Advancements in Hematopoietic Stem Cell Gene Therapy: A Journey of Progress for Viral Transduction
Abstract
:1. Introduction
2. Gene Delivery in Hematopoietic Stem Cells
2.1. Overview
2.2. Gammaretroviruses
2.3. Lentiviruses
2.4. Genome Editing
3. Advancements in Transduction Technologies
3.1. Viral Vector Engineering
3.2. Transduction Enhancers
Reagent | Mechanism of Action | Side Effects | Side Effects in Gene Therapy | Clinical Applications in Gene Therapy | References |
---|---|---|---|---|---|
Prostaglandin E2 | Improvement of reverse transcription (under investigation) | Nausea, vomiting, diarrhea, abdominal pain | Reduction of HSC clonogenic potential | Hurler syndrome, β-thalassemia | [21,26,28] |
Protamine sulfate | Lower charge repulsion between the vector and the cell surface | Low blood pressure, allergic reactions, vomiting | Cell toxicity (concentrations higher than 10 µg/mL) | N/A | [33] |
Poloxamers | Membrane fluidization and reduction in electrostatic barriers | Dehydration, abdominal discomfort | N/A | N/A | [34] |
LentiBOOST™ | Increased permeability of the target cell surface | N/A | N/A | X-SCID, Artemis-SCID | [35] |
Vectofusin-1® | Enhanced adhesion and fusion of viral particles to the cell membrane | N/A | N/A | N/A | [38] |
Rapamycin | Inhibition of mTOR signaling pathway (immunosuppression) | Anemia, increased blood pressure, muscle pain | N/A | N/A | [41,43] |
Cyclosporin A Cyclosporin H | Inhibition of cyclophilin A (immunosuppression) Inhibition of IFITM3 | Blurred vision, back pain, dizziness, decreased appetite | N/A | N/A | [43,45,46] |
4. Safety Considerations
4.1. Genotoxicity and Leukemias
4.2. Immunogenicity
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Gatti, R.A.; Meuwissen, H.J.; Allen, H.D.; Hong, R.; Good, R.A. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968, 292, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- Bach, F.H.; Albertini, R.J.; Joo, P.; Anderson, J.L.; Bortin, M.M. Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet 1968, 2, 1364–1366. [Google Scholar] [CrossRef] [PubMed]
- Prezioso, L.; Manfra, I.; Bonomini, S.; Schifano, C.; Segreto, R.; Monti, A.; Sammarelli, G.; Todaro, G.; Sassi, M.; Bertaggia, I.; et al. Haploidentical hematopoietic stem cell transplantation in adults using the αβTCR/CD19-based depletion of G-CSF-mobilized peripheral blood progenitor cells. Bone Marrow Transplant. 2019, 54, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Hatzimichael, E.; Tuthill, M. Hematopoietic stem cell transplantation. Stem Cells Cloning 2010, 3, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Hacein-Bey-Abina, S.; Garrigue, A.; Wang, G.P.; Soulier, J.; Lim, A.; Morillon, E.; Clappier, E.; Caccavelli, L.; Delabesse, E.; Beldjord, K.; et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 2008, 118, 3132–3142. [Google Scholar] [CrossRef] [PubMed]
- Biffi, A.; Bartolomae, C.C.; Cesana, D.; Cartier, N.; Aubourg, P.; Ranzani, M.; Cesani, M.; Benedicenti, F.; Plati, T.; Rubagotti, E.; et al. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 2011, 117, 5332–5339. [Google Scholar] [CrossRef] [PubMed]
- Shirley, J.L.; de Jong, Y.P.; Terhorst, C.; Herzog, R.W. Immune Responses to Viral Gene Therapy Vectors. Mol. Ther. 2020, 28, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Nathwani, A.C.; Hanawa, H.; Vandergriff, J.; Kelly, P.; Vanin, E.F.; Nienhuis, A.W. Efficient gene transfer into human cord blood CD34+ cells and the CD34+CD38− subset using highly purified recombinant adeno-associated viral vector preparations that are free of helper virus and wild-type AAV. Gene Ther. 2000, 7, 183–195. [Google Scholar] [CrossRef]
- Cicalese, M.P.; Ferrua, F.; Castagnaro, L.; Pajno, R.; Barzaghi, F.; Giannelli, S.; Dionisio, F.; Brigida, I.; Bonopane, M.; Casiraghi, M.; et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood 2016, 128, 45–54. [Google Scholar] [CrossRef]
- Locatelli, F.; Thompson, A.A.; Kwiatkowski, J.L.; Porter, J.B.; Thrasher, A.J.; Hongeng, S.; Sauer, M.G.; Thuret, I.; Lal, A.; Algeri, M.; et al. Betibeglogene Autotemcel Gene Therapy for Non-β0/β0 Genotype β-Thalassemia. N. Engl. J. Med. 2022, 386, 415–427. [Google Scholar] [CrossRef]
- Magrin, E.; Semeraro, M.; Hebert, N.; Joseph, L.; Magnani, A.; Chalumeau, A.; Gabrion, A.; Roudaut, C.; Marouene, J.; Lefrere, F.; et al. Long-term outcomes of lentiviral gene therapy for the β-hemoglobinopathies: The HGB-205 trial. Nat. Med. 2022, 28, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Schimmer, J.; Breazzano, S. Investor Outlook: Rising from the Ashes; GSK’s European Approval of Strimvelis for ADA-SCID. Hum. Gene Ther. Clin. Dev. 2016, 27, 57–61. [Google Scholar] [CrossRef]
- Horgan, C.; Watts, K.; Ram, D.; Rust, S.; Hutton, R.; Jones, S.; Wynn, R. A retrospective cohort study of Libmeldy (atidarsagene autotemcel) for MLD: What we have accomplished and what opportunities lie ahead. JIMD Rep. 2023, 64, 346–352. [Google Scholar] [CrossRef]
- Schuessler-Lenz, M.; Enzmann, H.; Vamvakas, S. Regulators’ Advice Can Make a Difference: European Medicines Agency Approval of Zynteglo for Beta Thalassemia. Clin. Pharmacol. Ther. 2020, 107, 492–494. [Google Scholar] [CrossRef]
- Zeng, J.; Nguyen, M.A.; Liu, P.; Ferreira da Silva, L.; Lin, L.Y.; Justus, D.G.; Petri, K.; Clement, K.; Porter, S.N.; Verma, A.; et al. Gene editing without ex vivo culture evades genotoxicity in human hematopoietic stem cells. bioRxiv 2023. [Google Scholar] [CrossRef]
- Lee, B.C.; Gin, A.; Wu, C.; Singh, K.; Grice, M.; Mortlock, R.; Abraham, D.; Fan, X.; Zhou, Y.; AlJanahi, A.; et al. Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. Cell Stem Cell 2024, 31, 455–466. [Google Scholar] [CrossRef]
- Finkelshtein, D.; Werman, A.; Novick, D.; Barak, S.; Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA 2013, 110, 7306–7311. [Google Scholar] [CrossRef] [PubMed]
- Amirache, F.; Lévy, C.; Costa, C.; Mangeot, P.E.; Torbett, B.E.; Wang, C.X.; Nègre, D.; Cosset, F.L.; Verhoeyen, E. Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor. Blood 2014, 123, 1422–1424. [Google Scholar] [CrossRef] [PubMed]
- Girard-Gagnepain, A.; Amirache, F.; Costa, C.; Lévy, C.; Frecha, C.; Fusil, F.; Nègre, D.; Lavillette, D.; Cosset, F.L.; Verhoeyen, E. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014, 124, 1221–1231. [Google Scholar] [CrossRef]
- Verhoeyen, E.; Wiznerowicz, M.; Olivier, D.; Izac, B.; Trono, D.; Dubart-Kupperschmitt, A.; Cosset, F.L. Novel lentiviral vectors displaying “early-acting cytokines” selectively promote survival and transduction of NOD/SCID repopulating human hematopoietic stem cells. Blood 2005, 106, 3386–3395. [Google Scholar] [CrossRef]
- Glimm, H.; Oh, I.H.; Eaves, C.J. Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G2/M transit and do not reenter G0. Blood 2000, 96, 4185–4193. [Google Scholar] [CrossRef]
- Valeri, E.; Unali, G.; Piras, F.; Abou-Alezz, M.; Pais, G.; Benedicenti, F.; Lidonnici, M.R.; Cuccovillo, I.; Castiglioni, I.; Arévalo, S.; et al. Removal of innate immune barriers allows efficient transduction of quiescent human hematopoietic stem cells. Mol. Ther. 2024, 32, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Heffner, G.C.; Bonner, M.; Christiansen, L.; Pierciey, F.J.; Campbell, D.; Smurnyy, Y.; Zhang, W.; Hamel, A.; Shaw, S.; Lewis, G.; et al. Prostaglandin E2 Increases Lentiviral Vector Transduction Efficiency of Adult Human Hematopoietic Stem and Progenitor Cells. Mol. Ther. 2018, 26, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Zonari, E.; Desantis, G.; Petrillo, C.; Boccalatte, F.E.; Lidonnici, M.R.; Kajaste-Rudnitski, A.; Aiuti, A.; Ferrari, G.; Naldini, L.; Gentner, B. Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy. Stem Cell Rep. 2017, 8, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Uchida, N.; Nassehi, T.; Drysdale, C.M.; Gamer, J.; Yapundich, M.; Demirci, S.; Haro-Mora, J.J.; Leonard, A.; Hsieh, M.M.; Tisdale, J.F. High-Efficiency Lentiviral Transduction of Human CD34+ Cells in High-Density Culture with Poloxamer and Prostaglandin E2. Mol. Ther. Methods Clin. Dev. 2019, 13, 187–196. [Google Scholar] [CrossRef]
- Masiuk, K.E.; Zhang, R.; Osborne, K.; Hollis, R.P.; Campo-Fernandez, B.; Kohn, D.B. PGE2 and Poloxamer Synperonic F108 Enhance Transduction of Human HSPCs with a β-Globin Lentiviral Vector. Mol. Ther. Methods Clin. Dev. 2019, 13, 390–398. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, Y.S.; Wielgosz, M.M.; Ferrara, F.; Ma, Z.; Condori, J.; Palmer, L.E.; Zhao, X.; Kang, G.; Rawlings, D.J.; et al. Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy. Gene Ther. 2020, 27, 545–556. [Google Scholar] [CrossRef]
- Poletti, V.; Montepeloso, A.; Pellin, D.; Biffi, A. Prostaglandin E2 as transduction enhancer affects competitive engraftment of human hematopoietic stem and progenitor cells. Mol. Ther. Methods Clin. Dev. 2023, 31, 101131. [Google Scholar] [CrossRef]
- Cutler, C.; Multani, P.; Robbins, D.; Kim, H.T.; Le, T.; Hoggatt, J.; Pelus, L.M.; Desponts, C.; Chen, Y.B.; Rezner, B.; et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 2013, 122, 3074–3081. [Google Scholar] [CrossRef]
- Gentner, B.; Tucci, F.; Galimberti, S.; Fumagalli, F.; De Pellegrin, M.; Silvani, P.; Camesasca, C.; Pontesilli, S.; Darin, S.; Ciotti, F.; et al. Hematopoietic Stem- and Progenitor-Cell Gene Therapy for Hurler Syndrome. N. Engl. J. Med. 2021, 385, 1929–1940. [Google Scholar] [CrossRef]
- Leonard, A.; Tisdale, J.F. A pause in gene therapy: Reflecting on the unique challenges of sickle cell disease. Mol. Ther. 2021, 29, 1355–1356. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.J.; DeBaun, M.R. Leukemia after gene therapy for sickle cell disease: Insertional mutagenesis, busulfan, both, or neither. Blood 2021, 138, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and Transfusion-Dependent β-Thalassemia. Med. Sci. Monit. 2024, 30, e944204. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; Rosinski, M.; Morgan, J.R.; Yarmush, M.L. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys. J. 2004, 86, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Cornetta, K.; Anderson, W.F. Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene-transfer: Implications for human gene therapy. J. Virol. Methods 1989, 23, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Anastasov, N.; Höfig, I.; Mall, S.; Krackhardt, A.M.; Thirion, C. Optimized Lentiviral Transduction Protocols by Use of a Poloxamer Enhancer, Spinoculation, and scFv-Antibody Fusions to VSV-G. Methods Mol. Biol. 2016, 1448, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Hauber, I.; Beschorner, N.; Schrödel, S.; Chemnitz, J.; Kröger, N.; Hauber, J.; Thirion, C. Improving Lentiviral Transduction of CD34+ Hematopoietic Stem and Progenitor Cells. Hum. Gene Ther. Methods 2018, 29, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Schott, J.W.; León-Rico, D.; Ferreira, C.B.; Buckland, K.F.; Santilli, G.; Armant, M.A.; Schambach, A.; Cavazza, A.; Thrasher, A.J. Enhancing Lentiviral and Alpharetroviral Transduction of Human Hematopoietic Stem Cells for Clinical Application. Mol. Ther. Methods Clin. Dev. 2019, 14, 134–147. [Google Scholar] [CrossRef]
- Delville, M.; Soheili, T.; Bellier, F.; Durand, A.; Denis, A.; Lagresle-Peyrou, C.; Cavazzana, M.; Andre-Schmutz, I.; Six, E. A Nontoxic Transduction Enhancer Enables Highly Efficient Lentiviral Transduction of Primary Murine T Cells and Hematopoietic Stem Cells. Mol. Ther. Methods Clin. Dev. 2018, 10, 341–347. [Google Scholar] [CrossRef]
- Fenard, D.; Ingrao, D.; Seye, A.; Buisset, J.; Genries, S.; Martin, S.; Kichler, A.; Galy, A. Vectofusin-1, a new viral entry enhancer, strongly promotes lentiviral transduction of human hematopoietic stem cells. Mol. Ther. Nucleic Acids 2013, 2, e90. [Google Scholar] [CrossRef]
- Radek, C.; Bernadin, O.; Drechsel, K.; Cordes, N.; Pfeifer, R.; Sträßer, P.; Mormin, M.; Gutierrez-Guerrero, A.; Cosset, F.L.; Kaiser, A.D.; et al. Vectofusin-1 Improves Transduction of Primary Human Cells with Diverse Retroviral and Lentiviral Pseudotypes, Enabling Robust, Automated Closed-System Manufacturing. Hum. Gene Ther. 2019, 30, 1477–1493. [Google Scholar] [CrossRef]
- Piovan, C.; Marin, V.; Scavullo, C.; Corna, S.; Giuliani, E.; Bossi, S.; Galy, A.; Fenard, D.; Bordignon, C.; Rizzardi, G.P.; et al. Vectofusin-1 Promotes RD114-TR-Pseudotyped Lentiviral Vector Transduction of Human HSPCs and T Lymphocytes. Mol. Ther. Methods Clin. Dev. 2017, 5, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Sather, B.D.; Wang, X.; Adair, J.; Khan, I.; Singh, S.; Lang, S.; Adams, A.; Curinga, G.; Kiem, H.P.; et al. Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells. Blood 2014, 124, 913–923. [Google Scholar] [CrossRef]
- Luo, Y.; Li, L.; Zou, P.; Wang, J.; Shao, L.; Zhou, D.; Liu, L. Rapamycin enhances long-term hematopoietic reconstitution of ex vivo expanded mouse hematopoietic stem cells by inhibiting senescence. Transplantation 2014, 97, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, C.; Cesana, D.; Piras, F.; Bartolaccini, S.; Naldini, L.; Montini, E.; Kajaste-Rudnitski, A. Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells. Mol. Ther. 2015, 23, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.E.; Kumkhaek, C.; Hsieh, M.M.; Donahue, R.E.; Tisdale, J.F.; Uchida, N. TRIM5α variations influence transduction efficiency with lentiviral vectors in both human and rhesus CD34+ cells in vitro and in vivo. Mol. Ther. 2014, 22, 348–358. [Google Scholar] [CrossRef]
- Petrillo, C.; Thorne, L.G.; Unali, G.; Schiroli, G.; Giordano, A.M.S.; Piras, F.; Cuccovillo, I.; Petit, S.J.; Ahsan, F.; Noursadeghi, M.; et al. Cyclosporine H Overcomes Innate Immune Restrictions to Improve Lentiviral Transduction and Gene Editing in Human Hematopoietic Stem Cells. Cell Stem Cell 2018, 23, 820–832.e9. [Google Scholar] [CrossRef] [PubMed]
- Olender, L.; Bujanover, N.; Sharabi, O.; Goldstein, O.; Gazit, R. Cyclosporine H Improves the Multi-Vector Lentiviral Transduction of Murine Haematopoietic Progenitors and Stem Cells. Sci. Rep. 2020, 10, 1812. [Google Scholar] [CrossRef]
- Hacein-Bey-Abina, S.; von Kalle, C.; Schmidt, M.; Le Deist, F.; Wulffraat, N.; McIntyre, E.; Radford, I.; Villeval, J.L.; Fraser, C.C.; Cavazzana-Calvo, M.; et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 2003, 348, 255–256. [Google Scholar] [CrossRef]
- Marshall, E. Gene therapy. Second child in French trial is found to have leukemia. Science 2003, 299, 320. [Google Scholar] [CrossRef]
- Kaiser, J. RAC Hears a Plea for Resuming Trials, Despite Cancer Risk. Science 2003, 299, 991. Available online: https://www.jstor.org/stable/i371100 (accessed on 15 April 2024). [CrossRef] [PubMed]
- Ott, M.G.; Schmidt, M.; Schwarzwaelder, K.; Stein, S.; Siler, U.; Koehl, U.; Glimm, H.; Kühlcke, K.; Schilz, A.; Kunkel, H.; et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat. Med. 2006, 12, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Boztug, K.; Schmidt, M.; Schwarzer, A.; Banerjee, P.P.; Díez, I.A.; Dewey, R.A.; Böhm, M.; Nowrouzi, A.; Ball, C.R.; Glimm, H.; et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N. Engl. J. Med. 2010, 363, 1918–1927. [Google Scholar] [CrossRef] [PubMed]
- Bastone, A.L.; Dziadek, V.; John-Neek, P.; Mansel, F.; Fleischauer, J.; Agyeman-Duah, E.; Schaudien, D.; Dittrich-Breiholz, O.; Schwarzer, A.; Schambach, A.; et al. Development of an in vitro genotoxicity assay to detect retroviral vector-induced lymphoid insertional mutants. Mol. Ther. Methods Clin. Dev. 2023, 30, 515–533. [Google Scholar] [CrossRef] [PubMed]
- Modlich, U.; Bohne, J.; Schmidt, M.; von Kalle, C.; Knöss, S.; Schambach, A.; Baum, C. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006, 108, 2545–2553. [Google Scholar] [CrossRef] [PubMed]
- Modlich, U.; Navarro, S.; Zychlinski, D.; Maetzig, T.; Knoess, S.; Brugman, M.H.; Schambach, A.; Charrier, S.; Galy, A.; Thrasher, A.J.; et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol. Ther. 2009, 17, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Braun, C.J.; Boztug, K.; Paruzynski, A.; Witzel, M.; Schwarzer, A.; Rothe, M.; Modlich, U.; Beier, R.; Göhring, G.; Steinemann, D.; et al. Gene therapy for Wiskott-Aldrich syndrome—Long-term efficacy and genotoxicity. Sci. Transl. Med. 2014, 6, 227. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, A.; Talbot, S.R.; Selich, A.; Morgan, M.; Schott, J.W.; Dittrich-Breiholz, O.; Bastone, A.L.; Weigel, B.; Ha, T.C.; Dziadek, V.; et al. Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning. Mol. Ther. 2021, 29, 3383–3397. [Google Scholar] [CrossRef] [PubMed]
- Kosicki, M.; Tomberg, K.; Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018, 36, 765–771. [Google Scholar] [CrossRef]
- Haapaniemi, E.; Botla, S.; Persson, J.; Schmierer, B.; Taipale, J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 2018, 24, 927–930. [Google Scholar] [CrossRef]
- Charlesworth, C.T.; Hsu, I.; Wilkinson, A.C.; Nakauchi, H. Immunological barriers to haematopoietic stem cell gene therapy. Nat. Rev. Immunol. 2022, 22, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Dunleavy, K. With the Pricing Situation ‘Untenable’ in Europe, Bluebird Will Wind down Its Operations in the ‘Broken’ Market. Fierce Pharma. 2021. Available online: https://www.fiercepharma.com/pharma/situation-untenable-bluebird-will-wind-down-its-operations-broken-europe (accessed on 16 April 2024).
- Cruz, L.J.; Rezaei, S.; Grosveld, F.; Philipsen, S.; Eich, C. Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Front. Genome Ed. 2022, 4, 1030285. [Google Scholar] [CrossRef] [PubMed]
- Vavassori, V.; Ferrari, S.; Beretta, S.; Asperti, C.; Albano, L.; Annoni, A.; Gaddoni, C.; Varesi, A.; Soldi, M.; Cuomo, A.; et al. Lipid nanoparticles allow efficient and harmless ex vivo gene editing of human hematopoietic cells. Blood 2023, 142, 812–826. [Google Scholar] [CrossRef] [PubMed]
Product Name: Generic (Trade) | Applications | Manufacturer | Mechanism of Action | Approval Agency (Year) |
---|---|---|---|---|
STRIMVELIS® | ADA-SCID | Orchard Therapeutics | ADA gene addition via gamma retrovirus | EMA (2016) |
Betibeglogene autotemcel (ZYNTEGLO™) | Transfusion-dependent Β-thalassemia (TDT) | bluebird bio, Inc. | βA-T87Q-globin gene addition via lentivirus | EMA (2019) * FDA (2022) |
Atidarsagene autotemcel (LIBMELDY®) | Metachromatic leukodystrophy (MLD) | Orchard Therapeutics | ARSA gene addition via lentivirus | EMA (2020) FDA (2024) |
Lovotibeglogene autotemcel (LYFGENIA™) | Sickle cell disease (SCD) | bluebird bio, Inc. | βA-T87Q-globin gene addition via lentivirus | FDA (2023) |
Exagamglogene autotemcel (CASGEVY™) | TDT, SCD | Vertex Pharmaceuticals CRISPR Therapeutics | CRISPR/Cas9 technology | EMA (2023) FDA (2024) |
Elivaldogene autotemcel (SKYSONA®) | CALD | bluebird bio, Inc. | ABCD1 gene addition via lentivirus | EMA (2021) * FDA (2022) |
Clinical Trial Registry Number | Disease | Intervention | Sponsor | Phase |
---|---|---|---|---|
NCT04797260 | RAG1-SCID | Autologous CD34+ cells transduced with the pCCL.MND.coRAG1.wpre LV | Leiden University Medical Center | I/II |
NCT05071222 | Artemis-SCID | Autologous CD34+ cells transduced with the G2ARTE LV expressing the DCLRE1C cDNA | Assistance Publique—Hôpitaux de Paris/Genethon | I/II |
NCT02559830 | MLD, ALD | Autologous CD34+ cells transduced with a LV encoding the human ARSA(for MLD)/ABCD1(for ALD) cDNA | Shenzhen Second People’s Hospital | I/II |
NCT05860595 | TDT | Autologous CD34+ cells transduced with the βA-T87Q-globin gene LV (KL003) | Institute of Hematology and Blood Diseases Hospital, China/Kanglin Biotech | N/A |
NCT05762510 | TDT | Autologous CD34+ cells transduced with the GMCN-508B (LentiRed) LV | First Affiliated Hospital of Guangxi Medical University | Early I |
NCT05432310 | ADA-SCID | Autologous CD34+ cells transduced with the EFS-ADA LV encoding the ADA enzyme | University of California, Los Angeles | I/II |
NCT06149403 | Hurler syndrome | Autologous CD34+ cells transduced with LV encoding the human IDUA gene | Orchard Therapeutics | III |
NCT05265767 | Hemophilia A | Autologous CD34+ cells transduced with LV encoding a novel coagulation factor VIII transgene | Christian Medical College, Vellore, India | I |
NCT03818763 | Hemophilia A | Autologous CD34+ cells transduced with LV encoding the ITGA2B gene promoter for ectopic expression of human B-domain-deleted factor VIII | Medical College of Wisconsin | I |
NCT06155500 | SCD | Observational: long-term follow-up of patients treated with CRISPR/Cas9-edited HSPCs from NCT04443907 | Novartis Pharmaceuticals | I |
NCT01306019 | X-SCID | Autologous CD34+ HSC with VSV-G pseudotyped LV CL20- 4i-EF1alpha-hgammac-OPT | National Institute of Allergy and Infectious Diseases (NIAID) | I/II |
NCT03538899 | Artemis-SCID | Autologous CD34+ cells transduced with LV (AProArt) encoding the corrected DCLRE1C gene | University of California, San Francisco | I/II |
NCT05757245 | TDT | Autologous CD34+ cells transduced with GMCN-508A LV | First Affiliated Hospital of Guangxi Medical University | I |
2014-000274-20 | WAS | Observational: long-term follow-up of patients treated with w1.6_hWASP_WPRE (VSVg) LV transduced autologous HSCs | Genethon | II |
2019-004266-18 | TDT | Observational: long-term follow-up of patients treated with βA-T87Q LV (LentiGlobin BB305) transduced autologous HSCs | bluebird bio, Inc. | III |
2020-000517-33 | Leukocyte adhesion deficiency I | Autologous CD34+ cells transduced with LV encoding the ITGB2 gene | Rocket Pharmaceuticals, Inc. | I/II |
2017-001366-14 | TDT | Observational: long-term follow-up of patients treated with GSK2696277 | GlaxoSmithKline Research and Development | II |
2017-002430-23 | Hurler syndrome | Autologous CD34+ cells transduced with IDUA LV encoding the human α-L-iduronidase gene | Ospedale San Raffaele | I/II |
2018-001404-11 | Glioblastoma multiforme | Autologous CD34+ cells transduced with LV encoding the interferon-α2 gene | Genenta Science S.r.l | I/IIa |
2013-002245-11 | Hemoglobinopathies | Observational: long-term follow-up of patients treated with LentiGlobin BB305 Drug Product | bluebird bio, Inc. | III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giommetti, A.; Papanikolaou, E. Advancements in Hematopoietic Stem Cell Gene Therapy: A Journey of Progress for Viral Transduction. Cells 2024, 13, 1039. https://doi.org/10.3390/cells13121039
Giommetti A, Papanikolaou E. Advancements in Hematopoietic Stem Cell Gene Therapy: A Journey of Progress for Viral Transduction. Cells. 2024; 13(12):1039. https://doi.org/10.3390/cells13121039
Chicago/Turabian StyleGiommetti, Aurora, and Eleni Papanikolaou. 2024. "Advancements in Hematopoietic Stem Cell Gene Therapy: A Journey of Progress for Viral Transduction" Cells 13, no. 12: 1039. https://doi.org/10.3390/cells13121039
APA StyleGiommetti, A., & Papanikolaou, E. (2024). Advancements in Hematopoietic Stem Cell Gene Therapy: A Journey of Progress for Viral Transduction. Cells, 13(12), 1039. https://doi.org/10.3390/cells13121039