The Role of Glutamate and Blood–Brain Barrier Disruption as a Mechanistic Link between Epilepsy and Depression
Abstract
:1. Introduction
2. Interplay of Glutamate in Epilepsy and Neuropsychiatric Disorders
3. Glutamate Dysregulation in Epilepsy
4. BBB Dysfunction in Epilepsy
5. Neurotoxicity
5.1. Neuronal Cell Death
5.2. Neuroinflammation
5.3. Stress
5.4. Loss of Synaptic Integrity
6. Neurodegeneration
7. Genetic Factors Influencing BBB Permeability, Seizure Susceptibility, and Glutamate Sensitivity
8. Treatments for Brain–Blood Glutamate Equilibrium
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef]
- Stöber, T.M.; Batulin, D.; Triesch, J.; Narayanan, R.; Jedlicka, P. Degeneracy in epilepsy: Multiple routes to hyperexcitable brain circuits and their repair. Commun. Biol. 2023, 6, 479. [Google Scholar] [CrossRef] [PubMed]
- Badawy, R.A.B.; Harvey, A.S.; Macdonell, R.A.L. Cortical hyperexcitability and epileptogenesis: Understanding the mechanisms of epilepsy–Part 1. J. Clin. Neurosci. 2009, 16, 355–365. [Google Scholar] [CrossRef]
- Berg, A.T.; Altalib, H.H.; Devinsky, O. Psychiatric and behavioral comorbidities in epilepsy: A critical reappraisal. Epilepsia 2017, 58, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Kanner, A.M. Management of psychiatric and neurological comorbidities in epilepsy. Nat. Rev. Neurol. 2016, 12, 106–116. [Google Scholar] [CrossRef]
- Kanner, A.M. Depression and epilepsy: A bidirectional relation? Epilepsia 2011, 52 (Suppl. 1), 21–27. [Google Scholar] [CrossRef]
- Kwon, O.Y.; Park, S.P. Depression and anxiety in people with epilepsy. J. Clin. Neurol. 2014, 10, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Gruenbaum, B.F.; Sandhu, M.R.S.; Bertasi, R.A.O.; Bertasi, T.G.O.; Schonwald, A.; Kurup, A.; Gruenbaum, S.E.; Freedman, I.G.; Funaro, M.C.; Blumenfeld, H.; et al. Absence seizures and their relationship to depression and anxiety: Evidence for bidirectionality. Epilepsia 2021, 62, 1041–1056. [Google Scholar] [CrossRef]
- Elger, C.E.; Helmstaedter, C.; Kurthen, M. Chronic epilepsy and cognition. Lancet Neurol. 2004, 3, 663–672. [Google Scholar] [CrossRef]
- Holmes, G.L. Cognitive impairment in epilepsy: The role of network abnormalities. Epileptic. Disord. 2015, 17, 101–116. [Google Scholar] [CrossRef]
- McLaughlin, D.P.; Pachana, N.A.; McFarland, K. Stigma, seizure frequency and quality of life: The impact of epilepsy in late adulthood. Seizure 2008, 17, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Brandt, C. Prevention or modification of epileptogenesis after brain insults: Experimental approaches and translational research. Pharmacol. Rev. 2010, 62, 668–700. [Google Scholar] [CrossRef] [PubMed]
- Suleymanova, E.M. Behavioral comorbidities of epilepsy and neuroinflammation: Evidence from experimental and clinical studies. Epilepsy Behav. 2021, 117, 107869. [Google Scholar] [CrossRef] [PubMed]
- Alahmari, A. Blood-brain barrier overview: Structural and functional correlation. Neural Plast. 2021, 2021, 6564585. [Google Scholar] [CrossRef] [PubMed]
- Harilal, S.; Jose, J.; Kumar, R.; Unnikrishnan, M.K.; Uddin, M.S.; Mathew, G.E.; Pratap, R.; Marathakam, A.; Mathew, B. Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res. Bull. 2020, 160, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Marchi, N.; Granata, T.; Ghosh, C.; Janigro, D. Blood-brain barrier dysfunction and epilepsy: Pathophysiologic role and therapeutic approaches. Epilepsia 2012, 53, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Rempe, R.G.; Hartz, A.M.S.; Soldner, E.L.B.; Sokola, B.S.; Alluri, S.R.; Abner, E.L.; Kryscio, R.J.; Pekcec, A.; Schlichtiger, J.; Bauer, B. Matrix Metalloproteinase-Mediated Blood-Brain Barrier Dysfunction in Epilepsy. J. Neurosci. 2018, 38, 4301–4315. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, E.A.; Aronica, E.; Gorter, J.A. Blood–brain barrier dysfunction, seizures and epilepsy. Semin. Cell Dev. Biol. 2015, 38, 26–34. [Google Scholar] [CrossRef]
- Riedel, G.; Platt, B.; Micheau, J. Glutamate receptor function in learning and memory. Behav. Brain Res. 2003, 140, 1–47. [Google Scholar] [CrossRef]
- Barker-Haliski, M.; White, H.S. Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb. Perspect. Med. 2015, 5, a022863. [Google Scholar] [CrossRef]
- Eleonora, M.A.; Jan, A.G.; Marie-Christine, P.; Sonja, Y.G.; Michael, V.L.B.; Zukin, R.S. Status Epilepticus-Induced Alterations in Metabotropic Glutamate Receptor Expression in Young and Adult Rats. J. Neurosci. 1997, 17, 8588. [Google Scholar]
- Sarlo, G.L.; Holton, K.F. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure 2021, 91, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Wasterlain, C.G.; Naylor, D.E.; Liu, H.; Niquet, J.; Baldwin, R. Trafficking of NMDA receptors during status epilepticus: Therapeutic implications. Epilepsia 2013, 54, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Dorandeu, F.; Barbier, L.; Dhote, F.; Testylier, G.; Carpentier, P. Ketamine combinations for the field treatment of soman-induced self-sustaining status epilepticus. Review of current data and perspectives. Chem. Biol. Interact. 2013, 203, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Loss, C.M.; Córdova, S.D.; de Oliveira, D.L. Ketamine reduces neuronal degeneration and anxiety levels when administered during early life-induced status epilepticus in rats. Brain Res. 2012, 1474, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Kanner, A.M.; Palac, S. Depression in epilepsy: A common but often unrecognized comorbid malady. Epilepsy Behav. 2000, 1, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 57, 1041–1048. [Google Scholar] [CrossRef]
- Moriguchi, S.; Takamiya, A.; Noda, Y.; Horita, N.; Wada, M.; Tsugawa, S.; Plitman, E.; Sano, Y.; Tarumi, R.; ElSalhy, M.; et al. Glutamatergic neurometabolite levels in major depressive disorder: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol. Psychiatry 2019, 24, 952–964. [Google Scholar] [CrossRef]
- Nasir, M.; Trujillo, D.; Levine, J.; Dwyer, J.B.; Rupp, Z.W.; Bloch, M.H. Glutamate Systems in DSM-5 Anxiety Disorders: Their Role and a Review of Glutamate and GABA Psychopharmacology. Front. Psychiatry 2020, 11, 548505. [Google Scholar] [CrossRef]
- Cortese, B.M.; Phan, K.L. The role of glutamate in anxiety and related disorders. CNS Spectr 2005, 10, 820–830. [Google Scholar] [CrossRef]
- Cuijpers, P.; Noma, H.; Karyotaki, E.; Vinkers, C.H.; Cipriani, A.; Furukawa, T.A. A network meta-analysis of the effects of psychotherapies, pharmacotherapies and their combination in the treatment of adult depression. World Psychiatry 2020, 19, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Bandelow, B.; Reitt, M.; Röver, C.; Michaelis, S.; Görlich, Y.; Wedekind, D. Efficacy of treatments for anxiety disorders: A meta-analysis. Int. Clin. Psychopharmacol. 2015, 30, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Gruenbaum, B.F.; Zlotnik, A.; Fleidervish, I.; Frenkel, A.; Boyko, M. Glutamate Neurotoxicity and Destruction of the Blood-Brain Barrier: Key Pathways for the Development of Neuropsychiatric Consequences of TBI and Their Potential Treatment Strategies. Int. J. Mol. Sci. 2022, 23, 9628. [Google Scholar] [CrossRef]
- Sanacora, G.; Zarate, C.A.; Krystal, J.H.; Manji, H.K. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat. Rev. Drug Discov. 2008, 7, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Amiel, J.M.; Mathew, S.J. Glutamate and anxiety disorders. Curr. Psychiatry Rep. 2007, 9, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.M. Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Front. Hum. Neurosci. 2021, 15, 722323. [Google Scholar] [CrossRef]
- Bergink, V.; van Megen, H.J.; Westenberg, H.G. Glutamate and anxiety. Eur. Neuropsychopharmacol. 2004, 14, 175–183. [Google Scholar] [CrossRef]
- Zoicas, I.; Kornhuber, J. The Role of the N-Methyl-D-Aspartate Receptors in Social Behavior in Rodents. Int. J. Mol. Sci. 2019, 20, 5599. [Google Scholar] [CrossRef]
- Anggono, V.; Huganir, R.L. Regulation of AMPA receptor trafficking and synaptic plasticity. Curr. Opin. Neurobiol. 2012, 22, 461–469. [Google Scholar] [CrossRef]
- Leite, J.P.; Neder, L.; Arisi, G.M.; Carlotti, C.G., Jr.; Assirati, J.A.; Moreira, J.E. Plasticity, synaptic strength, and epilepsy: What can we learn from ultrastructural data? Epilepsia 2005, 46 (Suppl. 5), 134–141. [Google Scholar] [CrossRef]
- Turrigiano, G. Homeostatic synaptic plasticity: Local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 2012, 4, a005736. [Google Scholar] [CrossRef]
- Kiani, L. Blood–brain barrier disruption following seizures. Nat. Rev. Neurol. 2023, 19, 196. [Google Scholar] [CrossRef]
- Swissa, E.; Serlin, Y.; Vazana, U.; Prager, O.; Friedman, A. Blood–brain barrier dysfunction in status epileptics: Mechanisms and role in epileptogenesis. Epilepsy Behav. 2019, 101, 106285. [Google Scholar] [CrossRef]
- Löscher, W.; Friedman, A. Structural, Molecular, and Functional Alterations of the Blood-Brain Barrier during Epileptogenesis and Epilepsy: A Cause, Consequence, or Both? Int. J. Mol. Sci. 2020, 21, 591. [Google Scholar] [CrossRef]
- Hawkins, R.A. The blood-brain barrier and glutamate. Am. J. Clin. Nutr. 2009, 90, 867s–874s. [Google Scholar] [CrossRef] [PubMed]
- Dingledine, R.; Varvel, N.H.; Dudek, F.E. When and How Do Seizures Kill Neurons, and Is Cell Death Relevant to Epileptogenesis? In Issues in Clinical Epileptology: A View from the Bench; Scharfman, H.E., Buckmaster, P.S., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 109–122. [Google Scholar]
- Henshall, D.C.; Murphy, B.M. Modulators of neuronal cell death in epilepsy. Curr. Opin. Pharmacol. 2008, 8, 75–81. [Google Scholar] [CrossRef]
- Haroon, E.; Miller, A.H. Inflammation Effects on Brain Glutamate in Depression: Mechanistic Considerations and Treatment Implications. Curr. Top. Behav. Neurosci. 2017, 31, 173–198. [Google Scholar] [PubMed]
- Köhler, O.; Benros, M.E.; Nordentoft, M.; Farkouh, M.E.; Iyengar, R.L.; Mors, O.; Krogh, J. Effect of Anti-inflammatory Treatment on Depression, Depressive Symptoms, and Adverse Effects: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Psychiatry 2014, 71, 1381–1391. [Google Scholar] [CrossRef] [PubMed]
- Yolken, R. Infections and neuropsychiatric disorders: New studies document pathways to prevention and treatment. Mol. Psychiatry 2023, 28, 2624–2626. [Google Scholar] [CrossRef]
- Nikolin, S.; Rodgers, A.; Schwaab, A.; Bahji, A.; Zarate, C., Jr.; Vazquez, G.; Loo, C. Ketamine for the treatment of major depression: A systematic review and meta-analysis. eClinicalMedicine 2023, 62, 102127. [Google Scholar] [CrossRef]
- Tully, J.L.; Dahlén, A.D.; Haggarty, C.J.; Schiöth, H.B.; Brooks, S. Ketamine treatment for refractory anxiety: A systematic review. Br. J. Clin. Pharmacol. 2022, 88, 4412–4426. [Google Scholar] [CrossRef]
- Zwanzger, P.; Zavorotnyy, M.; Gencheva, E.; Diemer, J.; Kugel, H.; Heindel, W.; Ruland, T.; Ohrmann, P.; Arolt, V.; Domschke, K.; et al. Acute shift in glutamate concentrations following experimentally induced panic with cholecystokinin tetrapeptide—A 3T-MRS study in healthy subjects. Neuropsychopharmacology 2013, 38, 1648–1654. [Google Scholar] [CrossRef] [PubMed]
- Fields, R.D.; Stevens, B. ATP: An extracellular signaling molecule between neurons and glia. Trends Neurosci. 2000, 23, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-m.; Wang, H.-k.; Ye, C.-q.; Ge, W.; Chen, Y.; Jiang, Z.-l.; Wu, C.-p.; Poo, M.-m.; Duan, S. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 2003, 40, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Mao, S.; Xiong, Z.; Chen, Z.; Xu, N. Glutamate dehydrogenase: Potential therapeutic targets for neurodegenerative disease. Eur. J. Pharmacol. 2023, 950, 175733. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Campbell, M.; Tachibana, K.; Okada, Y.; Kondoh, M. Claudin-5: A pharmacological target to modify the permeability of the blood–brain barrier. Biol. Pharm. Bull. 2021, 44, 1380–1390. [Google Scholar] [CrossRef]
- Greene, C.; Hanley, N.; Campbell, M. Claudin-5: Gatekeeper of neurological function. Fluids Barriers CNS 2019, 16, 3. [Google Scholar] [CrossRef]
- Takata, F.; Nakagawa, S.; Matsumoto, J.; Dohgu, S. Blood-brain barrier dysfunction amplifies the development of neuroinflammation: Understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front. Cell. Neurosci. 2021, 15, 661838. [Google Scholar] [CrossRef]
- Li, Y.-J.; Wang, Z.-H.; Zhang, B.; Zhe, X.; Wang, M.-J.; Shi, S.-T.; Bai, J.; Lin, T.; Guo, C.-J.; Zhang, S.-J. Disruption of the blood–brain barrier after generalized tonic-clonic seizures correlates with cerebrospinal fluid MMP-9 levels. J. Neuroinflammation 2013, 10, 848. [Google Scholar] [CrossRef]
- Bronisz, E.; Cudna, A.; Wierzbicka, A.; Kurkowska-Jastrzębska, I. Blood-brain barrier-associated proteins are elevated in serum of epilepsy patients. Cells 2023, 12, 368. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Nabbout, R. SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia 2019, 60, S17–S24. [Google Scholar] [CrossRef]
- Mulley, J.C.; Scheffer, I.E.; Petrou, S.; Dibbens, L.M.; Berkovic, S.F.; Harkin, L.A. SCN1A mutations and epilepsy. Hum. Mutat. 2005, 25, 535–542. [Google Scholar] [CrossRef]
- Xu, X.-X.; Liu, X.-R.; Fan, C.-Y.; Lai, J.-X.; Shi, Y.-W.; Yang, W.; Su, T.; Xu, J.-Y.; Luo, J.-H.; Liao, W.-P. Functional investigation of a GRIN2A variant associated with rolandic epilepsy. Neurosci. Bull. 2018, 34, 237–246. [Google Scholar] [CrossRef] [PubMed]
- von Stülpnagel, C.; Ensslen, M.; Møller, R.; Pal, D.K.; Masnada, S.; Veggiotti, P.; Piazza, E.; Dreesmann, M.; Hartlieb, T.; Herberhold, T. Epilepsy in patients with GRIN2A alterations: Genetics, neurodevelopment, epileptic phenotype and response to anticonvulsive drugs. Eur. J. Paediatr. Neurol. 2017, 21, 530–541. [Google Scholar] [CrossRef]
- Kanai, Y.; Clémençon, B.; Simonin, A.; Leuenberger, M.; Lochner, M.; Weisstanner, M.; Hediger, M.A. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol. Asp. Med. 2013, 34, 108–120. [Google Scholar] [CrossRef]
- Kanai, Y.; Hediger, M.A. The glutamate/neutral amino acid transporter family SLC1: Molecular, physiological and pharmacological aspects. Pflügers Arch. 2004, 447, 469–479. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, X.; Chen, W.; Wang, Z.; Xu, G.; Zeng, Y.; Ma, Y. TGF-β1 prevents blood-brain barrier damage and hemorrhagic transformation after thrombolysis in rats. Exp. Neurol. 2015, 266, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, M.; Shimoni, O.; Banks, W.A.; Bush, A.I.; Gamble, J.R.; Shi, B. Development of Novel Therapeutics Targeting the Blood-Brain Barrier: From Barrier to Carrier. Adv. Sci. 2021, 8, e2101090. [Google Scholar] [CrossRef] [PubMed]
- Li, S.F.; Sun, Y.B.; Meng, Q.H.; Li, S.R.; Yao, W.C.; Hu, G.J.; Li, Z.J.; Wang, R.Z. Recombinant adeno-associated virus serotype 1-vascular endothelial growth factor promotes neurogenesis and neuromigration in the subventricular zone and rescues neuronal function in ischemic rats. Neurosurgery 2009, 65, 771–779; discussion 779. [Google Scholar] [CrossRef]
- Chakraborty, C.; Sharma, A.R.; Sharma, G.; Bhattacharya, M.; Lee, S.S. MicroRNAs: Possible Regulatory Molecular Switch Controlling the BBB Microenvironment. Mol. Ther. Nucleic Acids 2020, 19, 933–936. [Google Scholar] [CrossRef]
- Gliem, M.; Mausberg, A.K.; Lee, J.I.; Simiantonakis, I.; van Rooijen, N.; Hartung, H.P.; Jander, S. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann. Neurol. 2012, 71, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.A.; Martins, M.P.; Araújo, M.D.; Klamt, C.; Vedolin, L.; Garicochea, B.; Raupp, E.F.; Sartori El Ammar, J.; Machado, D.C.; Costa, J.C.; et al. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transpl. 2012, 21 (Suppl. 1), S13–S21. [Google Scholar] [CrossRef] [PubMed]
- Candelario-Jalil, E. Nimesulide as a promising neuroprotectant in brain ischemia: New experimental evidences. Pharmacol. Res. 2008, 57, 266–273. [Google Scholar] [CrossRef] [PubMed]
Intervention | Methods/Targets | Expected Outcome |
---|---|---|
Structural integrity | Adherens junctions | Limit/reverse leakage between endothelial cells Limit damage to extracellular matrix |
Tight junctions Regulators of junctions Inhibition of matrix metalloproteinases via TGF-β1 | ||
Restoring functionality | Potentiating ABC transporter | Restore efflux transporter activity |
Repairing neurovascular unit components (neurons, astrocytes, endothelial cells, pericytes, and basal lamina) | Re-establish normal function, restore microvascular blood flow, limit neuronal death, and promote neurogenesis and angiogenesis. | |
Targeting inflammation | COX-2 inhibition | Modulate inflammation and its effects on the BBB |
AQP4 inhibition | ||
Administration of DHA | ||
Inhibition of Na-K-Cl cotransporter | ||
Use of bone marrow MNCs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruenbaum, B.F.; Schonwald, A.; Boyko, M.; Zlotnik, A. The Role of Glutamate and Blood–Brain Barrier Disruption as a Mechanistic Link between Epilepsy and Depression. Cells 2024, 13, 1228. https://doi.org/10.3390/cells13141228
Gruenbaum BF, Schonwald A, Boyko M, Zlotnik A. The Role of Glutamate and Blood–Brain Barrier Disruption as a Mechanistic Link between Epilepsy and Depression. Cells. 2024; 13(14):1228. https://doi.org/10.3390/cells13141228
Chicago/Turabian StyleGruenbaum, Benjamin F., Antonia Schonwald, Matthew Boyko, and Alexander Zlotnik. 2024. "The Role of Glutamate and Blood–Brain Barrier Disruption as a Mechanistic Link between Epilepsy and Depression" Cells 13, no. 14: 1228. https://doi.org/10.3390/cells13141228
APA StyleGruenbaum, B. F., Schonwald, A., Boyko, M., & Zlotnik, A. (2024). The Role of Glutamate and Blood–Brain Barrier Disruption as a Mechanistic Link between Epilepsy and Depression. Cells, 13(14), 1228. https://doi.org/10.3390/cells13141228