Combination Therapy Approach to Overcome the Resistance to PI3K Pathway Inhibitors in Gynecological Cancers
Abstract
:1. Introduction
2. Brief Overview of PI3K Pathway and the FDA-Approved PI3K Inhibitors
2.1. Frequency of PI3K Pathway Alterations in Gynecological Cancers
2.2. PI3K Pathway Monotherapy Efficacy in Gynecological Cancers
3. Mechanisms of Resistance
3.1. De Novo Resistance
3.1.1. Primary Amplification/Mutations in PIK3CA
3.1.2. Loss of Negative Regulator PTEN
3.2. Acquired Resistance Due to PI3K Pathway Alterations
3.2.1. Secondary Mutations in PIK3CA and Acquired Activating AKT Mutations
3.2.2. Acquired Activating PIK3CB Mutations in PTEN-Loss Tumors
3.2.3. Activation of Upstream Effectors and Insulin Feedback
3.3. Mechanisms of Acquired Resistance Outside of PI3K Pathway Alteration
3.3.1. Ras/RAF/MEK/ERK Pathway Activation
3.3.2. Wnt/β-Catenin Pathway Activation
3.3.3. Endocrine Response
3.3.4. Activation of Cell Cycle Checkpoint Pathways
4. Clinical Evidence of Combination Therapies with PI3K Pathway Inhibitors and Current Trials in Progress
4.1. Dual PI3K Pathway Inhibition
4.1.1. Targeting Multiple PI3K Components: PI3K, AKT, and mTOR
4.1.2. Combination with RTK Inhibition of FGFR, VEGF, and IGF-1
4.1.3. Combination with Insulin Suppression
4.2. Combination with MEK Inhibitors
4.3. Combination with Endocrine Therapy
4.4. Combination with Cell Cycle Checkpoint Inhibition
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoxhaj, G.; Manning, B.D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 2020, 20, 74–88. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol. Res. 2024, 200, 107059. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Huang, T.T.; Lampert, E.J.; Coots, C.; Lee, J.M. Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer. Cancer Treat. Rev. 2020, 86, 102021. [Google Scholar] [CrossRef]
- Hsieh, A.C.; Liu, Y.; Edlind, M.P.; Ingolia, N.T.; Janes, M.R.; Sher, A.; Shi, E.Y.; Stumpf, C.R.; Christensen, C.; Bonham, M.J.; et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012, 485, 55–61. [Google Scholar] [CrossRef]
- Buckbinder, L.; St. Jean, D.J., Jr.; Tieu, T.; Ladd, B.; Hilbert, B.; Wang, W.; Alltucker, J.T.; Manimala, S.; Kryukov, G.V.; Brooijmans, N.; et al. STX-478, a Mutant-Selective, Allosteric PI3Kα Inhibitor Spares Metabolic Dysfunction and Improves Therapeutic Response in PI3Kα-Mutant Xenografts. Cancer Discov. 2023, 13, 2432–2447. [Google Scholar] [CrossRef]
- Varkaris, A.; Pazolli, E.; Gunaydin, H.; Wang, Q.; Pierce, L.; Boezio, A.A.; DiPietro, L.; Frost, A.; Giordanetto, F.; Hamilton, E.P.; et al. Discovery and clinical proof-of-concept of RLY-2608, a first-in-class mutant-selective allosteric PI3Ka inhibitor that decouples anti-tumor activity from hyperinsulinemia. Cancer Discov. 2023, 14, 240–257. [Google Scholar] [CrossRef]
- Avila, M.; Grinsfelder, M.O.; Pham, M.; Westin, S.N. Targeting the PI3K Pathway in Gynecologic Malignancies. Curr. Oncol. Rep. 2022, 24, 1669–1676. [Google Scholar] [CrossRef]
- Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in the Cancer Genome Atlas. Cell 2018, 173, 321–337.e310. [Google Scholar] [CrossRef]
- Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [CrossRef]
- Integrated genomic and molecular characterization of cervical cancer. Nature 2017, 543, 378–384. [CrossRef]
- Janku, F.; Yap, T.A.; Meric-Bernstam, F. Targeting the PI3K pathway in cancer: Are we making headway? Nat. Rev. Clin. Oncol. 2018, 15, 273–291. [Google Scholar] [CrossRef]
- Colombo, N.; McMeekin, D.S.; Schwartz, P.E.; Sessa, C.; Gehrig, P.A.; Holloway, R.; Braly, P.; Matei, D.; Morosky, A.; Dodion, P.F.; et al. Ridaforolimus as a single agent in advanced endometrial cancer: Results of a single-arm, phase 2 trial. Br. J. Cancer 2013, 108, 1021–1026. [Google Scholar] [CrossRef]
- Del Campo, J.M.; Birrer, M.; Davis, C.; Fujiwara, K.; Gollerkeri, A.; Gore, M.; Houk, B.; Lau, S.; Poveda, A.; González-Martín, A.; et al. A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. Gynecol. Oncol. 2016, 142, 62–69. [Google Scholar] [CrossRef]
- Rubinstein, M.M.; Hyman, D.M.; Caird, I.; Won, H.; Soldan, K.; Seier, K.; Iasonos, A.; Tew, W.P.; O’Cearbhaill, R.E.; Grisham, R.N.; et al. Phase 2 study of LY3023414 in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. Cancer 2020, 126, 1274–1282. [Google Scholar] [CrossRef]
- Matulonis, U.; Vergote, I.; Backes, F.; Martin, L.P.; McMeekin, S.; Birrer, M.; Campana, F.; Xu, Y.; Egile, C.; Ghamande, S. Phase II study of the PI3K inhibitor pilaralisib (SAR245408; XL147) in patients with advanced or recurrent endometrial carcinoma. Gynecol. Oncol. 2015, 136, 246–253. [Google Scholar] [CrossRef]
- Gungor, H.; Saleem, A.; Babar, S.; Dina, R.; El-Bahrawy, M.A.; Curry, E.; Rama, N.; Chen, M.; Pickford, E.; Agarwal, R.; et al. Dose-Finding Quantitative 18F-FDG PET Imaging Study with the Oral Pan-AKT Inhibitor GSK2141795 in Patients with Gynecologic Malignancies. J. Nucl. Med. 2015, 56, 1828–1835. [Google Scholar] [CrossRef]
- Hasegawa, K.; Kagabu, M.; Mizuno, M.; Oda, K.; Aoki, D.; Mabuchi, S.; Kamiura, S.; Yamaguchi, S.; Aoki, Y.; Saito, T.; et al. Phase II basket trial of perifosine monotherapy for recurrent gynecologic cancer with or without PIK3CA mutations. Invest. New Drugs 2017, 35, 800–812. [Google Scholar] [CrossRef]
- Trédan, O.; Treilleux, I.; Wang, Q.; Gane, N.; Pissaloux, D.; Bonnin, N.; Petit, T.; Cretin, J.; Bonichon-Lamichhane, N.; Priou, F.; et al. Predicting everolimus treatment efficacy in patients with advanced endometrial carcinoma: A GINECO group study. Target. Oncol. 2013, 8, 243–251. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Final overall survival results from SOLAR-1. Ann. Oncol. 2021, 32, 208–217. [Google Scholar] [CrossRef]
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Gomez Moreno, H.L.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef]
- Huw, L.Y.; O’Brien, C.; Pandita, A.; Mohan, S.; Spoerke, J.M.; Lu, S.; Wang, Y.; Hampton, G.M.; Wilson, T.R.; Lackner, M.R. Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer. Oncogenesis 2013, 2, e83. [Google Scholar] [CrossRef]
- Vasan, N.; Razavi, P.; Johnson, J.L.; Shao, H.; Shah, H.; Antoine, A.; Ladewig, E.; Gorelick, A.; Lin, T.Y.; Toska, E.; et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science 2019, 366, 714–723. [Google Scholar] [CrossRef]
- Hutchinson, K.E.; Chen, J.W.; Savage, H.M.; Stout, T.J.; Schimmoller, F.; Cortés, J.; Dent, S.; Harbeck, N.; Jacot, W.; Krop, I.; et al. Multiple PIK3CA mutation clonality correlates with outcomes in taselisib + fulvestrant-treated ER+/HER2-, PIK3CA-mutated breast cancers. Genome Med. 2023, 15, 28. [Google Scholar] [CrossRef]
- Mukherjee, R.; Vanaja, K.G.; Boyer, J.A.; Gadal, S.; Solomon, H.; Chandarlapaty, S.; Levchenko, A.; Rosen, N. Regulation of PTEN translation by PI3K signaling maintains pathway homeostasis. Mol. Cell 2021, 81, 708–723.e705. [Google Scholar] [CrossRef]
- Edgar, K.A.; Crocker, L.; Cheng, E.; Wagle, M.C.; Wongchenko, M.; Yan, Y.; Wilson, T.R.; Dompe, N.; Neve, R.M.; Belvin, M.; et al. Amphiregulin and PTEN evoke a multimodal mechanism of acquired resistance to PI3K inhibition. Genes Cancer 2014, 5, 113–126. [Google Scholar] [CrossRef]
- Juric, D.; Castel, P.; Griffith, M.; Griffith, O.L.; Won, H.H.; Ellis, H.; Ebbesen, S.H.; Ainscough, B.J.; Ramu, A.; Iyer, G.; et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 2015, 518, 240–244. [Google Scholar] [CrossRef]
- Wee, S.; Wiederschain, D.; Maira, S.M.; Loo, A.; Miller, C.; deBeaumont, R.; Stegmeier, F.; Yao, Y.M.; Lengauer, C. PTEN-deficient cancers depend on PIK3CB. Proc. Natl. Acad. Sci. USA 2008, 105, 13057–13062. [Google Scholar] [CrossRef]
- Ni, J.; Liu, Q.; Xie, S.; Carlson, C.; Von, T.; Vogel, K.; Riddle, S.; Benes, C.; Eck, M.; Roberts, T.; et al. Functional characterization of an isoform-selective inhibitor of PI3K-p110beta as a potential anticancer agent. Cancer Discov. 2012, 2, 425–433. [Google Scholar] [CrossRef]
- Juric, D.; Kalinsky, K.; Turner, N.C.; Jhaveri, K.L.; Schmid, P.; Loi, S.; Saura, C.; Im, S.-A.; Sunpaweravong, P.; Li, H.; et al. First-line inavolisib/placebo + palbociclib + fulvestrant (Inavo/Pbo+Palbo+Fulv) in patients (pts) with PIK3CA-mutated, hormone receptor-positive, HER2-negative locally advanced/metastatic breast cancer who relapsed during/within 12 months (mo) of adjuvant endocrine therapy completion: INAVO120 Phase III randomized trial additional analyses. J. Clin. Oncol. 2024, 42, 1003. [Google Scholar] [CrossRef]
- Juric, D.; Kalinsky, K.; Im, S.-A.; Ciruelos, E.M.; Bianchini, G.; Barrios, C.H.; Jacot, W.; Schmid, P.; Loi, S.; Rugo, H.S.; et al. INAVO121: Phase III study of inavolisib (INAVO) + fulvestrant (FUL) vs. alpelisib (ALP) + FUL in patients (pts) with hormone receptor-positive, HER2-negative (HR+, HER2–) PIK3CA-mutated (mut) locally advanced or metastatic breast cancer (LA/mBC). J. Clin. Oncol. 2023, 41, TPS1123. [Google Scholar] [CrossRef]
- Varkaris, A.; Fece de la Cruz, F.; Martin, E.E.; Norden, B.L.; Chevalier, N.; Kehlmann, A.M.; Leshchiner, I.; Barnes, H.; Ehnstrom, S.; Stavridi, A.M.; et al. Allosteric PI3K-alpha inhibition overcomes on-target resistance to orthosteric inhibitors mediated by secondary PIK3CA mutations. Cancer Discov. 2023, 14, 227–239. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Walter, K.; Spoerke, J.M.; O’Brien, C.; Huw, L.Y.; Hampton, G.M.; Lackner, M.R. Activating Mutations in PIK3CB Confer Resistance to PI3K Inhibition and Define a Novel Oncogenic Role for p110beta. Cancer Res. 2016, 76, 1193–1203. [Google Scholar] [CrossRef]
- Goncalves, M.D.; Farooki, A. Management of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia. Integr. Cancer Ther. 2022, 21, 15347354211073163. [Google Scholar] [CrossRef]
- Sekar, V.; Shaik, S. THU380 a Case of Alpelisib Induced Diabetic Ketoacidosis (Dka) in A Patient with Type 2 Diabetes Mellitus and Rechallenge with SGLT2 Inhibitor. J. Endocr. Soc. 2023, 7, bvad114-813. [Google Scholar] [CrossRef]
- Leung, M.; Rodrigues, P.; Roitman, D. Ketoacidosis in a Patient with Type 2 Diabetes Requiring Alpelisib: Learnings and Observations Regarding Alpelisib Initiation and Rechallenge. OncoTargets Ther. 2022, 15, 1309–1315. [Google Scholar] [CrossRef]
- Hopkins, B.D.; Pauli, C.; Du, X.; Wang, D.G.; Li, X.; Wu, D.; Amadiume, S.C.; Goncalves, M.D.; Hodakoski, C.; Lundquist, M.R.; et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 2018, 560, 499–503. [Google Scholar] [CrossRef]
- Juric, D.; Jhaveri, K.; Beeram, M.; Hamilton, E.; Chau, V.; Hanley, M.P.; Liu, S.; Smyth, L.M.; Meric-Bernstam, F. Abstract OT3-08-01: A phase 1 trial of LOXO-783, a potent, highly mutant-selective, brain-penetrant allosteric PI3Kα H1047R inhibitor in PIK3CA H1047R-mutant advanced breast cancer (aBC) and other solid tumors (PIKASSO-01, trial in progress). Cancer Res. 2023, 83, OT3-08-01. [Google Scholar] [CrossRef]
- Song, K.W.; Edgar, K.A.; Hanan, E.J.; Hafner, M.; Oeh, J.; Merchant, M.; Sampath, D.; Nannini, M.A.; Hong, R.; Phu, L.; et al. RTK-Dependent Inducible Degradation of Mutant PI3Kα Drives GDC-0077 (Inavolisib) Efficacy. Cancer Discov. 2022, 12, 204–219. [Google Scholar] [CrossRef]
- Castellano, E.; Downward, J. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes. Cancer 2011, 2, 261–274. [Google Scholar] [CrossRef]
- Sodir, N.M.; Pathria, G.; Adamkewicz, J.I.; Kelley, E.H.; Sudhamsu, J.; Merchant, M.; Chiarle, R.; Maddalo, D. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discov. 2023, 13, 2339–2355. [Google Scholar] [CrossRef]
- Scharpf, R.B.; Balan, A.; Ricciuti, B.; Fiksel, J.; Cherry, C.; Wang, C.; Lenoue-Newton, M.L.; Rizvi, H.A.; White, J.R.; Baras, A.S.; et al. Genomic Landscapes and Hallmarks of Mutant RAS in Human Cancers. Cancer Res. 2022, 82, 4058–4078. [Google Scholar] [CrossRef]
- Miller, C.R.; Oliver, K.E.; Farley, J.H. MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol. Oncol. 2014, 133, 128–137. [Google Scholar] [CrossRef]
- Kinross, K.M.; Brown, D.V.; Kleinschmidt, M.; Jackson, S.; Christensen, J.; Cullinane, C.; Hicks, R.J.; Johnstone, R.W.; McArthur, G.A. In vivo activity of combined PI3K/mTOR and MEK inhibition in a Kras(G12D);Pten deletion mouse model of ovarian cancer. Mol. Cancer Ther. 2011, 10, 1440–1449. [Google Scholar] [CrossRef]
- Dunn, E.; Chitcholtan, K.; Sykes, P.; Garrill, A. The Anti-Proliferative Effect of PI3K/mTOR and ERK Inhibition in Monolayer and Three-Dimensional Ovarian Cancer Cell Models. Cancers 2022, 14, 395. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, S.J.; Ryu, J.H.; Kim, S.H.; Kwon, I.C.; Roberts, T.M. Combination of KRAS gene silencing and PI3K inhibition for ovarian cancer treatment. J. Control Release 2020, 318, 98–108. [Google Scholar] [CrossRef]
- Smith, A.E.; Chan, S.; Wang, Z.; McCloskey, A.; Reilly, Q.; Wang, J.Z.; Patel, H.V.; Koshizuka, K.; Soifer, H.S.; Kessler, L.; et al. Tipifarnib Potentiates the Antitumor Effects of PI3Kα Inhibition in PIK3CA- and HRAS-Dysregulated HNSCC via Convergent Inhibition of mTOR Activity. Cancer Res. 2023, 83, 3252–3263. [Google Scholar] [CrossRef]
- Solzak, J.P.; Atale, R.V.; Hancock, B.A.; Sinn, A.L.; Pollok, K.E.; Jones, D.R.; Radovich, M. Dual PI3K and Wnt pathway inhibition is a synergistic combination against triple negative breast cancer. NPJ Breast Cancer 2017, 3, 17. [Google Scholar] [CrossRef]
- Tenbaum, S.P.; Ordóñez-Morán, P.; Puig, I.; Chicote, I.; Arqués, O.; Landolfi, S.; Fernández, Y.; Herance, J.R.; Gispert, J.D.; Mendizabal, L.; et al. β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat. Med. 2012, 18, 892–901. [Google Scholar] [CrossRef]
- Zhong, Z.; Sepramaniam, S.; Chew, X.H.; Wood, K.; Lee, M.A.; Madan, B.; Virshup, D.M. PORCN inhibition synergizes with PI3K/mTOR inhibition in Wnt-addicted cancers. Oncogene 2019, 38, 6662–6677. [Google Scholar] [CrossRef]
- Arqués, O.; Chicote, I.; Puig, I.; Tenbaum, S.P.; Argilés, G.; Dienstmann, R.; Fernández, N.; Caratù, G.; Matito, J.; Silberschmidt, D.; et al. Tankyrase Inhibition Blocks Wnt/β-Catenin Pathway and Reverts Resistance to PI3K and AKT Inhibitors in the Treatment of Colorectal Cancer. Clin. Cancer Res. 2016, 22, 644–656. [Google Scholar] [CrossRef]
- Giannakis, M.; Hodis, E.; Jasmine Mu, X.; Yamauchi, M.; Rosenbluh, J.; Cibulskis, K.; Saksena, G.; Lawrence, M.S.; Qian, Z.R.; Nishihara, R.; et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 2014, 46, 1264–1266. [Google Scholar] [CrossRef]
- Bosch, A.; Li, Z.; Bergamaschi, A.; Ellis, H.; Toska, E.; Prat, A.; Tao, J.J.; Spratt, D.E.; Viola-Villegas, N.T.; Castel, P.; et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci. Transl. Med. 2015, 7, 283ra251. [Google Scholar] [CrossRef]
- Shen, F.; Gao, Y.; Ding, J.; Chen, Q. Is the positivity of estrogen receptor or progesterone receptor different between type 1 and type 2 endometrial cancer? Oncotarget 2017, 8, 506–511. [Google Scholar] [CrossRef]
- Wu, S.; Wang, S.; Gao, F.; Li, L.; Zheng, S.; Yung, W.K.A.; Koul, D. Activation of WEE1 confers resistance to PI3K inhibition in glioblastoma. Neuro-Oncology 2018, 20, 78–91. [Google Scholar] [CrossRef]
- Huang, T.T.; Brill, E.; Nair, J.R.; Zhang, X.; Wilson, K.M.; Chen, L.; Thomas, C.J.; Lee, J.M. Targeting the PI3K/mTOR Pathway Augments CHK1 Inhibitor-Induced Replication Stress and Antitumor Activity in High-Grade Serous Ovarian Cancer. Cancer Res. 2020, 80, 5380–5392. [Google Scholar] [CrossRef]
- Huang, T.T.; Chiang, C.Y.; Nair, J.R.; Wilson, K.M.; Cheng, K.; Lee, J.-M. AKT1 interacts with DHX9 to Mitigate R Loop–Induced Replication Stress in Ovarian Cancer. Cancer Res. 2024, 84, 887–904. [Google Scholar] [CrossRef]
- Wang, Y.; Hoang, L.; Ji, J.X.; Huntsman, D.G. SWI/SNF Complex Mutations in Gynecologic Cancers: Molecular Mechanisms and Models. Annu. Rev. Pathol. 2020, 15, 467–492. [Google Scholar] [CrossRef]
- da Costa, A.; Chowdhury, D.; Shapiro, G.I.; D’Andrea, A.D.; Konstantinopoulos, P.A. Targeting replication stress in cancer therapy. Nat. Rev. Drug Discov. 2023, 22, 38–58. [Google Scholar] [CrossRef]
- Xing, B.; Zhang, X.; Gu, X.; Xiang, L.; Wang, C.; Jin, Y. Explore the alterations of downstream molecular pathways caused by ARID1A mutation/knockout in human endometrial cancer cells. J. Cancer Res. Clin. Oncol. 2023, 149, 17529–17541. [Google Scholar] [CrossRef]
- Vora, S.R.; Juric, D.; Kim, N.; Mino-Kenudson, M.; Huynh, T.; Costa, C.; Lockerman, E.L.; Pollack, S.F.; Liu, M.; Li, X.; et al. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 2014, 26, 136–149. [Google Scholar] [CrossRef]
- Gao, J.J.; Cheng, J.; Bloomquist, E.; Sanchez, J.; Wedam, S.B.; Singh, H.; Amiri-Kordestani, L.; Ibrahim, A.; Sridhara, R.; Goldberg, K.B.; et al. CDK4/6 inhibitor treatment for patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer: A US Food and Drug Administration pooled analysis. Lancet Oncol. 2020, 21, 250–260. [Google Scholar] [CrossRef]
- Morrison, L.; Loibl, S.; Turner, N.C. The CDK4/6 inhibitor revolution—A game-changing era for breast cancer treatment. Nat. Rev. Clin. Oncol. 2023, 21, 89–105. [Google Scholar] [CrossRef]
- O’Brien, N.A.; McDermott, M.S.J.; Conklin, D.; Luo, T.; Ayala, R.; Salgar, S.; Chau, K.; DiTomaso, E.; Babbar, N.; Su, F.; et al. Targeting activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based therapies in preclinical models of hormone receptor-positive breast cancer. Breast Cancer Res. 2020, 22, 89. [Google Scholar] [CrossRef]
- Banerjee, S.; Giannone, G.; Clamp, A.R.; Ennis, D.P.; Glasspool, R.M.; Herbertson, R.; Krell, J.; Riisnaes, R.; Mirza, H.B.; Cheng, Z.; et al. Efficacy and Safety of Weekly Paclitaxel Plus Vistusertib vs Paclitaxel Alone in Patients with Platinum-Resistant Ovarian High-Grade Serous Carcinoma: The OCTOPUS Multicenter, Phase 2, Randomized Clinical Trial. JAMA Oncol. 2023, 9, 675–682. [Google Scholar] [CrossRef]
- Curigliano, G.; Shapiro, G.I.; Kristeleit, R.S.; Abdul Razak, A.R.; Leong, S.; Alsina, M.; Giordano, A.; Gelmon, K.A.; Stringer-Reasor, E.; Vaishampayan, U.N.; et al. A Phase 1B open-label study of gedatolisib (PF-05212384) in combination with other anti-tumour agents for patients with advanced solid tumours and triple-negative breast cancer. Br. J. Cancer 2023, 128, 30–41. [Google Scholar] [CrossRef]
- Tsang, E.S.; Aggarwal, R.R.; Dhawan, M.S.; Bergsland, E.K.; Alvarez, E.A.; Calabrese, S.; Pacaud, R.; Garcia, J.; Fattah, D.; Thomas, S.; et al. A Phase IB Trial of the PI3K Inhibitor Alpelisib and Weekly Cisplatin in Patients with Solid Tumor Malignancies. Cancer Res. Commun. 2022, 2, 570–576. [Google Scholar] [CrossRef]
- Konstantinopoulos, P.A.; Kim, J.W.; Freyer, G.; Lee, J.Y.; Gaba, L.; Grisham, R.N.; Colombo, N.; Wu, X.; Sehouli, J.; Cruz, F.; et al. Efficacy and safety of alpelisib plus olaparib versus chemotherapy among patients with platinum-resistant or refractory high-grade serous ovarian cancer without BRCA mutation: Primary analysis of the EPIK-O trial. In Proceedings of the Society for Gynecologic Oncology Annual Meeting, San Diego, CA, USA, 16–18 March 2024. [Google Scholar]
- Yap, T.A.; Kristeleit, R.; Michalarea, V.; Pettitt, S.J.; Lim, J.S.J.; Carreira, S.; Roda, D.; Miller, R.; Riisnaes, R.; Miranda, S.; et al. Phase I Trial of the PARP Inhibitor Olaparib and AKT Inhibitor Capivasertib in Patients with BRCA1/2- and Non-BRCA1/2-Mutant Cancers. Cancer Discov. 2020, 10, 1528–1543. [Google Scholar] [CrossRef]
- Matulonis, U.A.; Wulf, G.M.; Barry, W.T.; Birrer, M.; Westin, S.N.; Farooq, S.; Bell-McGuinn, K.M.; Obermayer, E.; Whalen, C.; Spagnoletti, T.; et al. Phase I dose escalation study of the PI3kinase pathway inhibitor BKM120 and the oral poly (ADP ribose) polymerase (PARP) inhibitor olaparib for the treatment of high-grade serous ovarian and breast cancer. Ann. Oncol. 2017, 28, 512–518. [Google Scholar] [CrossRef]
- Gupta, S.; Argilés, G.; Munster, P.N.; Hollebecque, A.; Dajani, O.; Cheng, J.D.; Wang, R.; Swift, A.; Tosolini, A.; Piha-Paul, S.A. A Phase I Trial of Combined Ridaforolimus and MK-2206 in Patients with Advanced Malignancies. Clin. Cancer Res. 2015, 21, 5235–5244. [Google Scholar] [CrossRef]
- Wise-Draper, T.M.; Moorthy, G.; Salkeni, M.A.; Karim, N.A.; Thomas, H.E.; Mercer, C.A.; Beg, M.S.; O’Gara, S.; Olowokure, O.; Fathallah, H.; et al. A Phase Ib Study of the Dual PI3K/mTOR Inhibitor Dactolisib (BEZ235) Combined with Everolimus in Patients with Advanced Solid Malignancies. Target. Oncol. 2017, 12, 323–332. [Google Scholar] [CrossRef]
- Curigliano, G.; Martin, M.; Jhaveri, K.; Beck, J.T.; Tortora, G.; Fazio, N.; Maur, M.; Hubner, R.A.; Lahner, H.; Donnet, V.; et al. Alpelisib in combination with everolimus ± exemestane in solid tumours: Phase Ib randomised, open-label, multicentre study. Eur. J. Cancer 2021, 151, 49–62. [Google Scholar] [CrossRef]
- Brana, I.; Berger, R.; Golan, T.; Haluska, P.; Edenfield, J.; Fiorica, J.; Stephenson, J.; Martin, L.P.; Westin, S.; Hanjani, P.; et al. A parallel-arm phase I trial of the humanised anti-IGF-1R antibody dalotuzumab in combination with the AKT inhibitor MK-2206, the mTOR inhibitor ridaforolimus, or the NOTCH inhibitor MK-0752, in patients with advanced solid tumours. Br. J. Cancer 2014, 111, 1932–1944. [Google Scholar] [CrossRef]
- Hyman, D.M.; Tran, B.; Paz-Ares, L.; Machiels, J.P.; Schellens, J.H.; Bedard, P.L.; Campone, M.; Cassier, P.A.; Sarantopoulos, J.; Vaishampayan, U.; et al. Combined PIK3CA and FGFR Inhibition with Alpelisib and Infigratinib in Patients with PIK3CA-Mutant Solid Tumors, with or without FGFR Alterations. JCO Precis. Oncol. 2019, 3, 1–13. [Google Scholar] [CrossRef]
- Campos, S.M.; Berlin, S.; Krasner, C.N.; Whalen, C.; Atkinson, T.; Meegan, K.; Pereira, L.; Tyburski, K.; Lou, W.; Lee, H.; et al. A phase I study of AZD2171 and Temsirolimus in patients with advanced gynecological malignancies. Cancer Chemother. Pharmacol. 2022, 89, 423–430. [Google Scholar] [CrossRef]
- Ahmed, J.; Stephen, B.; Beyaz, S.; Chung, C.; Kilic, E.; Khawaja, M.R.; Yang, Y.; Nick, A.M.; Raso, M.G.; Toro, E.B.; et al. Abstract A121: Temsirolimus in combination with metformin in patients with advanced or recurrent endometrial cancer. Mol. Cancer Ther. 2023, 22, A121. [Google Scholar] [CrossRef]
- Bedard, P.L.; Tabernero, J.; Janku, F.; Wainberg, Z.A.; Paz-Ares, L.; Vansteenkiste, J.; Van Cutsem, E.; Pérez-García, J.; Stathis, A.; Britten, C.D.; et al. A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin. Cancer Res. 2015, 21, 730–738. [Google Scholar] [CrossRef]
- Schram, A.M.; Gandhi, L.; Mita, M.M.; Damstrup, L.; Campana, F.; Hidalgo, M.; Grande, E.; Hyman, D.M.; Heist, R.S. A phase Ib dose-escalation and expansion study of the oral MEK inhibitor pimasertib and PI3K/MTOR inhibitor voxtalisib in patients with advanced solid tumours. Br. J. Cancer 2018, 119, 1471–1476. [Google Scholar] [CrossRef]
- Westin, S.N.; Sill, M.W.; Coleman, R.L.; Waggoner, S.; Moore, K.N.; Mathews, C.A.; Martin, L.P.; Modesitt, S.C.; Lee, S.; Ju, Z.; et al. Safety lead-in of the MEK inhibitor trametinib in combination with GSK2141795, an AKT inhibitor, in patients with recurrent endometrial cancer: An NRG Oncology/GOG study. Gynecol. Oncol. 2019, 155, 420–428. [Google Scholar] [CrossRef]
- Arend, R.C.; Davis, A.M.; Chimiczewski, P.; O’Malley, D.M.; Provencher, D.; Vergote, I.; Ghamande, S.; Birrer, M.J. EMR 20006-012: A phase II randomized double-blind placebo controlled trial comparing the combination of pimasertib (MEK inhibitor) with SAR245409 (PI3K inhibitor) to pimasertib alone in patients with previously treated unresectable borderline or low grade ovarian cancer. Gynecol. Oncol. 2020, 156, 301–307. [Google Scholar] [CrossRef]
- Bardia, A.; Gounder, M.; Rodon, J.; Janku, F.; Lolkema, M.P.; Stephenson, J.J.; Bedard, P.L.; Schuler, M.; Sessa, C.; LoRusso, P.; et al. Phase Ib Study of Combination Therapy with MEK Inhibitor Binimetinib and Phosphatidylinositol 3-Kinase Inhibitor Buparlisib in Patients with Advanced Solid Tumors with RAS/RAF Alterations. Oncologist 2020, 25, e160–e169. [Google Scholar] [CrossRef]
- Wheler, J.J.; Moulder, S.L.; Naing, A.; Janku, F.; Piha-Paul, S.A.; Falchook, G.S.; Zinner, R.; Tsimberidou, A.M.; Fu, S.; Hong, D.S.; et al. Anastrozole and everolimus in advanced gynecologic and breast malignancies: Activity and molecular alterations in the PI3K/AKT/mTOR pathway. Oncotarget 2014, 5, 3029–3038. [Google Scholar] [CrossRef]
- Colon-Otero, G.; Weroha, S.J.; Foster, N.R.; Haluska, P.; Hou, X.; Wahner-Hendrickson, A.E.; Jatoi, A.; Block, M.S.; Dinh, T.A.; Robertson, M.W.; et al. Phase 2 trial of everolimus and letrozole in relapsed estrogen receptor-positive high-grade ovarian cancers. Gynecol. Oncol. 2017, 146, 64–68. [Google Scholar] [CrossRef]
- Slomovitz, B.M.; Filiaci, V.L.; Walker, J.L.; Taub, M.C.; Finkelstein, K.A.; Moroney, J.W.; Fleury, A.C.; Muller, C.Y.; Holman, L.L.; Copeland, L.J.; et al. A randomized phase II trial of everolimus and letrozole or hormonal therapy in women with advanced, persistent or recurrent endometrial carcinoma: A GOG Foundation study. Gynecol. Oncol. 2022, 164, 481–491. [Google Scholar] [CrossRef]
- Heudel, P.; Frenel, J.S.; Dalban, C.; Bazan, F.; Joly, F.; Arnaud, A.; Abdeddaim, C.; Chevalier-Place, A.; Augereau, P.; Pautier, P.; et al. Safety and Efficacy of the mTOR Inhibitor, Vistusertib, Combined with Anastrozole in Patients with Hormone Receptor-Positive Recurrent or Metastatic Endometrial Cancer: The VICTORIA Multicenter, Open-label, Phase 1/2 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1001–1009. [Google Scholar] [CrossRef]
- Hong, D.S.; Moore, K.N.; Bendell, J.C.; Karp, D.D.; Wang, J.S.; Ulahannan, S.V.; Jones, S.; Wu, W.; Donoho, G.P.; Ding, Y.; et al. Preclinical Evaluation and Phase Ib Study of Prexasertib, a CHK1 Inhibitor, and Samotolisib (LY3023414), a Dual PI3K/mTOR Inhibitor. Clin. Cancer Res. 2021, 27, 1864–1874. [Google Scholar] [CrossRef]
- Soliman, P.T.; Westin, S.N.; Iglesias, D.A.; Fellman, B.M.; Yuan, Y.; Zhang, Q.; Yates, M.S.; Broaddus, R.R.; Slomovitz, B.M.; Lu, K.H.; et al. Everolimus, Letrozole, and Metformin in Women with Advanced or Recurrent Endometrioid Endometrial Cancer: A Multi-Center, Single Arm, Phase II Study. Clin. Cancer Res. 2020, 26, 581–587. [Google Scholar] [CrossRef]
- Barczyński, B.; Frąszczak, K.; Kotarski, J. Perspectives of metformin use in endometrial cancer and other gynaecological malignancies. J. Drug Target. 2022, 30, 359–367. [Google Scholar] [CrossRef]
- Monk, B.J.; Grisham, R.N.; Banerjee, S.; Kalbacher, E.; Mirza, M.R.; Romero, I.; Vuylsteke, P.; Coleman, R.L.; Hilpert, F.; Oza, A.M.; et al. MILO/ENGOT-ov11: Binimetinib Versus Physician’s Choice Chemotherapy in Recurrent or Persistent Low-Grade Serous Carcinomas of the Ovary, Fallopian Tube, or Primary Peritoneum. J. Clin. Oncol. 2020, 38, 3753–3762. [Google Scholar] [CrossRef]
- Gershenson, D.M.; Miller, A.; Brady, W.E.; Paul, J.; Carty, K.; Rodgers, W.; Millan, D.; Coleman, R.L.; Moore, K.N.; Banerjee, S.; et al. Trametinib versus standard of care in patients with recurrent low-grade serous ovarian cancer (GOG 281/LOGS): An international, randomised, open-label, multicentre, phase 2/3 trial. Lancet 2022, 399, 541–553. [Google Scholar] [CrossRef]
- Razavi, P.; Dickler, M.N.; Shah, P.D.; Toy, W.; Brown, D.N.; Won, H.H.; Li, B.T.; Shen, R.; Vasan, N.; Modi, S.; et al. Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors. Nat. Cancer 2020, 1, 382–393. [Google Scholar] [CrossRef]
- Drouyer, A.; Beaussire, L.; Jorda, P.; Leheurteur, M.; Guillemet, C.; Berghian, A.; Georgescu, D.; Di Fiore, F.; Perdrix, A.; Clatot, F. Clinical relevance of circulating ESR1 mutations during endocrine therapy for advanced hormone-dependent endometrial carcinoma. BMC Cancer 2023, 23, 1061. [Google Scholar] [CrossRef]
- Previs, R.A.; Armaiz-Pena, G.N.; Ivan, C.; Dalton, H.J.; Rupaimoole, R.; Hansen, J.M.; Lyons, Y.; Huang, J.; Haemmerle, M.; Wagner, M.J.; et al. Role of YAP1 as a Marker of Sensitivity to Dual AKT and P70S6K Inhibition in Ovarian and Uterine Malignancies. J. Natl. Cancer Inst. 2017, 109, djw296. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Huang, H.-Y.; Lin, Z.; Ranieri, M.; Li, S.; Sahu, S.; Liu, Y.; Ban, Y.; Guidry, K.; Hu, H.; et al. Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy. Cancer Res. 2023, 83, 4095–4111. [Google Scholar] [CrossRef]
Target | Drug | Initial FDA Approval Information | Current FDA-Approved Indications |
---|---|---|---|
PI3K | Idelalisib (PI3Kδ) | 2014: Accelerated approval as a single-agent treatment for relapsed follicular lymphoma and small lymphocytic leukemia after two lines of therapy 2014: Regular approval in combination with rituximab for relapsed chronic lymphocytic leukemia in patients for whom rituximab alone would be considered appropriate therapy due to other comorbidities |
|
Copanlisib (PI3Kα, δ) | 2017: Accelerated approval as a single-agent treatment for relapsed follicular lymphoma who have received ≥ 2 prior systemic therapies |
| |
Duvelisib (PI3Kδ, γ) | 2018: Accelerated approval as a single agent for chronic lymphocytic leukemia, small lymphocytic lymphoma, and follicular lymphoma after ≥ 2 lines of therapy |
| |
Alpelisib (PI3Kα) | 2019: Regular approval in combination with fulvestrant for postmenopausal women, and men, with hormone receptor-positive, human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated, advanced, or metastatic breast cancer following progression on or after an endocrine-based regimen |
| |
Umbralisib (PI3Kδ) | 2021: Accelerated approval as single agent for relapsed or refractory marginal zone lymphoma who have received ≥ 1 prior anti-CD20-based regimen, and relapsed or refractory follicular lymphoma who have received ≥ 3 prior lines of systemic therapy |
| |
AKT | Capivasertib (pan-AKT isoform) | 2023: Regular approval in combination with fulvestrant for hormone receptor-positive, HER2-negative, PIK3CA-mutated, advanced, or metastatic breast cancer with one or more PIK3CA/AKT1/PTEN-alterations, following progression on at least one endocrine-based regimen in the metastatic setting or recurrence on or within 12 months of completing adjuvant therapy |
|
MTOR | Sirolimus (mTORC1) | 1999: Regular approval as a single agent for prophylaxis of organ rejection in patients receiving renal transplants |
|
Temsirolimus (mTORC1) | 2007: Regular approval as a single agent for advanced renal cell carcinoma |
| |
Everolimus (mTORC1) | 2009: Regular approval as single agent for advanced renal cell carcinoma after failure of either sunitinib or sorafenib |
|
Target | Drug | Type of Alteration | Genes Altered | De Novo/Acquired Resistance | Disease Setting |
---|---|---|---|---|---|
PI3K | Pilaralisib [18] (Pan-class I PI3K) | MAPK pathway-activating mutations | KRAS R68S | De novo | Advanced or recurrent EC |
KRAS G12D | De novo | ||||
KRAS G12V | De novo | ||||
KRAS G13D | De novo | ||||
AKT | GSK2141795 [19] (Pan-AKT isoform) | MAPK pathway-activating mutations | KRAS, NRAS gain of function | De novo | Recurrent or persistent gynecological cancers including OC or EC |
Perifosine [20] (Pan-AKT isoform) | MAPK pathway-activating mutations | KRAS G13D | De novo | Recurrent or persistent gynecological cancers including OC, EC, or CC | |
HRAS not specified | De novo | ||||
Wnt/β-catenin pathway alterations | FBXW7 R465C | De novo | |||
FBXW7 R385C | De novo | ||||
FBXW7 R226C | De novo | ||||
MTOR | Everolimus [21] (mTORC1) | PTEN loss of function | PTEN c.728delT, p.Phe243fs | De novo | Advanced EC |
PTEN c.697C>T, p.Arg233X + c.950_953del, p.Val317fs | De novo | ||||
MAPK pathway-activating mutations | KRAS G12D | De novo | |||
KRAS G12V | De novo | ||||
Dual PI3K/ mTOR | Samotolisib [17] (Dual pan-class I PI3K/mTORC1/2) | MAPK pathway-activating mutations | KRAS G12S | Acquired | Advanced EC |
FGFR2-activating mutation | FGFR2 P253R | Acquired | |||
DNA damage repair alterations | TP53 R273C | Acquired | |||
ATM X823_splice | Acquired | ||||
PIK3CA-activating mutation | PIK3CA H1047L | Acquired |
Drugs (Mechanism) | Phase | Eligible Patients | Common Adverse Events (>10%) | ORR (RECIST) |
---|---|---|---|---|
Dual PI3K pathway inhibition | ||||
MK-2206 (Pan-AKT inhibitor) + ridaforolimus (mTORC1 inhibitor), Gupta 2015 [74] | I | Part A: Advanced solid tumors (n = 11) including EC (n = 1) Part B: Breast and prostate tumors with low RAS gene signature, high Ki67 index, or PTEN deficiency (n = 24) | G1/2: rash, stomatitis, diarrhea, fatigue, decreased appetite, asthenia, hyperglycemia, nausea, dry skin, thrombocytopenia, constipation, vomiting, hypertriglyceridemia G3/4: diarrhea | Part A: Not assessed Part B: ORR 8.3%, EC 0% |
Dactolisib (Dual PI3K/mTOR inhibitor) + everolimus (mTORC1 inhibitor), Wise-Draper 2017 [75] | Ib | Advanced solid tumors (n = 19) including OC (n = 1), EC (n = 1) | G1/2: fatigue, fever, dehydration, anorexia, arthralgias, thrombocytopenia, anemia, AST elevation, ALT elevation, ALP elevation, rash, abdominal pain, nausea, vomiting, diarrhea, mucositis, acute renal failure G3/4: fatigue, dehydration, AST elevation, ALP elevation, anemia, mucositis, diarrhea | ORR 0% (n = 11) |
Alpelisib (PI3Kα-selective inhibitor) + everolimus (mTORC1 inhibitor), Curigliano 2021 [76] | Ib | Doublet escalation phase: Advanced solid tumors (n = 13) including OC (n = 1), CC (n = 1), EC (n = 1) | G1/2: hyperglycemia, diarrhea, stomatitis, asthenia, decreased appetite, nausea, abdominal pain, increased blood creatinine, pyrexia, vomiting, weight decreased, anemia, arthralgia, ba-ck pain, dehydration, fatigue, non-cardiac chest pain, urinary tract infection, upper abdominal pain, acute kidney injury, aphthous ulcer, catarrh, constipation, cough, dry skin, dysgeusia, dyspnea, peripheral edema, skin ulcer G3/4: hyperglycemia, diarrhea, asthenia, hypertension, hyponatremia, increased lipase | Not assessed in doublet escalation phase |
Receptor tyrosine kinase inhibition | ||||
MK-2206 (Pan-AKT inhibitor) + dalotuzumab (IGF-1R inhibitor), Brana 2014 [77] | I | Part A: Advanced solid tumors (n = 24) including OC/PC/FC (n = 7) | G1/2: fatigue, decreased appetite, hyperglycemia, muscle spasm, dry skin, rash, rash maculopapular, dysgeusia, weight decreased, pyrexia, stomatitis G3/4: hyperglycemia | ORR 0%, OC/PC/FC 0% |
Ridaforolimus (mTORC1 inhibitor) + dalotuzumab (IGF-1R inhibitor), Brana 2014 [77] | I | OC/PC/FC with RAS below 50th %, IGF1 expression above 75th % (n = 6) | G1/2: leukopenia, thrombocytopenia, dry eye, dry mouth, diarrhea, nausea, oral pain, stomatitis, vomiting, fatigue, mucosal inflammation, infusion-related reaction, decreased appetite, hypercholesterolemia, hyperglycemia, hypertriglyceridemia, pain in extremity, dysgeusia, cough, pneumonitis, dry skin, petechiae G3/4: abdominal pain, fatigue, decreased appetite, hyperglycemia, hypertriglyceridemia, hypophosphatemia, ECG T-wave inversion, muscle spasm | ORR 0% |
Alpelisib (PI3Kα-selective inhibitor) + infigratinib (pan-FGFR kinase inhibitor), Hyman 2019 [78] | Ib | Advanced solid tumors with PIK3CA mutations ± FGFR alterations (n = 62) including EC (n = 6), OC (n = 5) | G1/2: diarrhea, decreased appetite, stomatitis, nausea, hyperphosphatemia, hyperglycemia, fatigue, dry mouth, vomiting, mucosal inflammation, blood creatinine increased, alopecia, asthenia, dry skin G3/4: hyperglycemia, stomatitis | ORR 9.7%, EC 0%, OC 16.7% |
Temsirolimus (mTORC1 inhibitor) + cediranib (VEGFR inhibitor), Campos 2022 [79] | I | Gynecological cancers (n = 11) including EC (n = 4), OC/PC/FC (n = 4), CC (n = 3) | G1/2: diarrhea, nausea, vomiting, leukopenia, neutropenia, hypertriglyceridemia, elevated AST, elevated ALT, hypercholesterolemia, hyponatremia, proteinuria, abdominal pain, hypertension, mucositis, anorexia, elevated ALP, hyperglycemia, hypophosphatemia, hypokalemia, hypomagnesemia, hypothyroidism, epistaxis, fatigue, headache, rash, dry skin, alopecia, nutritional deficiency G3/4: hypertension, thrombocytopenia, thromboembolic event, edema, hypertriglyceridemia | ORR 0% |
Insulin feedback suppression | ||||
Temsirolimus (mTORC1 inhibitor) + metformin (biguanide derivative), Ahmed 2023 [80] | I | Advanced or recurrent EC (n = 40) | G1/2: hypertriglyceridemia, diarrhea, mucositis, anorexia, anemia | ORR 6% |
Serabelisib (PI3Kα-selective inhibitor) + canagliflozin (SGLT2-inhibitor) (NCT04073680) | Ib/II | Advanced solid tumors with PIK3CA or KRAS mutations | Study status: Unknown status on CT.gov as of May 2020 | |
Copanlisib (PI3Kα, δ-selective inhibitor) + ketogenic diet (insulin suppression) (NCT04750941) | II | Relapsed or refractory follicular lymphoma or relapsed or refractory EC with a documented activating mutation in PIK3CA or PTEN loss | Study status: Active, not recruiting Estimated study completion date: December 2024 | |
MEK inhibition | ||||
Buparlisib (Pan-class I P13K inhibitor) + trametinib (MEK1/2 inhibitor), Bedard 2015 [81] | Ib | Advanced solid tumors with RAS or BRAF mutations (n = 113) including OC (n= 21) | G1/2: dermatitis acneiform, diarrhea, blood CK increased, stomatitis, nausea, rash macular, rash maculopapular, vomiting, AST increased, fatigue, ALT increased, dry skin, hyperglycemia, decreased appetite, asthenia, hypertension G3/4: blood CK increased | ORR 6.2%, OC 28.6% |
Voxtalisib (Dual PI3K/mTOR inhibitor) + pimasertib (MEK1/2 inhibitor), Schram 2018 [82] | Ib | Advanced solid tumors with alteration in one or more of: PTEN, BRAF, KRAS, NRAS, PIK3CA, EGFR, ERBB2, MET, RET, c-KIT, GNAQ, GNA11 (n = 146), OC (n =12) | G1/2 (>20%): diarrhea, fatigue, nausea, vomiting, dermatitis acneiform, maculopapular rash, peripheral edema, pyrexia, decreased appetite, stomatitis, dyspnea G3/4: hyponatremia, disease progression, hypokalemia, maculopapular rash, fatigue | ORR 4.1%, OC 8.3% |
Uprosertib (Pan-AKT isoform inhibitor) + trametinib (MEK1/2 inhibitor), Westin 2019 [83] | I | Recurrent EC (n = 26) | G1/2: blood and lymphatic system disorders, eye disorders, gastrointestinal disorders, general disorders and administration site conditions, investigations, metabolism and nutrition disorders, musculoskeletal and connective tissue disorders, nervous system disorders, renal and urinary disorders, respiratory, thoracic, and mediastinal disorders, skin and subcutaneous tissues disorders, vascular disorders G3: blood and lymphatic system disorders, gastrointestinal disorders, general disorders and administration site conditions, metabolism and nutrition disorders, skin and subcutaneous tissues disorders. vascular disorders | ORR 3.8% |
Voxtalisib (Dual PI3K/mTOR inhibitor) + pimasertib (MEK1/2 inhibitor), Arend 2020 [84] | II | Recurrent unresectable borderline/low malignant potential or LGSOC (n = 32) | G1/2/3/4: anemia, blurred vision, visual impairment, macular detachment, retinal detachment, diarrhea, nausea, stomatitis, dry mouth, vomiting, abdominal pain, fatigue, peripheral edema, chills, blood CPK increase, ALT increase, AST increase, arthralgia, myalgia, dizziness, paresthesia, dermatitis acneiform, alopecia, dry skin, maculopapular rash, pruritis, rash, cardiac disorders | ORR 9.4% |
Buparlisib (Pan-class I P13K inhibitor) + binimetinib (MEK1/2 inhibitor), Bardia 2020 [85] | Ib | Advanced solid tumors with KRAS, NRAS, or BRAF mutations (n = 89) including OC (n = 19) | G1/2: blood CPK increased, diarrhea, AST increase, stomatitis, ALT increase, nausea, maculopapular rash, rash, dermatitis acneiform, fatigue, vomiting, decreased appetite, amylase increased, hyperglycemia, chorioretinopathy, lipase increased, peripheral edema, pruritus, dry skin G3/4: blood CPK increased, AST increase, ALT increase, maculopapular rash | ORR 12%, OC 27.8% |
Everolimus (mTORC1 inhibitor) + avutometinib (RAF/MEK inhibitor) (NCT02407509) | I | Advanced solid tumors or multiple myeloma with RAS/RAF/MEK pathway mutations including BRAF, KRAS and NRAS | Study status: Recruiting Estimated study completion date: May 2024 | |
Endocrine therapy | ||||
Everolimus (mTORC1 inhibitor) + anastrozole (aromatase inhibitor), Wheler 2014 [86] | I | Advanced HR+ gynecological or breast cancers (n = 55) including OC (n = 10), EC (n = 6), CC (n = 2) Expansion cohort: PTEN loss/PIK3CA mutations (n = 22) | G1/2: mucositis | ORR 10%, OC 0%, EC 0%, CC 0% |
Everolimus (mTORC1 inhibitor) + letrozole (aromatase inhibitor), Colon-Otero 2017 [87] | II | Relapsed ER+ HGSOC (n = 20) | G1/2: exact percentages not reported G3/4: abdominal pain, anemia, small bowel obstruction, neutrophil count decreased, white blood cell count decreased, mucositis oral | ORR 16% |
Everolimus (mTORC1 inhibitor) + letrozole (aromatase inhibitor), Slomovitz 2022 [88] | II | Persistent or recurrent EC (n = 37) | G1/2: exact percentages not reported G3/4: anemia, hyperglycemia | ORR 22% |
Vistusertib (Dual mTORC1/2 inhibitor) + anastrozole (aromatase inhibitor), Heudel 2022 [89] | I/II | HR+ recurrent or metastatic EC (n = 49) | G1/2: nausea, fatigue, vomiting, diarrhea, arthralgia, decreased in lymphocytes count, hyperglycemia, anemia G3/4: decrease in lymphocytes count, hyperglycemia | ORR 24.5% |
Everolimus (mTORC1 inhibitor) + levonorgestrel IUD (progesterone) (NCT02397083) | II | Complex atypical hyperplasia and stage IA grade 1 EC | Study status: Active, not recruiting Estimated study completion date: September 2026 | |
Inavolisib (PI3Kα-selective inhibitor) + letrozole (aromatase inhibitor) (NCT04486352) (EndoMAP) | Ib/II | Recurrent or persistent EC | Study status: Recruiting Estimated study completion date: October 2026 | |
Copanlisib (PI3Kα, δ-selective inhibitor) + fulvestrant (estrogen receptor antagonist) (NCT05082025) | II | ER+ and/or PR+ OC, EC, and breast cancers with PI3K (PIK3CA, PIK3R1) and/or PTEN alterations | Study status: Active, not recruiting Estimated study completion date: August 2024 | |
Ipatasertib (Pan-AKT inhibitor) + megestrol acetate (progestin) (NCT05538897) | Ib/II | Recurrent or metastatic endometrioid EC | Study status: Recruiting Estimated study completion date: January 2027 | |
Cell cycle checkpoint inhibition | ||||
Samotolisib (Dual pan-class I PI3K/mTORC1/2 inhibitor) + prexasertib (CHK1 inhibitor), Hong 2021 [90] | Ib | Advanced solid tumors (n = 53) including EC (n = 3), CC (n = 1) | G1/2 (≥20%): white blood cell count decreased/neutrophil count decreased, platelet count decreased, nausea, anemia, vomiting, fatigue, diarrhea, stomatitis, rash, decreased appetite G3/4: white blood cell count decreased/neutrophil count decreased, platelet count decreased, anemia, rash | ORR 15.1%, EC 33%, CC 0% |
Copanlisib (PI3Kα, δ-selective inhibitor) + elimusertib (ATR inhibitor) (NCT05010096) (COPABAY) | I | Advanced solid tumors with a defect in one or more DDR genes | Study status: Withdrawn by company sponsor secondary to no participants enrolled | |
Gedatolisib (Dual PI3K/mTOR inhibitor) + palbociclib (CDK4/6 inhibitor) (NCT03065062) | I | Advanced squamous cell lung cancer, advanced pancreatic cancer, advanced head and neck cancer, or any tumor with suspected PI3K-pathway dependence (such as EC) | Study status: Recruiting Estimated study completion date: January 2026 | |
Triple pathway combination | ||||
Everolimus (mTORC1 inhibitor) + letrozole (aromatase inhibitor) + metformin (biguanide derivative), Soliman 2020 [91] | II | Advanced or recurrent endometrioid EC with KRAS mutation in at least 18 patients (n = 62) | G1/2: exact percentages not reported G3/4: anemia, hypertriglyceridemia | ORR 28% |
Serabelisib (PI3Kα-selective inhibitor) + nab-paclitaxel (microtubule-stabilizing agent) + insulin suppressing diet (insulin suppression) (NCT05300048) | I | Advanced solid tumors with PIK3CA mutations with or without PTEN loss | Study status: Recruiting Estimated study completion date: September 2024 | |
Everolimus (mTORC1 inhibitor) + letrozole (aromatase inhibitor) + metformin (biguanide derivative) (NCT01797523) | II | Advanced or recurrent EC | Study status: Active, not recruiting Estimated study completion date: October 2025 | |
Everolimus (mTORC1 inhibitor) + trametinib (MEK1/2 inhibitor) + lenvatinib (VEGFR-1, -2, -3, FGFR-1, -2, -3, PDGFR-α, RET, c-Kit inhibitor) (NCT04803318) | II | Recurrent/refractory advanced solid tumors | Study status: Recruiting Estimated study completion date: January 2027 | |
Everolimus (mTORC1 inhibitor) + letrozole (aromatase inhibitor) + ribociclib (CDK4/6 inhibitor) (NCT03008408) | II | Advanced or recurrent EC | Study status: Active, not recruiting Estimated study completion date: August 2028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibanez, K.R.; Huang, T.-T.; Lee, J.-M. Combination Therapy Approach to Overcome the Resistance to PI3K Pathway Inhibitors in Gynecological Cancers. Cells 2024, 13, 1064. https://doi.org/10.3390/cells13121064
Ibanez KR, Huang T-T, Lee J-M. Combination Therapy Approach to Overcome the Resistance to PI3K Pathway Inhibitors in Gynecological Cancers. Cells. 2024; 13(12):1064. https://doi.org/10.3390/cells13121064
Chicago/Turabian StyleIbanez, Kristen R., Tzu-Ting Huang, and Jung-Min Lee. 2024. "Combination Therapy Approach to Overcome the Resistance to PI3K Pathway Inhibitors in Gynecological Cancers" Cells 13, no. 12: 1064. https://doi.org/10.3390/cells13121064
APA StyleIbanez, K. R., Huang, T. -T., & Lee, J. -M. (2024). Combination Therapy Approach to Overcome the Resistance to PI3K Pathway Inhibitors in Gynecological Cancers. Cells, 13(12), 1064. https://doi.org/10.3390/cells13121064