Role of Piezo1 in Terminal Density Reversal of Red Blood Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Samples
2.2. Red Blood Cell Density Separation
2.3. Hydrolytic Activity of PMCA
2.4. Flow Cytometry
2.5. Statistical Analysis
3. Results
3.1. Low-Density Senescent-Like Cells
3.2. Intracellular Na+ in SLHC Cells
3.3. Ca2+ Dynamics in SLHC Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huisjes, R.; Bogdanova, A.; Van Solinge, W.W.; Schiffelers, R.M.; Kaestner, L.; Van Wijk, R. Squeezing for Life–Properties of Red Blood Cell Deformability. Front. Physiol. 2018, 9, 656. [Google Scholar] [CrossRef] [PubMed]
- Lutz, H.U.; Stammler, P.; Fasler, S.; Ingold, M.; Fehr, J. Density separation of human red blood cells on self forming Percoll gradients: Correlation with cell age. Biochim. Biophys. Acta 1992, 1116, 1–10. [Google Scholar] [CrossRef]
- Maurer, F.; John, T.; Makhro, A.; Bogdanova, A.; Minetti, G.; Wagner, C.; Kaestner, L. Continuous Percoll Gradient Centrifugation of Erythrocytes-Explanation of Cellular Bands and Compromised Age Separation. Cells 2022, 11, 1296. [Google Scholar] [CrossRef]
- Seppi, C.; Castellana, M.A.; Minetti, G.; Piccinini, G.; Balduini, C.; Brovelli, A. Evidence for membrane protein oxidation during in vivo aging of human erythrocytes. Mech. Ageing Dev. 1991, 57, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Lutz, H.U.; Bogdanova, A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front. Physiol. 2013, 4, 387. [Google Scholar] [CrossRef]
- Kaestner, L.; Bogdanova, A.; Egee, S. Calcium channels and calcium-regulated channels in human red blood cells. Adv. Exp. Med. Biol. 2020, 1131, 625–648. [Google Scholar] [CrossRef] [PubMed]
- Lew, V.L.; Tiffert, T. On the mechanism of human red blood cell longevity: Roles of calcium, the sodium pump, piezo1, and gardos channels. Front. Physiol. 2017, 8, 977. [Google Scholar] [CrossRef] [PubMed]
- Kaestner, L. Cation Channels in Erythrocytes—Historical and Future Perspective; Springer: Berlin/Heidelberg, Germany, 2013; pp. 223–233. [Google Scholar]
- Pasini, E.M.; Kirkegaard, M.; Mortensen, P.; Lutz, H.U.; Thomas, A.W.; Mann, M. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 2006, 108, 791–801. [Google Scholar] [CrossRef]
- Samaja, M.; Rubinacci, A.; De Ponti, A.; Portinaro, N. The effect of in, vitro and in, vivo cellular aging on the active calcium transport in human inside-out red cell membrane vesicles. Biochem. Biophys. Res. Commun. 1989, 159, 432–438. [Google Scholar] [CrossRef]
- Bogdanova, A.; Makhro, A.; Wang, J.; Lipp, P.; Kaestner, L. Calcium in red blood cells-a perilous balance. Int. J. Mol. Sci. 2013, 14, 9848–9872. [Google Scholar] [CrossRef] [PubMed]
- Bookchin, R.M.; Etzion, Z.; Sorette, M.; Mohandas, N.; Skepper, J.N.; Lew, V.L. Identification and characterization of a newly recognized population of high-Na+, low-K+, low-density sickle and normal red cells. Proc. Natl. Acad. Sci. USA 2000, 97, 8045–8050. [Google Scholar] [CrossRef]
- Lew, V.L.; Tiffert, T. The terminal density reversal phenomenon of aging human red blood cells. Front. Physiol. 2013, 4, 171. [Google Scholar] [CrossRef]
- van Cromvoirt, A.M.; Fenk, S.; Sadafi, A.; Melnikova, E.V.; Lagutkin, D.A.; Dey, K.; Petrushanko, I.Y.; Hegemann, I.; Goede, J.S.; Bogdanova, A. Donor Age and Red Cell Age Contribute to the Variance in Lorrca Indices in Healthy Donors for Next Generation Ektacytometry: A Pilot Study. Front. Physiol. 2021, 12, 639722. [Google Scholar] [CrossRef] [PubMed]
- Makhro, A.; Kaestner, L.; Bogdanova, A. NMDA Receptor Activity in Circulating Red Blood Cells: Methods of Detection. Methods. Mol. Biol. 2017, 1677, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Zemlyanskikh, N.G.; Kofanova, O.A. Modulation of human erythrocyte Ca2+-ATPase activity by glycerol: The role of calmodulin. Biochemistry 2006, 71, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Dey, K.; Roy, S.; Ghosh, B.; Chakraborti, S. Role of protein kinase C in phospholemman mediated regulation of α2β1 isozyme of Na+/K+-ATPase in caveolae of pulmonary artery smooth muscle cells. Biochimie 2012, 94, 991–1000. [Google Scholar] [CrossRef]
- Iamshanova, O.; Mariot, P.; Lehen’kyi, V.y.; Prevarskaya, N. Comparison of fluorescence probes for intracellular sodium imaging in prostate cancer cell lines. Eur. Biophys. J. 2016, 45, 765–777. [Google Scholar] [CrossRef]
- Negulescu, P.A.; Machen, T.E. Intracellular ion activities and membrane transport in parietal cells measured with fluorescent dyes. Methods Enzymol. 1990, 192, 38–81. [Google Scholar] [CrossRef]
- Fermo, E.; Bogdanova, A.; Petkova-Kirova, P.; Zaninoni, A.; Marcello, A.P.; Makhro, A.; Hanggi, P.; Hertz, L.; Danielczok, J.; Vercellati, C.; et al. ‘Gardos Channelopathy’: A variant of hereditary Stomatocytosis with complex molecular regulation. Sci. Rep. 2017, 7, 1744. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Bae, C.; Gottlieb, P.A.; Sachs, F. Ionic Selectivity and Permeation Properties of Human PIEZO1 Channels. PLoS ONE 2015, 10, e0125503. [Google Scholar] [CrossRef]
- Lew, V.L.; Daw, N.; Etzion, Z.; Tiffert, T.; Muoma, A.; Vanagas, L.; Bookchin, R.M. Effects of age-dependent membrane transport changes on the homeostasis of senescent human red blood cells. Blood 2007, 110, 1334–1342. [Google Scholar] [CrossRef]
- Tiffert, T.; Daw, N.; Etzion, Z.; Bookchin, R.M.; Lew, V.L. Age Decline in the Activity of the Ca2+-sensitive K+ Channel of Human Red Blood Cells. J. Gen. Physiol. 2007, 129, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Lang, F.; Lang, K.S.; Lang, P.A.; Huber, S.M.; Wieder, T. Mechanisms and significance of eryptosis. Antioxid. Redox Signal. 2006, 8, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Klei, T.R.L.; Dalimot, J.; Nota, B.; Veldthuis, M.; Mul, F.P.J.; Rademakers, T.; Hoogenboezem, M.; Nagelkerke, S.Q.; van IJcken, W.F.J.; Oole, E.; et al. Hemolysis in the spleen drives erythrocyte turnover. Blood 2020, 136, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dey, K.; van Cromvoirt, A.M.; Hegemann, I.; Goede, J.S.; Bogdanova, A. Role of Piezo1 in Terminal Density Reversal of Red Blood Cells. Cells 2024, 13, 1363. https://doi.org/10.3390/cells13161363
Dey K, van Cromvoirt AM, Hegemann I, Goede JS, Bogdanova A. Role of Piezo1 in Terminal Density Reversal of Red Blood Cells. Cells. 2024; 13(16):1363. https://doi.org/10.3390/cells13161363
Chicago/Turabian StyleDey, Kuntal, Ankie M. van Cromvoirt, Inga Hegemann, Jeroen S. Goede, and Anna Bogdanova. 2024. "Role of Piezo1 in Terminal Density Reversal of Red Blood Cells" Cells 13, no. 16: 1363. https://doi.org/10.3390/cells13161363
APA StyleDey, K., van Cromvoirt, A. M., Hegemann, I., Goede, J. S., & Bogdanova, A. (2024). Role of Piezo1 in Terminal Density Reversal of Red Blood Cells. Cells, 13(16), 1363. https://doi.org/10.3390/cells13161363