Use of FRET-Sensor ‘Mermaid’ to Detect Subtle Changes in Membrane Potential of Primary Mouse PASMCs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primary PASMC Isolation and Cell Culture
2.2. HEK Cell Culture, Lentivirus Production and PASMC Infection
2.3. FRET Imaging
2.4. Direct Immunofluorescence and Confocal Microscopy
2.5. Data Analysis of FRET Measurements
2.6. Cell Harvesting for Patch Clamp Recordings
2.7. Solutions
2.8. Assessment of Cellular Membrane Potential via Automated Patch Clamp Recordings
2.9. Statistical Analysis
3. Results
3.1. Validation of Mermaid- Expression in Primary PASMCs and Experimental Setup
3.2. Functional Validation of Mermaid in Primary Mouse PASMCs
3.3. Potassium–Chloride Dose-Dependently Enhances Mermaid’s FRET Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sylvester, J.T.; Shimoda, L.A.; Aaronson, P.I.; Ward, J.P. Hypoxic pulmonary vasoconstriction. Physiol. Rev. 2012, 92, 367–520. [Google Scholar] [CrossRef]
- Sommer, N.; Hüttemann, M.; Pak, O.; Scheibe, S.; Knoepp, F.; Sinkler, C.; Malczyk, M.; Gierhardt, M.; Esfandiary, A.; Kraut, S.; et al. Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing. Circ. Res. 2017, 121, 424–438. [Google Scholar] [CrossRef]
- Knoepp, F.; Wahl, J.; Andersson, A.; Kraut, S.; Sommer, N.; Weissmann, N.; Ramser, K. A Microfluidic System for Simultaneous Raman Spectroscopy, Patch-Clamp Electrophysiology, and Live-Cell Imaging to Study Key Cellular Events of Single Living Cells in Response to Acute Hypoxia. Small Methods 2021, 5, e2100470. [Google Scholar] [CrossRef]
- Dunham-Snary, K.J.; Wu, D.; Sykes, E.A.; Thakrar, A.; Parlow, L.R.G.; Mewburn, J.D.; Parlow, J.L.; Archer, S.L. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest 2017, 151, 181–192. [Google Scholar] [CrossRef]
- Moudgil, R.; Michelakis, E.D.; Archer, S.L. Hypoxic pulmonary vasoconstriction. J. Appl. Physiol. 2005, 98, 390–403. [Google Scholar] [CrossRef]
- Swenson, E.R. Hypoxic Pulmonary Vasoconstriction. High Alt. Med. Biol. 2013, 14, 101–110. [Google Scholar] [CrossRef]
- Brimioulle, S.; Julien, V.; Gust, R.; Kozlowski, J.K.; Naeije, R.; Schuster, D.P. Importance of hypoxic vasoconstriction in maintaining oxygenation during acute lung injury. Crit. Care Med. 2002, 30, 874–880. [Google Scholar] [CrossRef]
- Karmouty-Quintana, H.; Thandavarayan, R.A.; Keller, S.P.; Sahay, S.; Pandit, L.M.; Akkanti, B. Emerging Mechanisms of Pulmonary Vasoconstriction in SARS-CoV-2-Induced Acute Respiratory Distress Syndrome (ARDS) and Potential Therapeutic Targets. Int. J. Mol. Sci. 2020, 21, 8081. [Google Scholar] [CrossRef]
- Gierhardt, M.; Pak, O.; Walmrath, D.; Seeger, W.; Grimminger, F.; Ghofrani, H.A.; Weissmann, N.; Hecker, M.; Sommer, N. Impairment of hypoxic pulmonary vasoconstriction in acute respiratory distress syndrome. Eur. Respir. Rev. 2021, 30, 210059. [Google Scholar] [CrossRef]
- Herrmann, J.; Mori, V.; Bates, J.H.T.; Suki, B. Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia. Nat. Commun. 2020, 11, 4883. [Google Scholar] [CrossRef]
- Pak, O.; Nolte, A.; Knoepp, F.; Giordano, L.; Pecina, P.; Hüttemann, M.; Grossman, L.I.; Weissmann, N.; Sommer, N. Mitochondrial oxygen sensing of acute hypoxia in specialized cells—Is there a unifying mechanism? Biochim. Biophys. Acta (BBA)-Bioenerg. 2022, 1863, 148911. [Google Scholar] [CrossRef]
- Slingo, M.E. Oxygen-sensing pathways and the pulmonary circulation. J. Physiol. 2023; ahead of print. [Google Scholar] [CrossRef]
- Harder, D.R.; Madden, J.A.; Dawson, C. Hypoxic induction of Ca2+-dependent action potentials in small pulmonary arteries of the cat. J. Appl. Physiol. 1985, 59, 1389–1393. [Google Scholar] [CrossRef]
- Madden, J.A.; Dawson, C.A.; Harder, D.R. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J. Appl. Physiol. 1985, 59, 113–118. [Google Scholar] [CrossRef]
- Osipenko, O.N.; Evans, A.M.; Gurney, A.M. Regulation of the resting potential of rabbit pulmonary artery myocytes by a low threshold, O2-sensing potassium current. Br. J. Pharmacol. 1997, 120, 1461–1470. [Google Scholar] [CrossRef]
- Sommer, N.; Alebrahimdehkordi, N.; Pak, O.; Knoepp, F.; Strielkov, I.; Scheibe, S.; Dufour, E.; Andjelković, A.; Sydykov, A.; Saraji, A.; et al. Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. Sci. Adv. 2020, 6, eaba0694. [Google Scholar] [CrossRef]
- Yuan, X.J.; Goldman, W.F.; Tod, M.L.; Rubin, L.J.; Blaustein, M.P. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am. J. Physiol. 1993, 264, L116–L123. [Google Scholar] [CrossRef]
- Yuan, X.J.; Tod, M.L.; Rubin, L.J.; Blaustein, M.P. NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels. Proc. Natl. Acad. Sci. USA 1996, 93, 10489–10494. [Google Scholar] [CrossRef]
- Ghovanloo, M.-R.; Tyagi, S.; Zhao, P.; Kiziltug, E.; Estacion, M.; Dib-Hajj, S.D.; Waxman, S.G. High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons. Cell Rep. Methods 2023, 3, 100385. [Google Scholar] [CrossRef]
- Bergs, A.C.F.; Liewald, J.F.; Rodriguez-Rozada, S.; Liu, Q.; Wirt, C.; Bessel, A.; Zeitzschel, N.; Durmaz, H.; Nozownik, A.; Dill, H.; et al. All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nat. Commun. 2023, 14, 1939. [Google Scholar] [CrossRef]
- Kaestner, L.; Tian, Q.; Kaiser, E.; Xian, W.; Müller, A.; Oberhofer, M.; Ruppenthal, S.; Sinnecker, D.; Tsutsui, H.; Miyawaki, A.; et al. Genetically Encoded Voltage Indicators in Circulation Research. Int. J. Mol. Sci. 2015, 16, 21626–21642. [Google Scholar] [CrossRef]
- Storace, D.; Sepehri Rad, M.; Kang, B.; Cohen, L.B.; Hughes, T.; Baker, B.J. Toward Better Genetically Encoded Sensors of Membrane Potential. Trends Neurosci. 2016, 39, 277–289. [Google Scholar] [CrossRef]
- Grecco, H.E.; Verveer, P.J. FRET in cell biology: Still shining in the age of super-resolution? ChemPhysChem 2011, 12, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Karasawa, S.; Okamura, Y.; Miyawaki, A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat. Methods 2008, 5, 683–685. [Google Scholar] [CrossRef]
- Klier, P.E.Z.; Roo, R.; Miller, E.W. Fluorescent indicators for imaging membrane potential of organelles. Curr. Opin. Chem. Biol. 2022, 71, 102203. [Google Scholar] [CrossRef]
- Murata, Y.; Iwasaki, H.; Sasaki, M.; Inaba, K.; Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 2005, 435, 1239–1243. [Google Scholar] [CrossRef]
- Pietraszewska-Bogiel, A.; Gadella, T.W.J. FRET microscopy: From principle to routine technology in cell biology. J. Microsc. 2011, 241, 111–118. [Google Scholar] [CrossRef]
- Tsutsui, H.; Jinno, Y.; Tomita, A.; Okamura, Y. Rapid evaluation of a protein-based voltage probe using a field-induced membrane potential change. Biochim. Biophys. Acta (BBA)-Biomembr. 2014, 1838, 1730–1737. [Google Scholar] [CrossRef]
- Benedetti, L.; Ghilardi, A.; Rottoli, E.; De Maglie, M.; Prosperi, L.; Perego, C.; Baruscotti, M.; Bucchi, A.; Del Giacco, L.; Francolini, M. INaP selective inhibition reverts precocious inter- and motorneurons hyperexcitability in the Sod1-G93R zebrafish ALS model. Sci. Rep. 2016, 6, 24515. [Google Scholar] [CrossRef]
- Tsutsui, H.; Higashijima, S.; Miyawaki, A.; Okamura, Y. Visualizing voltage dynamics in zebrafish heart. J. Physiol. 2010, 588, 2017–2021. [Google Scholar] [CrossRef]
- Tian, Q.; Oberhofer, M.; Ruppenthal, S.; Scholz, A.; Buschmann, V.; Tsutsui, H.; Miyawaki, A.; Zeug, A.; Lipp, P.; Kaestner, L. Optical Action Potential Screening on Adult Ventricular Myocytes as an Alternative QT-screen. Cell. Physiol. Biochem. 2011, 27, 281–290. [Google Scholar] [CrossRef]
- András, V.; Tomek, J.; Nagy, N.; Virág, L.; Passini, E.; Rodriguez, B.; Baczkó, I. Cardiac transmembrane ion channels and action potentials: Cellular physiology and arrhythmogenic behavior. Physiol. Rev. 2021, 101, 1083–1176. [Google Scholar] [CrossRef]
- Sweeney, M.; Yuan, J.X.J. Hypoxic pulmonary vasoconstriction: Role of voltage-gated potassium channels. Respir. Res. 2000, 1, 40–48. [Google Scholar] [CrossRef]
- Waypa, G.B.; Marks, J.D.; Mack, M.M.; Boriboun, C.; Mungai, P.T.; Schumacker, P.T. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ. Res. 2002, 91, 719–726. [Google Scholar] [CrossRef]
- Weissmann, N.; Dietrich, A.; Fuchs, B.; Kalwa, H.; Ay, M.; Dumitrascu, R.; Olschewski, A.; Storch, U.; Mederos y Schnitzler, M.; Ghofrani, H.A.; et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc. Natl. Acad. Sci. USA 2006, 103, 19093–19098. [Google Scholar] [CrossRef]
- Salmon, P.; Trono, D. Production and Titration of Lentiviral Vectors. Curr. Protoc. Hum. Genet. 2007, 54, 12.10.11–12.10.24. [Google Scholar] [CrossRef]
- Wilson, J.R.; Clark, R.B.; Banderali, U.; Giles, W.R. Measurement of the membrane potential in small cells using patch clamp methods. Channels 2011, 5, 530–537. [Google Scholar] [CrossRef]
- Perron, A.; Mutoh, H.; Akemann, W.; Ghimire, S.; Dimitrov, D.; Iwamoto, Y.; Knopfel, T. Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front. Mol. Neurosci. 2009, 2, 660. [Google Scholar] [CrossRef]
- Mutoh, H.; Perron, A.; Dimitrov, D.; Iwamoto, Y.; Akemann, W.; Chudakov, D.M.; Knöpfel, T. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS ONE 2009, 4, e4555. [Google Scholar] [CrossRef]
- Kannan, M.; Vasan, G.; Pieribone, V.A. Optimizing Strategies for Developing Genetically Encoded Voltage Indicators. Front. Cell. Neurosci. 2019, 13, 53. [Google Scholar] [CrossRef]
- Kang, B.E.; Leong, L.M.; Kim, Y.; Miyazaki, K.; Ross, W.N.; Baker, B.J. Mechanism of ArcLight derived GEVIs involves electrostatic interactions that can affect proton wires. Biophys. J. 2021, 120, 1916–1926. [Google Scholar] [CrossRef]
- Bando, Y.; Wenzel, M.; Yuste, R. Simultaneous two-photon imaging of action potentials and subthreshold inputs in vivo. Nat. Commun. 2021, 12, 7229. [Google Scholar] [CrossRef]
- Flytzanis, N.C.; Bedbrook, C.N.; Chiu, H.; Engqvist, M.K.; Xiao, C.; Chan, K.Y.; Sternberg, P.W.; Arnold, F.H.; Gradinaru, V. Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat. Commun. 2014, 5, 4894. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, C.; Li, J.Z.; Grewe, B.F.; Zhang, Y.; Eismann, S.; Schnitzer, M.J. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 2015, 350, 1361–1366. [Google Scholar] [CrossRef]
- Kuhn, B.; Roome, C.J. Primer to Voltage Imaging with ANNINE Dyes and Two-Photon Microscopy. Front. Cell. Neurosci. 2019, 13, 321. [Google Scholar] [CrossRef]
- Sung, U.; Sepehri-Rad, M.; Piao, H.H.; Jin, L.; Hughes, T.; Cohen, L.B.; Baker, B.J. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions. PLoS ONE 2015, 10, e0141585. [Google Scholar] [CrossRef]
- Bando, Y.; Grimm, C.; Cornejo, V.H.; Yuste, R. Genetic voltage indicators. BMC Biol. 2019, 17, 71. [Google Scholar] [CrossRef]
- Zheng, C.X.; Wang, S.M.; Bai, Y.H.; Luo, T.T.; Wang, J.Q.; Dai, C.Q.; Guo, B.L.; Luo, S.C.; Wang, D.H.; Yang, Y.L.; et al. Lentiviral Vectors and Adeno-Associated Virus Vectors: Useful Tools for Gene Transfer in Pain Research. Anat. Rec. 2018, 301, 825–836. [Google Scholar] [CrossRef]
- Schambach, A.; Zychlinski, D.; Ehrnstroem, B.; Baum, C. Biosafety features of lentiviral vectors. Hum. Gene Ther. 2013, 24, 132–142. [Google Scholar] [CrossRef]
- Muhuri, M.; Levy, D.I.; Schulz, M.; McCarty, D.; Gao, G. Durability of transgene expression after rAAV gene therapy. Mol. Ther. 2022, 30, 1364–1380. [Google Scholar] [CrossRef]
- Worth, N.F.; Rolfe, B.E.; Song, J.; Campbell, G.R. Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins. Cell Motil. 2001, 49, 130–145. [Google Scholar] [CrossRef]
- Limsuwan, A.; Platoshyn, O.; Yu, Y.; Rubin, L.J.; Rothman, A.; Yuan, J.X. Inhibition of K(+) channel activity in human pulmonary artery smooth muscle cells by serum from patients with pulmonary hypertension secondary to congenital heart disease. Pediatr. Res. 2001, 50, 23–28. [Google Scholar] [CrossRef] [PubMed]
Patch Clamp | Whole Cell | Membrane Only | |||||||
---|---|---|---|---|---|---|---|---|---|
KCl (mM) | VRest (mV) | SEM | n | ∆FRET- Ratio (%) | SEM | n | ∆FRET- Ratio (%) | SEM | n |
5.6 | −31.94 | 1.228 | 11 | 1.629 | 0.742 | 7 | 3.073 | 1.434 | 7 |
25 | −27.13 | 1.493 | 11 | 7.003 | 1.004 | 7 | 8.745 | 2.076 | 7 |
50 | −21.82 | 0.991 | 11 | 19.43 | 1.223 | 9 | 24.73 | 2.735 | 9 |
100 | −14.20 | 1.186 | 11 | 25.95 | 2.116 | 8 | 42.23 | 5.991 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dartsch, R.C.; Kraut, S.; Mayer, T.; Gabel, A.; Dietrich, A.; Weissmann, N.; Fuchs, B.; Knoepp, F. Use of FRET-Sensor ‘Mermaid’ to Detect Subtle Changes in Membrane Potential of Primary Mouse PASMCs. Cells 2024, 13, 1070. https://doi.org/10.3390/cells13121070
Dartsch RC, Kraut S, Mayer T, Gabel A, Dietrich A, Weissmann N, Fuchs B, Knoepp F. Use of FRET-Sensor ‘Mermaid’ to Detect Subtle Changes in Membrane Potential of Primary Mouse PASMCs. Cells. 2024; 13(12):1070. https://doi.org/10.3390/cells13121070
Chicago/Turabian StyleDartsch, Ruth C., Simone Kraut, Tim Mayer, Andreas Gabel, Alexander Dietrich, Norbert Weissmann, Beate Fuchs, and Fenja Knoepp. 2024. "Use of FRET-Sensor ‘Mermaid’ to Detect Subtle Changes in Membrane Potential of Primary Mouse PASMCs" Cells 13, no. 12: 1070. https://doi.org/10.3390/cells13121070
APA StyleDartsch, R. C., Kraut, S., Mayer, T., Gabel, A., Dietrich, A., Weissmann, N., Fuchs, B., & Knoepp, F. (2024). Use of FRET-Sensor ‘Mermaid’ to Detect Subtle Changes in Membrane Potential of Primary Mouse PASMCs. Cells, 13(12), 1070. https://doi.org/10.3390/cells13121070