In Silico Deciphering of the Potential Impact of Variants of Uncertain Significance in Hereditary Colorectal Cancer Syndromes
Abstract
:1. Introduction
2. Pathology of Hereditary CRC Syndromes
2.1. Hereditary CRC Polyposis Syndromes
2.2. Hereditary Nonpolyposis CRC
3. In Silico Prediction of VUS Impact on Protein Function in Hereditary CRC Syndromes
4. In Silico Prediction of VUS Impact on Protein Structure in CRC Hereditary Syndromes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, H.; Brosens, L.A.A.; Offerhaus, G.J.A.; Giardiello, F.M.; de Leng, W.W.J.; Montgomery, E.A. Pathology and genetics of hereditary colorectal cancer. Pathology 2018, 50, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA. Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA. Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Valle, L.; Vilar, E.; Tavtigian, S.V.; Stoffel, E.M. Genetic predisposition to colorectal cancer: Syndromes, genes, classification of genetic variants and implications for precision medicine. J. Pathol. 2019, 247, 574–588. [Google Scholar] [CrossRef] [PubMed]
- Stern, B.; McGarrity, T.; Baker, M. Incorporating Colorectal Cancer Genetic Risk Assessment into Gastroenterology Practice. Curr. Treat. Options Gastroenterol. 2019, 17, 702–715. [Google Scholar] [CrossRef] [PubMed]
- Yurgelun, M.B.; Kulke, M.H.; Fuchs, C.S.; Allen, B.A.; Uno, H.; Hornick, J.L.; Ukaegbu, C.I.; Brais, L.K.; McNamara, P.G.; Mayer, R.J.; et al. Cancer Susceptibility Gene Mutations in Individuals with Colorectal Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Abbes, S.; Baldi, S.; Sellami, H.; Amedei, A.; Keskes, L. Molecular methods for colorectal cancer screening: Progress with next-generation sequencing evolution. World J. Gastrointest. Oncol. 2023, 15, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Valle, L.; Monahan, K.J. Genetic predisposition to gastrointestinal polyposis: Syndromes, tumour features, genetic testing, and clinical management. Lancet Gastroenterol. Hepatol. 2024, 9, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Oh, R.Y.; AlMail, A.; Cheerie, D.; Guirguis, G.; Hou, H.; Yuki, K.E.; Haque, B.; Thiruvahindrapuram, B.; Marshall, C.R.; Mendoza-Londono, R.; et al. A systematic assessment of the impact of rare canonical splice site variants on splicing using functional and in silico methods. Hum. Genet. Genomics Adv. 2024, 5, 100299. [Google Scholar] [CrossRef]
- Ward, A.J.; Cooper, T.A. The pathobiology of splicing. J. Pathol. 2010, 220, 152–163. [Google Scholar] [CrossRef]
- McInnes, G.; Sharo, A.G.; Koleske, M.L.; Brown, J.E.H.; Norstad, M.; Adhikari, A.N.; Wang, S.; Brenner, S.E.; Halpern, J.; Koenig, B.A.; et al. Opportunities and challenges for the computational interpretation of rare variation in clinically important genes. Am. J. Hum. Genet. 2021, 108, 535–548. [Google Scholar] [CrossRef]
- Kahi, C.J.; Myers, L.J.; Slaven, J.E.; Haggstrom, D.; Pohl, H.; Robertson, D.J.; Imperiale, T.F. Lower endoscopy reduces colorectal cancer incidence in older individuals. Gastroenterology 2014, 146, 718–725.e3. [Google Scholar] [CrossRef] [PubMed]
- Lower, A.H.; Moseley, R.H. Outcomes of colorectal cancer screening. Gastroenterology 2014, 146, 596–597. [Google Scholar]
- Benson, A.B.; Venook, A.P.; Adam, M.; Chang, G.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.A.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Colon Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. JNCCN 2024, 22, e240029. [Google Scholar] [CrossRef]
- Zhunussova, G.; Afonin, G.; Abdikerim, S.; Jumanov, A.; Perfilyeva, A.; Kaidarova, D.; Djansugurova, L. Mutation Spectrum of Cancer-Associated Genes in Patients with Early Onset of Colorectal Cancer. Front. Oncol. 2019, 9, 673. [Google Scholar] [CrossRef]
- Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Stryjkowska-Góra, A.; Rudzki, S. Risk Factors for the Diagnosis of Colorectal Cancer. Cancer Control J. Moffitt Cancer Cent. 2022, 29, 10732748211056692. [Google Scholar] [CrossRef] [PubMed]
- Berbecka, M.; Berbecki, M.; Gliwa, A.M.; Szewc, M.; Sitarz, R. Managing Colorectal Cancer from Ethology to Interdisciplinary Treatment: The Gains and Challenges of Modern Medicine. Int. J. Mol. Sci. 2024, 25, 2032. [Google Scholar] [CrossRef] [PubMed]
- Schmoll, H.J.; Van Cutsem, E.; Stein, A.; Valentini, V.; Glimelius, B.; Haustermans, K.; Nordlinger, B.; van de Velde, C.J.; Balmana, J.; Regula, J.; et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23, 2479–2516. [Google Scholar] [CrossRef] [PubMed]
- Rex, D.K.; Boland, C.R.; Dominitz, J.A.; Giardiello, F.M.; Johnson, D.A.; Kaltenbach, T.; Levin, T.R.; Lieberman, D.; Robertson, D.J. Colorectal Cancer Screening: Recommendations for Physicians and Patients From the U.S. Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2017, 153, 307–323. [Google Scholar] [CrossRef]
- Disciglio, V.; Fasano, C.; Cariola, F.; Forte, G.; Grossi, V.; Sanese, P.; Lepore Signorile, M.; Resta, N.; Lotesoriere, C.; Stella, A.; et al. Gastric polyposis and desmoid tumours as a new familial adenomatous polyposis clinical variant associated with APC mutation at the extreme 3’-end. J. Med. Genet. 2020, 57, 356–360. [Google Scholar] [CrossRef]
- Kinzler, K.W.; Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 1996, 87, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Sadien, I.D.; Davies, R.J.; Wheeler, J. The genomics of sporadic and hereditary colorectal cancer. Ann. R. Coll. Surg. Engl. 2024, 106, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Knudson, A.G. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 2001, 1, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Waliszewski, P. Controversies about the genetic model of colorectal tumorigenesis. Pol. J. Pathol. Off. J. Pol. Soc. Pathol. 1995, 46, 239–243. [Google Scholar]
- Brosens, L.A.A.; Wood, L.D.; Offerhaus, G.J.; Arnold, C.A.; Lam-Himlin, D.; Giardiello, F.M.; Montgomery, E.A. Pathology and Genetics of Syndromic Gastric Polyps. Int. J. Surg. Pathol. 2016, 24, 185–199. [Google Scholar] [CrossRef]
- Grover, S.; Kastrinos, F.; Steyerberg, E.W.; Cook, E.F.; Dewanwala, A.; Burbidge, L.A.; Wenstrup, R.J.; Syngal, S. Prevalence and phenotypes of APC and MUTYH mutations in patients with multiple colorectal adenomas. JAMA 2012, 308, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Henrie, A.; Hemphill, S.E.; Ruiz-Schultz, N.; Cushman, B.; DiStefano, M.T.; Azzariti, D.; Harrison, S.M.; Rehm, H.L.; Eilbeck, K. ClinVar Miner: Demonstrating utility of a Web-based tool for viewing and filtering ClinVar data. Hum. Mutat. 2018, 39, 1051–1060. [Google Scholar] [CrossRef]
- MUTYH-Associated Tumor Syndrome: The Other Face of MAP. Available online: https://pubmed.ncbi.nlm.nih.gov/35422474/ (accessed on 11 April 2024).
- Guarinos, C.; Juárez, M.; Egoavil, C.; Rodríguez-Soler, M.; Pérez-Carbonell, L.; Salas, R.; Cubiella, J.; Rodríguez-Moranta, F.; de-Castro, L.; Bujanda, L.; et al. Prevalence and characteristics of MUTYH-associated polyposis in patients with multiple adenomatous and serrated polyps. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 1158–1168. [Google Scholar] [CrossRef]
- Win, A.K.; Dowty, J.G.; Cleary, S.P.; Kim, H.; Buchanan, D.D.; Young, J.P.; Clendenning, M.; Rosty, C.; MacInnis, R.J.; Giles, G.G.; et al. Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer. Gastroenterology 2014, 146, 1208–1211.e5. [Google Scholar] [CrossRef]
- Roberts, M.E.; Nimrichter, S.; Marshall, M.L.; Flynn, E.K.; Person, R.; Hruska, K.S.; Kruszka, P.; Juusola, J. Phenotypic continuum between POLE-related recessive disorders: A case report and literature review. Am. J. Med. Genet. A. 2022, 188, 3121–3125. [Google Scholar] [CrossRef] [PubMed]
- Palles, C.; Cazier, J.-B.; Howarth, K.M.; Domingo, E.; Jones, A.M.; Broderick, P.; Kemp, Z.; Spain, S.L.; Guarino, E.; Salguero, I.; et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 2013, 45, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Weren, R.D.A.; Ligtenberg, M.J.L.; Kets, C.M.; de Voer, R.M.; Verwiel, E.T.P.; Spruijt, L.; van Zelst-Stams, W.A.G.; Jongmans, M.C.; Gilissen, C.; Hehir-Kwa, J.Y.; et al. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat. Genet. 2015, 47, 668–671. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.; Guerra, J.; Pinheiro, M.; Escudeiro, C.; Santos, C.; Pinto, P.; Porto, M.; Bartosch, C.; Silva, J.; Peixoto, A.; et al. Combined germline and tumor mutation signature testing identifies new families with NTHL1 tumor syndrome. Front. Genet. 2023, 14, 1254908. [Google Scholar] [CrossRef] [PubMed]
- Gorji, L.; Albrecht, P. Hamartomatous polyps: Diagnosis, surveillance, and management. World J. Gastroenterol. 2023, 29, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Resta, N.; Pierannunzio, D.; Lenato, G.M.; Stella, A.; Capocaccia, R.; Bagnulo, R.; Lastella, P.; Susca, F.C.; Bozzao, C.; Loconte, D.C.; et al. Cancer risk associated with STK11/LKB1 germline mutations in Peutz–Jeghers syndrome patients: Results of an Italian multicenter study. Dig. Liver Dis. 2013, 45, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.F.; Pavlis, M. Dysregulation of the mTOR pathway secondary to mutations or a hostile microenvironment contributes to cancer and poor wound healing. J. Investig. Dermatol. 2009, 129, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Bourouh, M.; Marignani, P.A. The Tumor Suppressor Kinase LKB1: Metabolic Nexus. Front. Cell Dev. Biol. 2022, 10, 881297. [Google Scholar] [CrossRef]
- Choudhury, D.; Ghosh, D.; Mondal, M.; Singha, D.; Pothuraju, R.; Malakar, P. Polyploidy and mTOR signaling: A possible molecular link. Cell Commun. Signal. CCS 2024, 22, 196. [Google Scholar] [CrossRef]
- Cavaillé, M.; Crampon, D.; Achim, V.; Bubien, V.; Uhrhammer, N.; Privat, M.; Ponelle-Chachuat, F.; Gay-Bellile, M.; Lepage, M.; Ouedraogo, Z.G.; et al. Diagnosis of PTEN mosaicism: The relevance of additional tumor DNA sequencing. A case report and review of the literature. BMC Med. Genom. 2023, 16, 166. [Google Scholar] [CrossRef]
- Litzendorf, M.; Hoang, K.; Vaccaro, P. Recurrent and extensive vascular malformations in a patient with Bannayan--Riley--Ruvalcaba syndrome. Ann. Vasc. Surg. 2011, 25, 1138.e15–1138.e19. [Google Scholar] [CrossRef] [PubMed]
- Yehia, L.; Heald, B.; Eng, C. Clinical Spectrum and Science Behind the Hamartomatous Polyposis Syndromes. Gastroenterology 2023, 164, 800–811. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.I.; Alanezi, T.; Aljofan, Z.F.; Alarabi, A.; Elwatidy, S. Lhermitte-Duclos disease: A systematic review. Surg. Neurol. Int. 2023, 14, 351. [Google Scholar] [CrossRef] [PubMed]
- Cammarata, E.; Andreassi, M.; Gironi, L.C.; Savoia, P. Segmental overgrowth, lipomatosis, arteriovenous malformation and epidermal nevus (SOLAMEN) syndrome: Sarcomatous transformation. Ital. J. Dermatol. Venereol. 2022, 157, 298–299. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.; Thiele, H.; Zhou, X.P.; Gorlin, R.J.; Hennekam, R.C.; Winter, R.M. PTEN mutations and proteus syndrome. Lancet Lond. Engl. 2001, 358, 2079–2080. [Google Scholar] [CrossRef] [PubMed]
- Dhamija, R.; Hoxworth, J.M. Imaging of PTEN-related abnormalities in the central nervous system. Clin. Imaging 2020, 60, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, S.; Walsh, T.; Schechter, M.; Adar, T.; Goldin, E.; Beeri, R.; Sharon, N.; Baris, H.; Ben Avi, L.; Half, E.; et al. Features of Patients with Hereditary Mixed Polyposis Syndrome Caused by Duplication of GREM1 and Implications for Screening and Surveillance. Gastroenterology 2017, 152, 1876–1880.e1. [Google Scholar] [CrossRef]
- Rosty, C.; Brosens, L.A.A. Pathology of Gastrointestinal Polyposis Disorders. Gastroenterol. Clin. N. Am. 2024, 53, 179–200. [Google Scholar] [CrossRef] [PubMed]
- van Herwaarden, Y.J.; Koggel, L.M.; Simmer, F.; Vink-Börger, E.M.; Dura, P.; Meijer, G.A.; Nagengast, F.M.; Hoogerbrugge, N.; Bisseling, T.M.; Nagtegaal, I.D. RNF43 mutation analysis in serrated polyposis, sporadic serrated polyps and Lynch syndrome polyps. Histopathology 2021, 78, 749–758. [Google Scholar] [CrossRef]
- Mikaeel, R.R.; Young, J.P.; Li, Y.; Poplawski, N.K.; Smith, E.; Horsnell, M.; Uylaki, W.; Tomita, Y.; Townsend, A.R.; Feng, J.; et al. RNF43 pathogenic Germline variant in a family with colorectal cancer. Clin. Genet. 2022, 101, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.M.; Clendenning, M.; Joseland, S.; Georgeson, P.; Mahmood, K.; Joo, J.E.; Walker, R.; Como, J.; Preston, S.; Chai, S.M.; et al. Inherited BRCA1 and RNF43 pathogenic variants in a familial colorectal cancer type X family. Fam. Cancer 2024, 23, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Lepore Signorile, M.; Disciglio, V.; Di Carlo, G.; Pisani, A.; Simone, C.; Ingravallo, G. From Genetics to Histomolecular Characterization: An Insight into Colorectal Carcinogenesis in Lynch Syndrome. Int. J. Mol. Sci. 2021, 22, 6767. [Google Scholar] [CrossRef] [PubMed]
- Nolano, A.; Medugno, A.; Trombetti, S.; Liccardo, R.; De Rosa, M.; Izzo, P.; Duraturo, F. Hereditary Colorectal Cancer: State of the Art in Lynch Syndrome. Cancers 2022, 15, 75. [Google Scholar] [CrossRef] [PubMed]
- Vasen, H.F.; Watson, P.; Mecklin, J.P.; Lynch, H.T. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 1999, 116, 1453–1456. [Google Scholar] [CrossRef]
- Pantaleo, A.; Forte, G.; Cariola, F.; Valentini, A.M.; Fasano, C.; Sanese, P.; Grossi, V.; Buonadonna, A.L.; De Marco, K.; Lepore Signorile, M.; et al. Tumor Testing and Genetic Analysis to Identify Lynch Syndrome Patients in an Italian Colorectal Cancer Cohort. Cancers 2023, 15, 5061. [Google Scholar] [CrossRef] [PubMed]
- Terradas, M.; Capellá, G.; Valle, L. Dominantly Inherited Hereditary Nonpolyposis Colorectal Cancer Not Caused by MMR Genes. J. Clin. Med. 2020, 9, 1954. [Google Scholar] [CrossRef] [PubMed]
- Gyulkhandanyan, A.; Rezaie, A.R.; Roumenina, L.; Lagarde, N.; Fremeaux-Bacchi, V.; Miteva, M.A.; Villoutreix, B.O. Analysis of protein missense alterations by combining sequence- and structure-based methods. Mol. Genet. Genom. Med. 2020, 8, e1166. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Henikoff, S. Predicting deleterious amino acid substitutions. Genome Res. 2001, 11, 863–874. [Google Scholar] [CrossRef]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef]
- Ramensky, V.; Bork, P.; Sunyaev, S. Human non-synonymous SNPs: Server and survey. Nucleic Acids Res. 2002, 30, 3894–3900. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Chao, E.C.; Velasquez, J.L.; Witherspoon, M.S.L.; Rozek, L.S.; Peel, D.; Ng, P.; Gruber, S.B.; Watson, P.; Rennert, G.; Anton-Culver, H.; et al. Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR). Hum. Mutat. 2008, 29, 852–860. [Google Scholar] [CrossRef]
- Choi, Y.; Chan, A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef]
- Wang, L.; Tu, H.; Zeng, L.; Gao, R.; Luo, S.; Xiong, C. Identification and in silico Analysis of Nonsense SNPs of Human Colorectal Cancer Protein. J. Oleo Sci. 2022, 71, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.M.L.; Ghosh, P.; Dakal, T.C.; Slavin, T.P.; Boland, C.R.; Goel, A. Novel candidates in early-onset familial colorectal cancer. Fam. Cancer 2020, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Reva, B.; Antipin, Y.; Sander, C. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res. 2011, 39, e118. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, F.; Goeman, F.; Pallocca, M.; Sperati, F.; Pizzuti, L.; Melucci, E.; Casini, B.; Amoreo, C.A.; Gallo, E.; Diodoro, M.G.; et al. Deep sequencing and pathway-focused analysis revealed multigene oncodriver signatures predicting survival outcomes in advanced colorectal cancer. Oncogenesis 2018, 7, 55. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Thomas, P.D. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013, 41, D377–D386. [Google Scholar] [CrossRef]
- George Priya Doss, C.; Nagasundaram, N.; Tanwar, H. Predicting the impact of deleterious single point mutations in SMAD gene family using structural bioinformatics approach. Interdiscip. Sci. Comput. Life Sci. 2012, 4, 103–115. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef] [PubMed]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Shaw, K.; Phillips, A.D.; Cooper, D.N. The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 2014, 133, 1–9. [Google Scholar] [CrossRef]
- Xu, J.; Song, J.; Zhu, W.; Zuo, L.; Wu, J.; Zhang, L.; Wang, T.; Guo, J. A novel germline frameshift mutation in the MLH1 gene in a patient with Lynch syndrome. Cancer Genet. 2023, 274–275, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Hecht, M.; Bromberg, Y.; Rost, B. Better prediction of functional effects for sequence variants. BMC Genom. 2015, 16 (Suppl. S8), S1. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.J.; Parves, M.R.; Mahmud, S.; Tithi, F.A.; Reza, M.A. Assessment of structurally and functionally high-risk nsSNPs impacts on human bone morphogenetic protein receptor type IA (BMPR1A) by computational approach. Comput. Biol. Chem. 2019, 80, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Mathe, E.; Olivier, M.; Kato, S.; Ishioka, C.; Hainaut, P.; Tavtigian, S.V. Computational approaches for predicting the biological effect of p53 missense mutations: A comparison of three sequence analysis based methods. Nucleic Acids Res. 2006, 34, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Kidambi, T.D.; Goldberg, D.; Nussbaum, R.; Blanco, A.; Umetsu, S.E.; Terdiman, J.P.; Lee, J.K. Novel variant of unknown significance in MUTYH in a patient with MUTYH-associated polyposis: A case to reclassify. Clin. J. Gastroenterol. 2018, 11, 457–460. [Google Scholar] [CrossRef]
- Zhao, B.; Li, J.; Sinha, S.; Qin, Z.; Kou, S.H.; Xiao, F.; Lei, H.; Chen, T.; Cao, W.; Ding, X.; et al. Pathogenic variants in human DNA damage repair genes mostly arose in recent human history. BMC Cancer 2024, 24, 415. [Google Scholar] [CrossRef]
- Mahdouani, M.; Zhuri, D.; Sezginer Guler, H.; Hmida, D.; Sana, M.; Azaza, M.; Ben Said, M.; Masmoudi, S.; Hmila, F.; Youssef, S.; et al. Functional analysis of MMR gene VUS from potential Lynch syndrome patients. PLoS ONE 2024, 19, e0304141. [Google Scholar] [CrossRef]
- Duong, H.T.T.; Suzuki, H.; Katagiri, S.; Shibata, M.; Arai, M.; Yura, K. Computational study of the impact of nucleotide variations on highly conserved proteins: In the case of actin. Biophys. Physicobiol. 2022, 19, e190025. [Google Scholar] [CrossRef]
- Li, C.; Luo, Y.; Xie, Y.; Zhang, Z.; Liu, Y.; Zou, L.; Xiao, F. Structural and functional prediction, evaluation, and validation in the post-sequencing era. Comput. Struct. Biotechnol. J. 2024, 23, 446–451. [Google Scholar] [CrossRef]
- Gasperini, M.; Starita, L.; Shendure, J. The power of multiplexed functional analysis of genetic variants. Nat. Protoc. 2016, 11, 1782–1787. [Google Scholar] [CrossRef]
- Krassowski, M.; Paczkowska, M.; Cullion, K.; Huang, T.; Dzneladze, I.; Ouellette, B.F.F.; Yamada, J.T.; Fradet-Turcotte, A.; Reimand, J. ActiveDriverDB: Human disease mutations and genome variation in post-translational modification sites of proteins. Nucleic Acids Res. 2018, 46, D901–D910. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Sondka, Z.; Dhir, N.B.; Carvalho-Silva, D.; Jupe, S.; Madhumita; McLaren, K.; Starkey, M.; Ward, S.; Wilding, J.; Ahmed, M.; et al. COSMIC: A curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 2024, 52, D1210–D1217. [Google Scholar] [CrossRef]
- Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. 2011, 32, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, I.; Lopez, J.; Skipper, L.; Hefferon, T.; Spalding, J.D.; Garner, J.; Chen, C.; Maguire, M.; Corbett, M.; Zhou, G.; et al. DbVar and DGVa: Public archives for genomic structural variation. Nucleic Acids Res. 2013, 41, D936–D941. [Google Scholar] [CrossRef]
- Ainscough, B.J.; Griffith, M.; Coffman, A.C.; Wagner, A.H.; Kunisaki, J.; Choudhary, M.N.; McMichael, J.F.; Fulton, R.S.; Wilson, R.K.; Griffith, O.L.; et al. DoCM: A database of curated mutations in cancer. Nat. Methods 2016, 13, 806–807. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Evans, K.; Hayden, M.; Heywood, S.; Hussain, M.; Phillips, A.D.; Cooper, D.N. The Human Gene Mutation Database: Towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 2017, 136, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.A.; Spurdle, A.B.; Plazzer, J.-P.; Greenblatt, M.S.; Akagi, K.; Al-Mulla, F.; Bapat, B.; Bernstein, I.; Capellá, G.; den Dunnen, J.T.; et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat. Genet. 2014, 46, 107–115. [Google Scholar] [CrossRef] [PubMed]
- LOVD: Easy Creation of a Locus-Specific Sequence Variation Database Using an “LSDB-in-a-Box” Approach-Fokkema-2005-Human Mutation. Available online: https://onlinelibrary.wiley.com/doi/10.1002/humu.20201 (accessed on 24 April 2024).
- Amberger, J.S.; Hamosh, A. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes. Curr. Protoc. Bioinform. 2017, 58, 1.2.1–1.2.12. [Google Scholar] [CrossRef]
- Thorn, C.F.; Ellison, D.H.; Turner, S.T.; Altman, R.B.; Klein, T.E. PharmGKB summary: Diuretics pathway, pharmacodynamics. Pharmacogenet. Genom. 2013, 23, 449–453. [Google Scholar] [CrossRef]
- Cariaso, M.; Lennon, G. SNPedia: A wiki supporting personal genome annotation, interpretation and analysis. Nucleic Acids Res. 2012, 40, D1308–D1312. [Google Scholar] [CrossRef]
- Béroud, C.; Collod-Béroud, G.; Boileau, C.; Soussi, T.; Junien, C. UMD (Universal mutation database): A generic software to build and analyze locus-specific databases. Hum. Mutat. 2000, 15, 86–94. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Stephenson, J.D.; Sillitoe, I.; Orengo, C.A.; Thornton, J.M. VarSite: Disease variants and protein structure. Protein Sci. Publ. Protein Soc. 2020, 29, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Yu, C.; Furutsuki, M.; Andreoletti, G.; Ly, M.; Hoskins, R.; Adhikari, A.N.; Brenner, S.E. VIPdb, a genetic Variant Impact Predictor Database. Hum. Mutat. 2019, 40, 1202–1214. [Google Scholar] [CrossRef]
- Lehrer, S.; Rheinstein, P.H. Increased Risk of Acute Myelogenous Leukemia After Early Onset but Not Late-Onset Colorectal Cancer. Am. J. Clin. Oncol. 2020, 43, 263–269. [Google Scholar] [CrossRef]
- Papadopulos, M.E.; Plazzer, J.P.; Macrae, F.A. Genotype-phenotype correlation of BMPR1a disease causing variants in juvenile polyposis syndrome. Hered. Cancer Clin. Pract. 2023, 21, 12. [Google Scholar] [CrossRef] [PubMed]
- Quintana, I.; Mur, P.; Terradas, M.; García-Mulero, S.; Aiza, G.; Navarro, M.; Piñol, V.; Brunet, J.; Moreno, V.; Sanz-Pamplona, R.; et al. Potential Involvement of NSD1, KRT24 and ACACA in the Genetic Predisposition to Colorectal Cancer. Cancers 2022, 14, 699. [Google Scholar] [CrossRef] [PubMed]
- Kašubová, I.; Holubeková, V.; Janíková, K.; Váňová, B.; Sňahničanová, Z.; Kalman, M.; Plank, L.; Lasabová, Z. Next Generation Sequencing in Molecular Diagnosis of Lynch Syndrome—A Pilot Study Using New Stratification Criteria. Acta Medica 2018, 61, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Stone, E.A.; Sidow, A. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res. 2005, 15, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016, 99, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Karabachev, A.D.; Martini, D.J.; Hermel, D.J.; Solcz, D.; Richardson, M.E.; Pesaran, T.; Sarkar, I.N.; Greenblatt, M.S. Curated multiple sequence alignment for the Adenomatous Polyposis Coli (APC) gene and accuracy of in silico pathogenicity predictions. PLoS ONE 2020, 15, e0233673. [Google Scholar] [CrossRef] [PubMed]
- Scheraga, H.A.; Khalili, M.; Liwo, A. Protein-folding dynamics: Overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 2007, 58, 57–83. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zheng, L.; Goncearenco, A.; Panchenko, A.R.; Li, M. Computational Approaches to Prioritize Cancer Driver Missense Mutations. Int. J. Mol. Sci. 2018, 19, 2113. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Li, M.-H.; Luo, Q.; Xue, X.-G.; Li, Z.-S. Molecular dynamics studies of the 3D structure and planar ligand binding of a quadruplex dimer. J. Mol. Model. 2011, 17, 515–526. [Google Scholar] [CrossRef]
- Woodcock, H.L.; Miller, B.T.; Hodoscek, M.; Okur, A.; Larkin, J.D.; Ponder, J.W.; Brooks, B.R. MSCALE: A General Utility for Multiscale Modeling. J. Chem. Theory Comput. 2011, 7, 1208–1219. [Google Scholar] [CrossRef]
- Miller, B.T.; Singh, R.P.; Klauda, J.B.; Hodoscek, M.; Brooks, B.R.; Woodcock, H.L. CHARMMing: A new, flexible web portal for CHARMM. J. Chem. Inf. Model. 2008, 48, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.N.; Thacker, S.; Jaini, R.; Eng, C. Dynamics and Structural Stability Effects of Germline PTEN Mutations Associated with Cancer versus Autism Phenotypes. J. Biomol. Struct. Dyn. 2019, 37, 1766–1782. [Google Scholar] [CrossRef]
- Tam, B.; Qin, Z.; Zhao, B.; Sinha, S.; Lei, C.L.; Wang, S.M. Classification of MLH1 Missense VUS Using Protein Structure-Based Deep Learning-Ramachandran Plot-Molecular Dynamics Simulations Method. Int. J. Mol. Sci. 2024, 25, 850. [Google Scholar] [CrossRef]
- Tam, B.; Sinha, S.; Wang, S.M. Combining Ramachandran plot and molecular dynamics simulation for structural-based variant classification: Using TP53 variants as model. Comput. Struct. Biotechnol. J. 2020, 18, 4033–4039. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Masso, M.; Vaisman, I.I. AUTO-MUTE: Web-based tools for predicting stability changes in proteins due to single amino acid replacements. Protein Eng. Des. Sel. PEDS 2010, 23, 683–687. [Google Scholar] [CrossRef]
- Jubb, H.C.; Saini, H.K.; Verdonk, M.L.; Forbes, S.A. COSMIC-3D provides structural perspectives on cancer genetics for drug discovery. Nat. Genet. 2018, 50, 1200–1202. [Google Scholar] [CrossRef]
- Parthiban, V.; Gromiha, M.M.; Schomburg, D. CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Res. 2006, 34, W239–W242. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.H.; Pires, D.E.; Ascher, D.B. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018, 46, W350–W355. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Ascher, D.B.; Blundell, T.L. DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014, 42, W314–W319. [Google Scholar] [CrossRef] [PubMed]
- Guerois, R.; Nielsen, J.E.; Serrano, L. Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. J. Mol. Biol. 2002, 320, 369–387. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Fariselli, P.; Rossi, I.; Casadio, R. A three-state prediction of single point mutations on protein stability changes. BMC Bioinform. 2008, 9 (Suppl. 2), S6. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Lin, J.; Chu, Y.-W. iStable: Off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinform. 2013, 14 (Suppl. 2), S5. [Google Scholar] [CrossRef] [PubMed]
- Laimer, J.; Hofer, H.; Fritz, M.; Wegenkittl, S.; Lackner, P. MAESTRO--multi agent stability prediction upon point mutations. BMC Bioinform. 2015, 16, 116. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Ascher, D.B.; Blundell, T.L. mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014, 30, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Ittisoponpisan, S.; Islam, S.A.; Khanna, T.; Alhuzimi, E.; David, A.; Sternberg, M.J.E. Can Predicted Protein 3D Structures Provide Reliable Insights into whether Missense Variants Are Disease Associated? J. Mol. Biol. 2019, 431, 2197–2212. [Google Scholar] [CrossRef]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 2006, 62, 1125–1132. [Google Scholar] [CrossRef]
- Wagih, O.; Galardini, M.; Busby, B.P.; Memon, D.; Typas, A.; Beltrao, P. A resource of variant effect predictions of single nucleotide variants in model organisms. Mol. Syst. Biol. 2018, 14, e8430. [Google Scholar] [CrossRef] [PubMed]
- Giollo, M.; Martin, A.J.M.; Walsh, I.; Ferrari, C.; Tosatto, S.C.E. NeEMO: A method using residue interaction networks to improve prediction of protein stability upon mutation. BMC Genom. 2014, 15 (Suppl. 4), S7. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed]
- PhyreRisk: A Dynamic Web Application to Bridge Genomics, Proteomics and 3D Structural Data to Guide Interpretation of Human Genetic Variants-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0022283619302517?via%3Dihub (accessed on 25 April 2024).
- López-Ferrando, V.; Gazzo, A.; de la Cruz, X.; Orozco, M.; Gelpí, J.L. PMut: A web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Res. 2017, 45, W222–W228. [Google Scholar] [CrossRef] [PubMed]
- Wainreb, G.; Wolf, L.; Ashkenazy, H.; Dehouck, Y.; Ben-Tal, N. Protein stability: A single recorded mutation aids in predicting the effects of other mutations in the same amino acid site. Bioinformatics 2011, 27, 3286–3292. [Google Scholar] [CrossRef] [PubMed]
- Getov, I.; Petukh, M.; Alexov, E. SAAFEC: Predicting the Effect of Single Point Mutations on Protein Folding Free Energy Using a Knowledge-Modified MM/PBSA Approach. Int. J. Mol. Sci. 2016, 17, 512. [Google Scholar] [CrossRef] [PubMed]
- Magyar, C.; Gromiha, M.M.; Pujadas, G.; Tusnády, G.E.; Simon, I. SRide: A server for identifying stabilizing residues in proteins. Nucleic Acids Res. 2005, 33, W303–W305. [Google Scholar] [CrossRef]
- Quan, L.; Lv, Q.; Zhang, Y. STRUM: Structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics 2016, 32, 2936–2946. [Google Scholar] [CrossRef] [PubMed]
- Kabbage, M.; Ben Aissa-Haj, J.; Othman, H.; Jaballah-Gabteni, A.; Laarayedh, S.; Elouej, S.; Medhioub, M.; Kettiti, H.T.; Khsiba, A.; Mahmoudi, M.; et al. A Rare MSH2 Variant as a Candidate Marker for Lynch Syndrome II Screening in Tunisia: A Case of Diffuse Gastric Carcinoma. Genes 2022, 13, 1355. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, S.; Baranwal, M. Identification of SNPs in hMSH3/MSH6 interaction domain affecting the structure and function of MSH2 protein. Biotechnol. Appl. Biochem. 2022, 69, 2454–2465. [Google Scholar] [CrossRef]
- Keskin Karakoyun, H.; Yüksel, Ş.K.; Amanoglu, I.; Naserikhojasteh, L.; Yeşilyurt, A.; Yakıcıer, C.; Timuçin, E.; Akyerli, C.B. Evaluation of AlphaFold structure-based protein stability prediction on missense variations in cancer. Front. Genet. 2023, 14, 1052383. [Google Scholar] [CrossRef]
- Livesey, B.J.; Marsh, J.A. Interpreting protein variant effects with computational predictors and deep mutational scanning. Dis. Model. Mech. 2022, 15, dmm049510. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Krishna, R.; Wang, J.; Ahern, W.; Sturmfels, P.; Venkatesh, P.; Kalvet, I.; Lee, G.R.; Morey-Burrows, F.S.; Anishchenko, I.; Humphreys, I.R.; et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 2024, 384, eadl2528. [Google Scholar] [CrossRef]
- Fernández Montes, A.; Alonso, V.; Aranda, E.; Élez, E.; García Alfonso, P.; Grávalos, C.; Maurel, J.; Vera, R.; Vidal, R.; Aparicio, J. SEOM-GEMCAD-TTD clinical guidelines for the systemic treatment of metastatic colorectal cancer (2022). Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2023, 25, 2718–2731. [Google Scholar] [CrossRef] [PubMed]
- Lauricella, S.; Rausa, E.; Pellegrini, I.; Ricci, M.T.; Signoroni, S.; Palassini, E.; Cavalcoli, F.; Pasanisi, P.; Colombo, C.; Vitellaro, M. Current management of familial adenomatous polyposis. Expert Rev. Anticancer Ther. 2024, 24, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Balmaña, J.; Digiovanni, L.; Gaddam, P.; Walsh, M.F.; Joseph, V.; Stadler, Z.K.; Nathanson, K.L.; Garber, J.E.; Couch, F.J.; Offit, K.; et al. Conflicting Interpretation of Genetic Variants and Cancer Risk by Commercial Laboratories as Assessed by the Prospective Registry of Multiplex Testing. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 4071–4078. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- Grimm, D.G.; Azencott, C.-A.; Aicheler, F.; Gieraths, U.; MacArthur, D.G.; Samocha, K.E.; Cooper, D.N.; Stenson, P.D.; Daly, M.J.; Smoller, J.W.; et al. The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. Hum. Mutat. 2015, 36, 513–523. [Google Scholar] [CrossRef]
Hereditary CRC Syndrome | Driver Genes | Pathogenic | Likely Pathogenic | Uncertain Significance | Likely Benign | Benign | Total |
---|---|---|---|---|---|---|---|
FAP and AFAP | APC | 1796 | 213 | 6139 | 2249 | 228 | 10,625 |
MAP | MUTYH | 9 | 1 | 14 | 27 | 0 | 51 |
PPAP | POLD | 4 | 2 | 2378 | 1732 | 98 | 4214 |
POLE | 16 | 12 | 379 | 231 | 60 | 698 | |
NTHL1 tumor syndrome | NTHL1 | 58 | 38 | 102 | 3 | 0 | 201 |
PJS | STK11 | 193 | 55 | 837 | 750 | 77 | 1912 |
JPS | BMPR1A | 164 | 41 | 813 | 552 | 30 | 1600 |
SMAD4 | 139 | 37 | 586 | 569 | 17 | 1348 | |
PHTS | PTEN | 487 | 122 | 730 | 456 | 53 | 1848 |
HMPS | GREM1 | 0 | 0 | 4 | 0 | 0 | 4 |
SPS | RNF43 | 2 | 2 | 104 | 2 | 1 | 111 |
LS | MLH1 | 527 | 120 | 86 | 40 | 55 | 828 |
MSH2 | 756 | 255 | 470 | 165 | 86 | 1732 | |
MSH6 | 203 | 55 | 156 | 57 | 47 | 518 | |
PMS2 | 83 | 32 | 61 | 13 | 36 | 225 | |
MMR-p HNPCC | RPS20 | 0 | 0 | 5 | 0 | 0 | 5 |
Database | Description | Link | References | Number of Tool Citations * |
---|---|---|---|---|
ActiveDriverDB | Human proteo-genomics database that annotates disease mutations and population variants using post-translational modifications | https://activedriverdb.org/ (accessed on 14 April 2024) | [85] | 3 |
cBioPortal (Cancer Genomics Portal) | Open-access resource that is useful to interactively explore multidimensional cancer genomics data sets. It presently provides access to data from about 100,000 tumor samples collected from 218 different cancer research studies | https://www.cbioportal.org/ (accessed on 14 April 2024) | [86] | 2113 |
ClinVar (Clinical Variants) | Portal of human variations classified for diseases | https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 14 April 2024) | [73] | 1055 |
ClinVar Miner (Clinical Variants Miner) | Portal for viewing and filtering ClinVar data | https://clinvarminer.genetics.utah.edu/ (accessed on 14 April 2024) | [28] | 4 |
COSMIC (Catalogue Of Somatic Mutations In Cancer) | Curated database of somatic and germline mutations | https://cancer.sanger.ac.uk/cosmic (accessed on 14 April 2024) | [87] | 212 |
dbNSFP (Database for Nonsynonymous SNPs’ Functional Predictions) | Database of functional predictions and annotations for human nonsynonymous SNPs | http://database.liulab.science/dbNSFP#database (accessed on 14 April 2024) | [88] | 35 |
dbSNP (Single Nucleotide Polymorphism Database) | SNP catalog designed to facilitate large-scale studies and association between genetics, functional implications, population genetics, and evolutionary biology of SNPs | https://www.ncbi.nlm.nih.gov/snp/ (accessed on 14 April 2024) | [89] | 1087 |
dbVar (Database of Genomic Variation) | Repository of structural variations in the human genome allowing to search, read, and download data from submitted studies | https://www.ncbi.nlm.nih.gov/dbvar/ (accessed on 14 April 2024) | [90] | 27 |
DoCM (Database Of Curated Mutations) | Curated database of validated cancer driver mutations | http://www.docm.info/ (accessed on 14 April 2024) | [91] | 16 |
GnomAD (GeNOMe Aggregation Database) | Collection of standardized exome and genome sequencing data from numerous large-scale sequencing initiatives | https://gnomad.broadinstitute.org/, accessed on 14 April 2024 | [92] | 866 |
HGMD (The Human Gene Mutation Database) | Comprehensive repository of inherited mutation data for medical research, genetic diagnosis, and NGS studies | https://www.hgmd.cf.ac.uk/ac/index.php/, accessed on 14 April 2024 | [93] | 225 |
InSiGHT (International Society for Gastrointestinal Hereditary Tumours) | Extensive database of DNA variations that have been re-sequenced in genes associated with gastrointestinal cancer | https://www.insight-group.org/variants/databases/ (accessed on 14 April 2024) | [94] | 62 |
LoVD (Leiden Open Variation Database) | Web-based open-source database collecting DNA sequence variants associated with genetic (hereditary) diseases | https://www.lovd.nl/ (accessed on 14 April 2024) | [95] | 158 |
OMIM (Online Mendelian Inheritance in Man) | Collection of genetic phenotypes associated with Mendelian inherited disorders | https://omim.org/ (accessed on 14 April 2024) | [96] | 8182 |
PharmGKB (Pharmacogenomics Knowledge Base) | Comprehensive database providing researchers and clinicians with information regarding how genetic diversity affects drug response | https://www.pharmgkb.org/ (accessed on 14 April 2024) | [97] | 546 |
SNPedia (Single Nucleotide Polymorphism encyclopedia) | Database referencing peer-reviewed scientific literature that gathers data on the impact of DNA polymorphisms with an emphasis on medical, phenotypic, and genealogical correlations of SNPs | https://www.snpedia.com/index.php/SNPedia (accessed on 14 April 2024) | [98] | 19 |
UMD (Universal Mutation Database) | Database of driver mutations, focusing on their importance for the twelve main types of cancer | https://bio.tools/umd (accessed on 14 April 2024) | [99] | 15 |
VarSite (Variant Site database) | Web service that maps natural variations from gnomAD and known disease-associated variants from UniProt and ClinVar onto 3D protein structures stored in the Protein Data Bank | https://www.ebi.ac.uk/thornton-srv/databases/VarSite (accessed on 14 April 2024) | [100] | 4 |
VIPdb (Variant Impact Predictor Database) | Comprehensive resource that facilitates the exploration of suitable tools and aids in the creation of enhanced methods for accurately predicting the impact of genetic variants | https://genomeinterpretation.org/vipdb (accessed on 14 April 2024) | [101] | 3 |
Resource | Description | Link | References | Number of Tool Citations * |
---|---|---|---|---|
AUTO-MUTE version 2.0 | Software using ΔΔG calculations and knowledge-based potentials | http://proteins.gmu.edu/automute (accessed on 20 April 2024) | [121] | 5 |
Cosmic-3D Release v99 | Tool that analyzes cancer mutations within the framework of three-dimensional protein structures | https://cancer.sanger.ac.uk/cosmic3d/ (accessed on 20 April 2024) | [122] | 4 |
CUPSAT | Software using ΔΔG calculations with mean force atom pair and torsion angle potentials | https://cupsat.brenda-enzymes.org/ (accessed on 20 April 2024) | [123] | 34 |
DynaMut | Software using ΔΔG calculations to predict the effects of variants on protein flexibility | http://biosig.unimelb.edu.au/dynamut/ (accessed on 20 April 2024) | [124] | 47 |
DUET | Software that predicts the effects of mutations on protein stability by calculating changes in ∆∆G | https://biosig.lab.uq.edu.au/duet (accessed on 20 April 2024) | [125] | 11 |
FOLD-X Version 3.0 | Software using empirical force fields to calculate ΔΔG | https://software.embl-em.de/software/6 (accessed on 20 April 2024) | [126] | 39 |
i-Mutant 3.0 | Software using support vector machines (SVMs) to calculate ΔΔG | http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi (accessed on 20 April 2024) | [127] | 27 |
iStable Version 2.0 | Software using SVMs to analyze protein stability and calculate ΔΔG | http://predictor.nchu.edu.tw/iStable (accessed on 20 April 2024) | [128] | 37 |
MAESTRO Version 1.2.35 | Software using ΔΔG calculations and multi-agent stability prediction | http://biwww.che.sbg.ac.at/MAESTRO (accessed on 20 April 2024) | [129] | 62 |
mCSM | Software using graph-based signatures to calculate ΔΔG | https://biosig.lab.uq.edu.au/mcsm (accessed on 20 April 2024) | [130] | 137 |
Missense3D (Release June 2019) | Tool that predicts structural alterations resulting from amino acid substitutions. Analysis of experimental coordinates and expected structures is also possible | http://missense3d.bc.ic.ac.uk/missense3d/ (accessed on 20 April 2024) | [131] | 21 |
MUpro (Release 6.0, 2021) | Software using SVMs to predict variation in protein stability | http://mupro.proteomics.ics.uci.edu/ (accessed on 20 April 2024) | [132] | 86 |
Mutfunc Version 2.0 | Web resource reporting mutations that are either expected to cause instability in protein structure or that occur in functionally significant regions | www.mutfunc.com (accessed on 20 April 2024) | [133] | 2 |
NeEMO | Software using amino acids involved in protein-to-protein interaction networks to calculate ΔΔG | https://biocomputingup.it/ (accessed on 20 April 2024) | [134] | 18 |
Phyre 2 version 2.0 | Tool that predicts protein sequence structure and function using automatic fold recognition | http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index (accessed on 20 April 2024) | [135] | 191 |
PhyreRisk Version 1.0.1 | Open-access program that maps human variations onto protein structure, integrating genomic, proteomic, and structural data | http://phyrerisk.bc.ic.ac.uk/ (accessed on 20 April 2024) | [136] | 3 |
PMut Version 2017 | Software designed to identify and predict pathological mutations. It labels mutations by processing several types of sequence information using neural networks | https://mmb.irbbarcelona.org/PMut (accessed on 20 April 2024) | [137] | 183 |
ProMaya | Software using random forests regression for ΔΔG calculations | http://bental.tau.ac.il/ProMaya/ (accessed on 20 April 2024) | [138] | 3 |
SAAFEC-SEQ Version 1.0 | Software using multiple linear regression to calculate ΔΔG | http://compbio.clemson.edu/lab/ (accessed on 20 April 2024) | [139] | 7 |
SRide | Server allowing for detection of stabilizing residues within proteins | http://sride.enzim.hu (accessed on 20 April 2024) | [140] | 7 |
STRUM Version STRUM.tar.bz2 | Software that predicts alterations caused by single-point nonsynonymous SNPs in protein folding stability by calculating changes in ∆∆G | https://zhanggroup.org/STRUM/ (accessed on 20 April 2024) | [141] | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fasano, C.; Lepore Signorile, M.; De Marco, K.; Forte, G.; Disciglio, V.; Sanese, P.; Grossi, V.; Simone, C. In Silico Deciphering of the Potential Impact of Variants of Uncertain Significance in Hereditary Colorectal Cancer Syndromes. Cells 2024, 13, 1314. https://doi.org/10.3390/cells13161314
Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Sanese P, Grossi V, Simone C. In Silico Deciphering of the Potential Impact of Variants of Uncertain Significance in Hereditary Colorectal Cancer Syndromes. Cells. 2024; 13(16):1314. https://doi.org/10.3390/cells13161314
Chicago/Turabian StyleFasano, Candida, Martina Lepore Signorile, Katia De Marco, Giovanna Forte, Vittoria Disciglio, Paola Sanese, Valentina Grossi, and Cristiano Simone. 2024. "In Silico Deciphering of the Potential Impact of Variants of Uncertain Significance in Hereditary Colorectal Cancer Syndromes" Cells 13, no. 16: 1314. https://doi.org/10.3390/cells13161314
APA StyleFasano, C., Lepore Signorile, M., De Marco, K., Forte, G., Disciglio, V., Sanese, P., Grossi, V., & Simone, C. (2024). In Silico Deciphering of the Potential Impact of Variants of Uncertain Significance in Hereditary Colorectal Cancer Syndromes. Cells, 13(16), 1314. https://doi.org/10.3390/cells13161314