. Neuronal Activity Regulates Matrin 3 Abundance and Function in a Calcium-Dependent Manner through Calpain-Mediated Cleavage and Calmodulin Binding. Proc. Natl. Acad. Sci. USA 2023, 120, e2206217120. [Google Scholar] [CrossRef]
- Kao, C.S.; Van Bruggen, R.; Kim, J.R.; Chen, X.X.L.; Chan, C.; Lee, J.; Cho, W.I.; Zhao, M.; Arndt, C.; Maksimovic, K.; et al. Selective Neuronal Degeneration in MATR3 S85C Knock-in Mouse Model of Early-Stage ALS. Nat. Commun. 2020, 11, 5304. [Google Scholar] [CrossRef]
- Quintero-Rivera, F.; Xi, Q.J.; Keppler-Noreuil, K.M.; Lee, J.H.; Higgins, A.W.; Anchan, R.M.; Roberts, A.E.; Seong, I.S.; Fan, X.; Lage, K.; et al. MATR3 Disruption in Human and Mouse Associated with Bicuspid Aortic Valve, Aortic Coarctation and Patent Ductus Arteriosus. Hum. Mol. Genet. 2015, 24, 2375–2389. [Google Scholar] [CrossRef] [PubMed]
- Project MinE ALS Sequencing Consortium Project MinE: Study Design and Pilot Analyses of a Large-Scale Whole-Genome Sequencing Study in Amyotrophic Lateral Sclerosis. Eur. J. Hum. Genet. 2018, 26, 1537–1546. [CrossRef] [PubMed]
- Lin, K.P.; Tsai, P.C.; Liao, Y.C.; Chen, W.T.; Tsai, C.P.; Soong, B.W.; Lee, Y.C. Mutational Analysis of MATR3 in Taiwanese Patients with Amyotrophic Lateral Sclerosis. Neurobiol. Aging 2015, 36, 2005.e1–2005.e4. [Google Scholar] [CrossRef] [PubMed]
- Origone, P.; Verdiani, S.; Bandettini Di Poggio, M.; Zuccarino, R.; Vignolo, M.; Caponnetto, C.; Mandich, P. A Novel Arg147Trp MATR3 Missense Mutation in a Slowly Progressive ALS Italian Patient. Amyotroph Lateral Scler Front. Degener 2015, 16, 530–531. [Google Scholar] [CrossRef] [PubMed]
- Leblond, C.S.; Gan-Or, Z.; Spiegelman, D.; Laurent, S.B.; Szuto, A.; Hodgkinson, A.; Dionne-Laporte, A.; Provencher, P.; Carvalho, M.; Orru, S.; et al. Replication Study of MATR3 in Familial and Sporadic Amyotrophic Lateral Sclerosis. Neurobiol. Aging 2016, 37, 209.e17–209.e21. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, J.; Tang, L.; Zhang, N.; Fan, D. MATR3 Mutation Analysis in a Chinese Cohort with Sporadic Amyotrophic Lateral Sclerosis. Neurobiol Aging 2016, 38, 218.e3–218.e4. [Google Scholar] [CrossRef] [PubMed]
- Marangi, G.; Lattante, S.; Doronzio, P.N.; Conte, A.; Tasca, G.; Monforte, M.; Patanella, A.K.; Bisogni, G.; Meleo, E.; La Spada, S.; et al. Matrin 3 Variants Are Frequent in Italian ALS Patients. Neurobiol. Aging 2017, 49, 218.e1–218.e7. [Google Scholar] [CrossRef] [PubMed]
- Caputo, M.; Zucchi, E.; Martinelli, I.; Gianferrari, G.; Simonini, C.; Amedei, A.; Niccolai, E.; Gellera, C.; Pensato, V.; Mandrioli, J. Duplication of Exons 15 and 16 in Matrin-3: A Phenotype Bridging Amyotrophic Lateral Sclerosis and Immune-Mediated Disorders. Neurol. Sci. 2022, 43, 1419–1421. [Google Scholar] [CrossRef] [PubMed]
- Feit, H.; Silbergleit, A.; Schneider, L.B.; Gutierrez, J.A.; Fitoussi, R.P.; Réyès, C.; Rouleau, G.A.; Brais, B.; Jackson, C.E.; Beckmann, J.S.; et al. Vocal Cord and Pharyngeal Weakness with Autosomal Dominant Distal Myopathy: Clinical Description and Gene Localization to 5q31. Am. J. Hum. Genet. 1998, 63, 1732–1742. [Google Scholar] [CrossRef]
- Senderek, J.; Garvey, S.M.; Krieger, M.; Guergueltcheva, V.; Urtizberea, A.; Roos, A.; Elbracht, M.; Stendel, C.; Tournev, I.; Mihailova, V.; et al. Autosomal-Dominant Distal Myopathy Associated with a Recurrent Missense Mutation in the Gene Encoding the Nuclear Matrix Protein, Matrin 3. Am. J. Hum. Genet. 2009, 84, 511–518. [Google Scholar] [CrossRef]
- Müller, T.J.; Kraya, T.; Stoltenburg-Didinger, G.; Hanisch, F.; Kornhuber, M.; Stoevesandt, D.; Senderek, J.; Weis, J.; Baum, P.; Deschauer, M.; et al. Phenotype of Matrin-3–Related Distal Myopathy in 16 G Erman Patients. Ann. Neurol. 2014, 76, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Mori, A.; Nishida, Y.; Kurisaki, R.; Tawara, N.; Nishikami, T.; Misumi, Y.; Ueyama, H.; Imamura, S.; Higuchi, Y.; et al. Clinicopathological Features of the First Asian Family Having Vocal Cord and Pharyngeal Weakness with Distal Myopathy Due to a MATR3 Mutation. Neuropathol. Appl. Neurobio 2015, 41, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Kraya, T.; Schmidt, B.; MüLLER, T.; Hanisch, F. Impairment of Respiratory Function in Late-Onset Distal Myopathy Due to MATR3 Mutation: Short Reports. Muscle Nerve 2015, 51, 916–918. [Google Scholar] [CrossRef] [PubMed]
- Palmio, J.; Evilä, A.; Bashir, A.; Norwood, F.; Viitaniemi, K.; Vihola, A.; Huovinen, S.; Straub, V.; Hackman, P.; Hirano, M.; et al. Re-Evaluation of the Phenotype Caused by the Common MATR3 p.Ser85Cys Mutation in a New Family. J. Neurol. Neurosurg. Psychiatry 2016, 87, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Laforêt, P.; Malfatti, E.; Metay, C.; Jobic, V.; Carlier, R. Clinical and Histopathological Characterization of the First French Case of MATR3 -Related Distal Myopathy. Neuromuscul. Disord. 2017, 27, S139. [Google Scholar] [CrossRef]
- Cavalli, M.; Cardani, R.; Renna, L.V.; Toffetti, M.; Villa, L.; Meola, G. First Family of MATR3-Related Distal Myopathy From Italy: The Role of Muscle Biopsy in the Diagnosis and Characterization of a Still Poorly Understood Disease. Front. Neurol. 2021, 12, 715386. [Google Scholar] [CrossRef] [PubMed]
- Manini, A.; Velardo, D.; Ciscato, P.; Cinnante, C.; Moggio, M.; Comi, G.; Corti, S.; Ronchi, D. Expanding the Phenotypic Spectrum of Vocal Cord and Pharyngeal Weakness with Distal Myopathy Due to the p.S85C MATR3 Mutation. Neurol. Genet. 2022, 8, e200006. [Google Scholar] [CrossRef] [PubMed]
- Saez-Atienzar, S.; Dalgard, C.L.; Ding, J.; Chiò, A.; Alba, C.; Hupalo, D.N.; Wilkerson, M.D.; Bowser, R.; Pioro, E.P.; Bedlack, R.; et al. Identification of a Pathogenic Intronic KIF5A Mutation in an ALS-FTD Kindred. Neurology 2020, 95, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Van Bruggen, R.; Maksimovic, K.; You, J.; Tran, D.D.; Lee, H.J.; Khan, M.; Kao, C.S.; Kim, J.R.; Cho, W.; Chen, X.X.L.; et al. MATR3 F115C Knock-in Mice Do Not Exhibit Motor Defects or Neuropathological Features of ALS. Biochem. Biophys. Res. Commun. 2021, 568, 48–54. [Google Scholar] [CrossRef]
- Sprunger, M.L.; Lee, K.; Sohn, B.S.; Jackrel, M.E. Molecular Determinants and Modifiers of Matrin-3 Toxicity, Condensate Dynamics, and Droplet Morphology. iScience 2022, 25, 103900. [Google Scholar] [CrossRef]
- Dominick, M.; Houchins, N.; Venugopal, V.; Zuberi, A.R.; Lutz, C.M.; Meechooveet, B.; Van Keuren-Jensen, K.; Bowser, R.; Medina, D.X. MATR3 P154S Knock-in Mice Do Not Exhibit Motor, Muscle or Neuropathologic Features of ALS. Biochem. Biophys. Res. Commun. 2023, 645, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Emenecker, R.J.; Griffith, D.; Holehouse, A.S. Metapredict: A Fast, Accurate, and Easy-to-Use Predictor of Consensus Disorder and Structure. Biophys. J. 2021, 120, 4312–4319. [Google Scholar] [CrossRef] [PubMed]
- Schubach, M.; Maass, T.; Nazaretyan, L.; Röner, S.; Kircher, M. CADD v1.7: Using Protein Language Models, Regulatory CNNs and Other Nucleotide-Level Scores to Improve Genome-Wide Variant Predictions. Nucleic Acids Res. 2024, 52, D1143–D1154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yamashita, S.; Hara, K.; Doki, T.; Tawara, N.; Ikeda, T.; Misumi, Y.; Zhang, Z.; Matsuo, Y.; Nagai, M.; et al. A Mutant MATR3 Mouse Model to Explain Multisystem Proteinopathy. J. Pathol. 2019, 249, 182–192. [Google Scholar] [CrossRef]
- You, J.; Maksimovic, K.; Lee, J.; Khan, M.; Masuda, R.; Park, J. Selective Loss of MATR3 in Spinal Interneurons, Upper Motor Neurons and Hippocampal CA1 Neurons in a MATR3 S85C Knock-In Mouse Model of Amyotrophic Lateral Sclerosis. Biology 2022, 11, 298. [Google Scholar] [CrossRef]
- Ramesh, N.; Kour, S.; Anderson, E.N.; Rajasundaram, D.; Pandey, U.B. RNA-Recognition Motif in Matrin-3 Mediates Neurodegeneration through Interaction with hnRNPM. Acta Neuropathol. Commun. 2020, 8, 138. [Google Scholar] [CrossRef]
- Zhao, M.; Kao, C.S.; Arndt, C.; Tran, D.D.; Cho, W.I.; Maksimovic, K.; Chen, X.X.L.; Khan, M.; Zhu, H.; Qiao, J.; et al. Knockdown of Genes Involved in Axonal Transport Enhances the Toxicity of Human Neuromuscular Disease-Linked MATR3 Mutations in Drosophila. FEBS Lett. 2020, 594, 2800–2818. [Google Scholar] [CrossRef]
- Mensch, A.; Meinhardt, B.; Bley, N.; Hüttelmaier, S.; Schneider, I.; Stoltenburg-Didinger, G.; Kraya, T.; Müller, T.; Zierz, S. The p.S85C-Mutation in MATR3 Impairs Stress Granule Formation in Matrin-3 Myopathy. Exp. Neurol. 2018, 306, 222–231. [Google Scholar] [CrossRef]
- Gallego-Iradi, M.C.; Strunk, H.; Crown, A.M.; Davila, R.; Brown, H.; Rodriguez-Lebron, E.; Borchelt, D.R. N-Terminal Sequences in Matrin 3 Mediate Phase Separation into Droplet-like Structures That Recruit TDP43 Variants Lacking RNA Binding Elements. Lab. Investig. 2019, 99, 1030–1040. [Google Scholar] [CrossRef]
- Yang, T.-W.; Sahu, D.; Chang, Y.-W.; Hsu, C.-L.; Hsieh, C.-H.; Huang, H.-C.; Juan, H.-F. RNA-Binding Proteomics Reveals MATR3 Interacting with lncRNA SNHG1 to Enhance Neuroblastoma Progression. J. Proteome Res. 2018, 18, 406–416. [Google Scholar] [CrossRef]
- Kula, A.; Guerra, J.; Knezevich, A.; Kleva, D.; Myers, M.P.; Marcello, A. Characterization of the HIV-1 RNA Associated Proteome Identifies Matrin 3 as a Nuclear Cofactor of Rev Function. Retrovirology 2011, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Yedavalli, V.S.; Jeang, K.-T. Matrin 3 Is a Co-Factor for HIV-1 Rev in Regulating Post-Transcriptional Viral Gene Expression. Retrovirology 2011, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Sarracino, A.; Gharu, L.; Kula, A.; Pasternak, A.O.; Avettand-Fenoel, V.; Rouzioux, C.; Bardina, M.; De Wit, S.; Benkirane, M.; Berkhout, B.; et al. Posttranscriptional Regulation of HIV-1 Gene Expression during Replication and Reactivation from Latency by Nuclear Matrix Protein MATR3. mBio 2018, 9, e02158-18. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.R.; Park, J. MATR3’s Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases. Cells 2024, 13, 980. https://doi.org/10.3390/cells13110980
Santos JR, Park J. MATR3’s Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases. Cells. 2024; 13(11):980. https://doi.org/10.3390/cells13110980
Chicago/Turabian StyleSantos, Jhune Rizsan, and Jeehye Park. 2024. "MATR3’s Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases" Cells 13, no. 11: 980. https://doi.org/10.3390/cells13110980
APA StyleSantos, J. R., & Park, J. (2024). MATR3’s Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases. Cells, 13(11), 980. https://doi.org/10.3390/cells13110980