Culture and Immunomodulation of Equine Muscle-Derived Mesenchymal Stromal Cells: A Comparative Study of Innovative 2D versus 3D Models Using Equine Platelet Lysate
Abstract
:1. Introduction
2. Material and Methods
2.1. Acquisition and Preparation of Equine Platelet Lysate
2.2. Optimization of Heparin Concentrations for 2D Mesenchymal Stromal Cell Culture with 10% Platelet Lysate
2.3. Muscle Microbiopsy for Initial Culture and Complete Process to Culture mdMSCs Using Platelet Lysate in a 2D Model
2.4. Muscle Microbiopsy for Initial Culture and Minimally Manipulated Process to Culture mdMSCs Using Platelet Lysate in a 3D Model
2.5. Flow Cytometry Analysis of the Immunophenotype of the Generated Cells
2.6. Trilineage Differentiation of Equine Mesenchymal Stromal Cells
2.7. Specific Immunological Extraction Followed by Enzymatic Detection (SIEFED) Myeloperoxidase (MPO) Analysis
2.8. Effect of mdMSCs on the ROS Production by Neutrophils
2.9. Statistical Analysis
3. Results
3.1. Optimization of Heparin Concentrations for 2D Mesenchymal Stromal Cell Culture with 10% Platelet Lysate
3.2. Muscle Microbiopsy for Initial Culture and Complete Process to Culture mdMSCs Using Platelet Lysate in a 2D Model
3.3. Muscle Microbiopsy for Initiating Culture of mdMSCs Using Platelet Lysate in a 3D Model
3.4. Comparison of the Total Number of Muscle-Derived Mesenchymal Stromal Cells Harvested with the 2D and 3D Models
3.5. Trilineage Differentiation and Immunophenotyping of Generated mdMSCs Obtained with 2D and 3D Models
3.6. SIEFED MPO Analysis
3.7. Effects of mdMSCs on the ROS Production by Neutrophils
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berglund, A.K.; Fortier, L.A.; Antczak, D.F.; Schnabel, L.V. Immunoprivileged no more: Measuring the immunogenicity of allogeneic adult mesenchymal stromal cells. Stem Cell Res. Ther. 2017, 8, 288. [Google Scholar] [CrossRef]
- Cassano, J.M.; Fortier, L.A.; Hicks, R.B.; Harman, R.M.; Van de Walle, G.R. Equine mesenchymal stromal cells from different tissue sources display comparable immune-related gene expression profiles in response to interferon gamma (IFN)-γ. Vet. Immunol. Immunopathol. 2018, 202, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Bieback, K.; Hecker, A.; Kocaömer, A.; Lannert, H.; Schallmoser, K.; Strunk, D.; Klüter, H. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 2009, 27, 2331–2341. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.J.; Jarazo, J. State of the art: Stem cells in equine regenerative medicine. Equine Vet. J. 2015, 47, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, J. To treat or not to treat: That is the question for serum. Biotechnology 1995, 13, 333.e8. [Google Scholar] [CrossRef] [PubMed]
- Jochems, C.E.; van der Valk, J.B.; Stafleu, F.R.; Baumans, V. The use of fetal bovine serum: Ethical or scientific problem? Altern. Lab. Anim. 2002, 30, 219.e27. [Google Scholar] [CrossRef] [PubMed]
- European Commission 2023: Question E-004070/22: Production of Fetal Bovin Serum in the European Union. Available online: https://www.cnr-bea.fr (accessed on 10 March 2023).
- Kirikae, T.; Tamura, H.; Hashizume, M.; Kirikae, F.; Uemura, Y.; Tanaka, S.; Yokochi, T.; Nakano, M. Endotoxin contamination in fetal bovine serum and its influence on tumor necrosis factor production by macrophage-like cells J774.1 cultured in the presence of the serum. Int. J. Immunopharmacol. 1997, 19, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Pigott, J.H.; Ishihara, A.; Wellman, M.L.; Russell, D.S.; Bertone, A.L. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet. Immunol. Immunopathol. 2013, 156, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Sundin, M.; Ringdén, O.; Sundberg, B.; Nava, S.; Götherström, C.; Le Blanc, K. No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica 2007, 92, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Hagen, A.; Holland, H.; Brandt, V.P.; Doll, C.U.; Häußler, T.C.; Melzer, M.; Moellerberndt, J.; Lehmann, H.; Burk, J. Platelet Lysate for Mesenchymal Stromal Cell Culture in the Canine and Equine Species: Analogous but Not the Same. Animals 2022, 12, 189. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency London Committee for Medicinal Products for Human Use (CHMP). Guideline on the Use of Bovine Serum in the Manufacture of Human Biological Medicinal; Technical Report EMA/CHMP/BWP/457920/2012; European Medicines Agency: London, UK, 2013. [Google Scholar]
- Karnieli, O.; Friedner, O.M.; Allickson, J.G.; Zhang, N.; Jung, S.; Fiorentini, D.; Abraham, E.; Eaker, S.S.; Yong, T.K.; Chan, A.; et al. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 2017, 19, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Boswell, S.G.; Cole, B.J.; Sundman, E.A.; Karas, V.; Fortier, L.A. Platelet-rich plasma: A milieu of bioactive factors. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, 429–439. [Google Scholar] [CrossRef]
- Hagen, A.; Niebert, S.; Brandt, V.P.; Holland, H.; Melzer, M.; Wehrend, A.; Burk, J. Functional properties of equine adipose-derived mesenchymal stromal cells cultured with equine platelet lysate. Front. Vet. Sci. 2022, 9, 890302. [Google Scholar] [CrossRef] [PubMed]
- Rauch, C.; Feifel, E.; Amann, E.M.; Spötl, H.P.; Schennach, H.; Pfaller, W.; Gstraunthaler, G. Alternatives to the use of fetal bovine serum: Human platelet lysates as a serum substitute in cell culture media. ALTEX 2011, 28, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Textor, J.A.; Tablin, F. Activation of equine platelet-rich plasma: Comparison of methods and characterization of equine autologous thrombin. Vet. Surg. 2012, 41, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.A.; Koch, T.G. Equine platelet lysate as an alternative to fetal bovine serum in equine mesenchymal stromal cell culture—too much of a good thing? Equine Vet. J. 2016, 48, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Naskou, M.C.; Sumner, S.; Berezny, A.; Copland, I.B.; Peroni, J.F. Fibrinogen-Depleted Equine Platelet Lysate Affects the Characteristics and Functionality of Mesenchymal stromal cells. Stem. Cells Dev. 2019, 28, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- Naskou, M.C.; Tyma, J.F.; Gordon, J.; Berezny, A.; Kemelmakher, H.; Richey, A.C.; Peroni, J.F. Equine Platelet Lysate Gel: A Matrix for Mesenchymal Stem Cell Delivery. Stem. Cells Dev. 2022, 31, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Ceusters, J.; Lejeune, J.P.; Sandersen, C.; Niesten, A.; Lagneaux, L.; Serteyn, D. From skeletal muscle to stem cells: An innovative and minimally-invasive process for multiple species. Sci. Rep. 2017, 7, 696. [Google Scholar] [CrossRef]
- Graide, H.; Duysens, J.; Frank, T.; Mouithys-Mickalad, A.; Niesten, A.; Sandersen, C.; Ceusters, J.; Serteyn, D. Enhancing autologous Equine Therapy: Innovative 3D Culture Method for Muscle-derived Progenitor Cells (mdP-Cells). Cytotechnology 2024. in submission. [Google Scholar]
- Kluciński, W.; Winnicka, A.; Olszewski, M.; Sikora, J.; Sitarska, E.; Niemiałtowski, M.; Muzylak, M.; Bylinka, G.; Wyszyński, M. Phagocytic activity of polymorphonuclear leukocytes lavaged from the lungs of horses with clinically diagnosed chronic pulmonary disease. J. Vet. Med. Ser. A 1994, 41, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Storms, N.; Medina Torres, C.; Franck, T.; Sole Guitart, A.; de la Rebière, G.; Serteyn, D. Presence of Myeloperoxidase in Lamellar Tissue of Horses Induced by an Euglycemic Hyperinsulinemic Clamp. Front. Vet. Sci. 2022, 9, 846835. [Google Scholar] [CrossRef] [PubMed]
- WO 2021/165451; Culturing of Stem Cells. World Intellectual Property Organization: Liège, Belgium, 2021.
- Franck, T.; Kohnen, S.; Deby-Dupont, G.; Grulke, S.; Deby, C.; Serteyn, D. A specific method for measurement of equine active myeloperoxidase in biological samples and in in vitro tests. J. Vet. Diagn. Investig. 2006, 18, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Pycock, J.F.; Allen, W.E.; Morris, T.H. Rapid, single-step isolation of equine neutrophils on a discontinuous Percoll density gradient. Res. Vet. Sci. 1987, 42, 411–412. [Google Scholar] [CrossRef] [PubMed]
- Franck, T.; Aldib, I.; Zouaoui Boudjeltia, K.; Furtmüller, P.G.; Obinger, C.; Neven, P.; Prévost, M.; Soubhye, J.; Van Antwerpen, P.; Mouithys-Mickalad, A.; et al. The soluble curcumin derivative NDS27 inhibits superoxide anion production by neutrophils and acts as substrate and reversible inhibitor of myeloperoxidase. Chem. Interact. 2018, 297, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Hemeda, H.; Kalz, J.; Walenda, G.; Lohmann, M.; Wagner, W. Heparin concentration is critical for cell culture with human platelet lysate. Cytotherapy 2013, 15, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Li, H.; Xu, X.; Ye, L.; Zhou, X.; Zheng, L.; Zhou, Y. Mesenchymal stem cells for cartilage regeneration of TMJ osteoarthritis. Stem Cells Int. 2017, 2017, 5979741. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, A.J.; Grande, D.A.; Dines, J.S. The use of mesenchymal stem cells in tissue engineering: A global assessment. Organogenesis 2008, 4, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Yaneselli, K.; Barrachina, L.; Remacha, A.R.; Algorta, A.; Vitoria, A.; Cequier, A.; Romero, A.; Vázquez, F.J.; Maisonnave, J.; Rodellar, C. Effect of allogeneic platelet lysate on equine bone marrow derived mesenchymal stem cell characteristics, including immunogenic and immunomodulatory gene expression profile. Vet. Immunol. Immunopathol. 2019, 217, 109944. [Google Scholar] [CrossRef] [PubMed]
- Stage, H.J.; Trappe, S.; Söllig, K.; Trachsel, D.S.; Kirsch, K.; Zieger, C.; Merle, R.; Aschenbach, J.R.; Gehlen, H. Multilineage Differentiation Potential of Equine Adipose-Derived Stromal/Stem Cells from Different Sources. Animals 2023, 13, 1352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naskou, M.C.; Sumner, S.M.; Chocallo, A.; Kemelmakher, H.; Thoresen, M.; Copland, I.; Galipeau, J.; Peroni, J.F. Platelet lysate as a novel serum-free media supplement for the culture of equine bone marrow-derived mesenchymal stromal cells. Stem Cell Res. Ther. 2018, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.H.; Pfeifer, J.P.H.; de Souza, J.B.; Milani, B.H.G.; de Oliveira, R.A.; Assis, M.G.; Deffune, E.; Moroz, A.; Alves, A.L.G. Culture of mesenchymal stem cells derived from equine synovial membrane in alginate hydrogel microcapsules. BMC Vet. Res. 2018, 14, 114, Erratum in Stem. Cell. Res. Ther. 2018, 9, 259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hagen, A.; Lehmann, H.; Aurich, S.; Bauer, N.; Melzer, M.; Moellerberndt, J.; Patané, V.; Schnabel, C.L.; Burk, J. Scalable Production of Equine Platelet Lysate for Multipotent Mesenchymal Stromal Cell Culture. Front. Bioeng. Biotechnol. 2021, 8, 613621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seo, J.P.; Tsuzuki, N.; Haneda, S.; Yamada, K.; Furuoka, H.; Tabata, Y.; Sasaki, N. Comparison of allogeneic platelet lysate and fetal bovine serum for in vitro expansion of equine bone marrow-derived mesenchymal stem cells. Res. Vet. Sci. 2013, 95, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Franck, T.; Ceusters, J.; Graide, H.; Mouithys-Mickalad, A.; Serteyn, D. Muscle Derived Mesenchymal Stem Cells Inhibit the Activity of the Free and the Neutrophil Extracellular Trap (NET)-Bond Myeloperoxidase. Cells 2021, 10, 3486. [Google Scholar] [CrossRef] [PubMed]
- Bogers, S.H.; Barrett, J.G. Three-Dimensional Culture of Equine Bone Marrow-Derived Mesenchymal stromal cells Enhances Anti-Inflammatory Properties in a Donor-Dependent Manner. Stem Cells Dev. 2022, 31, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Hawkins, C.L. The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease. Antioxid. Redox Signal. 2020, 32, 957–981. [Google Scholar] [CrossRef] [PubMed]
- Mumaw, J.L.; Schmiedt, C.W.; Breidling, S.; Sigmund, A.; Norton, N.A.; Thoreson, M.; Peroni, J.F.; Hurley, D.J. Feline mesenchymal stem cells and supernatant inhibit reactive oxygen species production in cultured feline neutrophils. Res. Vet. Sci. 2015, 103, 60–69. [Google Scholar] [CrossRef] [PubMed]
Horse | Plasma Flow (mL/Min) | Collected Volume (mL) | Platelet Yield |
---|---|---|---|
1 | 36 | 842 | 8.10 × 1011 |
2 | 40 | 792 | 6.93 × 1011 |
3 | 38 | 816 | 7.42 × 1011 |
Average | 38 | 817 | 7.48 × 1011 |
Antibody Target | Clone | Dilution |
---|---|---|
CD44 | MCA1082 | 25 |
CD45 | MCA87 | 5 |
MHCII | MCA1085 | 25 |
CD90 | DH24A | 50 |
Heparin Concentration (IU/mL) | Horse 1 | Horse 2 | Horse 3 |
---|---|---|---|
0.36 | X | X | X |
0.72 | X | X | X |
1.08 | X | X * | X * |
1.44 | / | / | / |
2.5 | / | / | / |
3 | / | / | / |
Two-Dimensional Model | Three-Dimensional Model | |
---|---|---|
CD44 | 98.50 ± 1.38 | 1.96 ± 0.79 |
CD45 | 0.06 ± 0.01 | 0.31 ± 0.13 |
MHCII | 0.06 ± 0.07 | 0.26 ± 0.16 |
CD90 | 99.39 ± 0.09 | 98.90 ± 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duysens, J.; Graide, H.; Niesten, A.; Mouithys-Mickalad, A.; Deby-Dupont, G.; Franck, T.; Ceusters, J.; Serteyn, D. Culture and Immunomodulation of Equine Muscle-Derived Mesenchymal Stromal Cells: A Comparative Study of Innovative 2D versus 3D Models Using Equine Platelet Lysate. Cells 2024, 13, 1290. https://doi.org/10.3390/cells13151290
Duysens J, Graide H, Niesten A, Mouithys-Mickalad A, Deby-Dupont G, Franck T, Ceusters J, Serteyn D. Culture and Immunomodulation of Equine Muscle-Derived Mesenchymal Stromal Cells: A Comparative Study of Innovative 2D versus 3D Models Using Equine Platelet Lysate. Cells. 2024; 13(15):1290. https://doi.org/10.3390/cells13151290
Chicago/Turabian StyleDuysens, J., H. Graide, A. Niesten, A. Mouithys-Mickalad, G. Deby-Dupont, T. Franck, J. Ceusters, and D. Serteyn. 2024. "Culture and Immunomodulation of Equine Muscle-Derived Mesenchymal Stromal Cells: A Comparative Study of Innovative 2D versus 3D Models Using Equine Platelet Lysate" Cells 13, no. 15: 1290. https://doi.org/10.3390/cells13151290
APA StyleDuysens, J., Graide, H., Niesten, A., Mouithys-Mickalad, A., Deby-Dupont, G., Franck, T., Ceusters, J., & Serteyn, D. (2024). Culture and Immunomodulation of Equine Muscle-Derived Mesenchymal Stromal Cells: A Comparative Study of Innovative 2D versus 3D Models Using Equine Platelet Lysate. Cells, 13(15), 1290. https://doi.org/10.3390/cells13151290