Effect of Culture Temperature on 2-Methylisoborneol Production and Gene Expression in Two Strains of Pseudanabaena sp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of the Bacteria and Mic Gene
2.2. Culture Experiments
2.3. DNA and RNA Extraction
2.4. dPCR Setup for Mic Gene Quantification
Primers /Probes | Target | Sequence (5′→3′) | Target Size (bp) | Ta (°C) | Reference |
---|---|---|---|---|---|
27F | Universal bacteria | AGAGTTTGATYMTGGCTCAG | >1200 | 56 | Sung et al. [40] |
1492R | TACGGYTACCTTGTTACGACT | ||||
CYAN 108F | Pseudanabaena- specific 16S rRNA | ACGGGTGAGTAACRCGTRA | 270 | 55 | Modified from Rinta-Kanto et al. [39] |
CYAN 377R | CCATTGCGGAAAATTCCCC | ||||
CYAN 328R | FAM-CTCAGTTCCAGTGTGACTGGTC-BHQ1 | ||||
MIB3324F | Cyanobacterial MIB synthase | CATTACCGAGCGATTCAACGAGC | 726 | 52 | Suurnäkki et al. [33] |
MIB4050R | CCGCAATCTGTAGCACCATGTTGA | ||||
3909F | Cyanobacterial MIB synthase (mic) | CACCAGATCTTTTCTTCGATC | 140 | 59 | Lee et al. [38] |
4028R | AATCTGTAGCACCATGTTGAC | ||||
3987P | FAM-TCCTTTCGGTTGCCA-BHQ1 | this study |
2.5. GC-MS Analysis of 2-MIB
2.6. Statistical Analysis
3. Results and Discussion
3.1. Cell Growth, 2-MIB Production, and Mic Gene Abundance
3.2. The Effect of Temperature on 2-MIB Production Yield
3.3. Temperature and Expression Level of the 2-MIB Synthase Gene
3.4. Relationship between Chl-a and 2-MIB Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srinivasan, R.; Sorial, G.A. Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: A critical review. J. Environ. Sci. 2011, 23, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Wang, M.; Ge, X.; Zhao, Q.; Sun, S.; Jia, R. Highly efficient removal of geosmin and 2-methylisoborneol by carboxylated multi-walled carbon nanotubes. Monatshefte Chem. Chem. Mon. 2014, 145, 747–754. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, L.; Li, L.; Song, L. 2-Methylisoborneol production characteristics of Pseudanabaena sp. FACHB 1277 isolated from Xionghe Reservoir, China. J. Appl. Phycol. 2016, 28, 3353–3362. [Google Scholar] [CrossRef]
- Pestana, C.J.; Lawton, L.A.; Kaloudis, T. Removal and/or Destruction of Cyanobacterial Taste and Odour Compounds by Conventional and Advanced Oxidation Processes. In Water Treatment for Purification from Cyanobacteria and Cyanotoxins; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2020; pp. 207–230. [Google Scholar]
- Manganelli, M.; Testai, E.; Tazart, Z.; Scardala, S.; Codd, G.A. Co-occurrence of taste and odor compounds and cyanotoxins in cyanobacterial blooms: Emerging risks to human health? Microorganisms 2023, 11, 872. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.B. Aquatic taste and odor: A primary signal of drinking-water integrity. J. Toxicol. Environ. Health A 2004, 67, 1779–1795. [Google Scholar] [CrossRef] [PubMed]
- Park, G.; Yu, M.; Go, J.; Kim, E.; Kim, H. Comparison between ozone and ferrate in oxidising geosmin and 2-MIB in water. Water Sci. Technol. 2007, 55, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Berlt, M.M.G.; Schneider, R.D.C.D.S.; Machado, Ê.L.; Kist, L.T. Comparative assessment of the degradation of 2-methylisoborneol and geosmin in freshwater using advanced oxidation processes. Environ. Technol. 2021, 42, 3832–3839. [Google Scholar] [CrossRef]
- Watson, S.B.; Monis, P.; Baker, P.; Giglio, S. Biochemistry and genetics of taste-and odor-producing cyanobacteria. Harmful Algae 2016, 54, 112–127. [Google Scholar] [CrossRef]
- Anuar, N.S.S.; Kassim, A.A.; Utsumi, M.; Iwamoto, K.; Goto, M.; Shimizu, K.; Nor, A.O.; Zakaria, Z.; Sugiura, N.; Hara, H. Characterization of musty odor-producing actinomycetes from tropics and effects of temperature on the production of musty odor compounds. Microbes Environ. 2017, 32, 352–357. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Shao, J.; Wang, J.; Li, R. Genes associated with 2-methylisoborneol biosynthesis in cyanobacteria: Isolation, characterization, and expression in response to light. PLoS ONE 2011, 6, e18665. [Google Scholar] [CrossRef]
- Yamada, Y.; Kuzuyama, T.; Komatsu, M.; Shin-Ya, K.; Omura, S.; Cane, D.E.; Ikeda, H. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 2015, 112, 857–862. [Google Scholar] [CrossRef]
- Havens, K.E.; Paerl, H.W. Climate Change at a Crossroad for Control of Harmful Algal Blooms; ACS Publications: Washington, DC, USA, 2015. [Google Scholar]
- Nowicka-Krawczyk, P.; Żelazna-Wieczorek, J.; Skrobek, I.; Ziułkiewicz, M.; Adamski, M.; Kaminski, A.; Żmudzki, P. Persistent cyanobacteria blooms in artificial water bodies—An effect of environmental conditions or the result of anthropogenic change. Int. J. Environ. Res. Public Health 2022, 19, 6990. [Google Scholar] [CrossRef]
- Lu, J.; Su, M.; Su, Y.; Wu, B.; Cao, T.; Fang, J.; Yu, J.; Zhang, H.; Yang, M. Driving forces for the growth of MIB-producing Planktothricoides raciborskii in a low-latitude reservoir. Water Res. 2022, 220, 118670. [Google Scholar] [CrossRef]
- Mohanty, B.; Majedi, S.M.; Pavagadhi, S.; Te, S.H.; Boo, C.Y.; Gin, K.Y.-H.; Swarup, S. Effects of light and temperature on the metabolic profiling of two habitat-dependent bloom-forming cyanobacteria. Metabolites 2022, 12, 406. [Google Scholar] [CrossRef]
- Izaguirre, G.; Taylor, W.D. A Pseudanabaena species from Castaic Lake, California, that produces 2-methylisoborneol. Water Res. 1998, 32, 1673–1677. [Google Scholar] [CrossRef]
- Lee, J.E.; Yu, M.N.; Yu, S.; Byeon, M. Occurrence and phylogenetic analysis of Pseudanabaena sp. producing 2-methylisoborneol in drinking water source of South Korea. Environ. Microbiol. Rep. 2022, 14, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Huang, Q.; Shen, X.; Wu, J.; Nan, J.; Li, J.; Lu, H.; Yang, C. Distribution, driving forces, and risk assessment of 2-MIB and its producer in a drinking water source-oriented shallow lake. Environ. Sci. Pollut. Res. 2023, 30, 71194–71208. [Google Scholar] [CrossRef]
- Wang, Z.; Li, R. Effects of light and temperature on the odor production of 2-methylisoborneol-producing Pseudanabaena sp. and geosmin-producing Anabaena ucrainica (cyanobacteria). Biochem. Syst. Ecol. 2015, 58, 219–226. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, Q.; Miao, H.; Shimada, M.; Utsumi, M.; Lei, Z.; Zhang, Z.; Nishimura, O.; Asada, Y.; Fujimoto, N. Temperature affects growth, geosmin/2-methylisoborneol production, and gene expression in two cyanobacterial species. Environ. Sci. Pollut. Res. 2022, 29, 12017–12026. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Wan Omar, W.M.; Merican, F.M.M.S.; Azizan, A.A.; Foong, C.P.; Convey, P.; Najimuddin, N.; Smykla, J.; Alias, S.A. Identification and phenotypic plasticity of Pseudanabaena catenata from the Svalbard archipelago. Pol. Polar Res. 2017, 38, 445–458. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, J.; Wang, M.; Dong, W. Dominance and growth factors of Pseudanabaena sp. in drinking water source reservoirs, Southern China. Sustainability 2018, 10, 3936. [Google Scholar] [CrossRef]
- Shizuka, K.; Ikenaga, M.; Murase, J.; Nakayama, N.; Matsuya, N.; Kakino, W.; Taruya, H.; Maie, N. Diversity of 2-MIB-Producing cyanobacteria in Lake Ogawara: Microscopic and molecular ecological approaches. Aquac. Sci. 2020, 68, 9–23. [Google Scholar]
- Su, M.; Zhu, Y.; Andersen, T.; Wang, X.; Yu, Z.; Lu, J.; Song, Y.; Cao, T.; Yu, J.; Zhang, Y. Light-dominated selection shaping filamentous cyanobacterial assemblages drives odor problem in a drinking water reservoir. NPJ Clean Water 2022, 5, 37. [Google Scholar] [CrossRef]
- Kakimoto, M.; Ishikawa, T.; Miyagi, A.; Saito, K.; Miyazaki, M.; Asaeda, T.; Yamaguchi, M.; Uchimiya, H.; Kawai-Yamada, M. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata. J. Plant Physiol. 2014, 171, 292–300. [Google Scholar] [CrossRef]
- Cao, T.; Fang, J.; Jia, Z.; Zhu, Y.; Su, M.; Zhang, Q.; Song, Y.; Yu, J.; Yang, M. Early warning of MIB episode based on gene abundance and expression in drinking water reservoirs. Water Res. 2023, 231, 119667. [Google Scholar] [CrossRef]
- Zimba, P.V.; Dionigi, C.P.; Millie, D.F. Evaluating the relationship between photopigment synthesis and 2-methylisoborneol accumulation in cyanobacteria. J. Phycol. 1999, 35, 1422–1429. [Google Scholar] [CrossRef]
- Shen, Q.; Shimizu, K.; Miao, H.; Tsukino, S.; Utsumi, M.; Lei, Z.; Zhang, Z.; Nishimura, O.; Asada, Y.; Fujimoto, N. Effects of elevated nitrogen on the growth and geosmin productivity of Dolichospermum smithii. Environ. Sci. Pollut. Res. 2021, 28, 177–184. [Google Scholar] [CrossRef]
- Watson, S.B. Cyanobacterial and eukaryotic algal odour compounds: Signals or by-products? A review of their biological activity. Phycologia 2003, 42, 332–350. [Google Scholar] [CrossRef]
- Watson, S.; Jüttner, F. Biological production of taste and odour compounds. In Taste and Odour in Source and Drinking Water: Causes, Controls, and Consequences; IWA Publishing: London, UK, 2019; pp. 63–112. [Google Scholar]
- Belcher, H.; Swale, E. Culturing Algae. A Guide for Schools and Colleges; Institute of Terrestrial Ecology: Cambridge, UK, 1982. [Google Scholar]
- Suurnäkki, S.; Gomez-Saez, G.V.; Rantala-Ylinen, A.; Jokela, J.; Fewer, D.P.; Sivonen, K. Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds. Water Res. 2015, 68, 56–66. [Google Scholar] [CrossRef]
- Stanier, R.Y.; Kunisawa, R.; Mandel, M.; Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 1971, 35, 171–205. [Google Scholar] [CrossRef]
- Jeong Hwan, B.; Kim, H.N.; Kang, T.G.; Kim, B.-H.; Byeon, M.-S. Study of the cause of the generation of odor compounds (geosmin and 2-methylisoborneol) in the Han River system, the drinking water source, Republic of Korea. Water Supply 2023, 23, 1081–1093. [Google Scholar] [CrossRef]
- Lee, J.; Gil, K. Spatial optimization of operating microalgae bioreactor for nitrogen removal and electricity saving. Environ. Earth Sci. 2020, 79, 239. [Google Scholar] [CrossRef]
- Tan, L.L.; Loganathan, N.; Agarwalla, S.; Yang, C.; Yuan, W.; Zeng, J.; Wu, R.; Wang, W.; Duraiswamy, S. Current commercial dPCR platforms: Technology and market review. Crit. Rev. Biotechnol. 2023, 43, 433–464. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Park, R.; Yu, M.; Byeon, M.; Kang, T. qPCR-based monitoring of 2-Methylisoborneol/Geosmin-producing cyanobacteria in drinking water reservoirs in South Korea. Microorganisms 2023, 11, 2332. [Google Scholar] [CrossRef]
- Rinta-Kanto, J.; Ouellette, A.; Boyer, G.; Twiss, M.; Bridgeman, T.; Wilhelm, S. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 2005, 39, 4198–4205. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.Y.; Hwang, Y.; Shin, M.H.; Park, M.S.; Lee, S.H.; Yong, D.; Lee, K. Utility of conventional culture and MALDI-TOF MS for identification of microbial communities in bronchoalveolar lavage fluid in comparison with the GS junior next generation sequencing system. Ann. Lab. Med. 2018, 38, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Hurlburt, B.; Lloyd, S.W.; Grimm, C.C. Comparison of analytical techniques for detection of geosmin and 2-methylisoborneol in aqueous samples. J. Chromatogr. Sci. 2009, 47, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Cooper, S.; Helmstetter, C.E. Chromosome replication and the division cycle of Escherichia coli Br. J. Mol. Biol. 1968, 31, 519–540. [Google Scholar] [CrossRef] [PubMed]
- Sukenik, A.; Kaplan-Levy, R.N.; Welch, J.M.; Post, A.F. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012, 6, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Jüttner, F.; Watson, S.B. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl. Environ. Microbiol. 2007, 73, 4395–4406. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-T.; Yen, H.-K.; Lin, T.-F. An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs: Method development and field applications. Environ. Res. 2016, 151, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, L.; Cheng, S.; Chen, L.; Zhang, H.; Zhang, X. Production and release of 2-MIB in Pseudanabaena: Effects of growth phases on cell characteristics and 2-MIB yield. Ecotoxicol. Environ. Saf. 2024, 274, 116198. [Google Scholar] [CrossRef]
- Jia, Z.; Su, M.; Liu, T.; Guo, Q.; Wang, Q.; Burch, M.; Yu, J.; Yang, M. Light as a possible regulator of MIB-producing Planktothrix in source water reservoir, mechanism and in-situ verification. Harmful Algae 2019, 88, 101658. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Song, G.; Shao, J.; Tan, W.; Li, Y.; Li, R. Establishment and field applications of real-time PCR methods for the quantification of potential MIB-producing cyanobacteria in aquatic systems. J. Appl. Phycol. 2016, 28, 325–333. [Google Scholar] [CrossRef]
- Ren, X.; Sun, J.; Zhang, Q.; Zuo, Y.; Liu, J.; Liu, J.; Li, L.; Song, L. The Emergent Integrated Constructed Wetland-Reservoir (CW-R) Is Being Challenged by 2-Methylisoborneol Episode—A Case Study in Yanlonghu CW-R. Water 2022, 14, 2670. [Google Scholar] [CrossRef]
- Su, M.; Zhu, Y.; Jia, Z.; Liu, T.; Yu, J.; Burch, M.; Yang, M. Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir. Water Res. 2021, 192, 116848. [Google Scholar] [CrossRef]
- Lu, K.-Y.; Chiu, Y.-T.; Burch, M.; Senoro, D.; Lin, T.-F. A molecular-based method to estimate the risk associated with cyanotoxins and odor compounds in drinking water sources. Water Res. 2019, 164, 114938. [Google Scholar] [CrossRef]
- Giglio, S.; Saint, C.P.; Monis, P.T. Expression of the geosmin synthase gene in the cyanobacterium Anabaena circinalis AWQC318 1. J. Phycol. 2011, 47, 1338–1343. [Google Scholar] [CrossRef]
- Blazewicz, S.J.; Barnard, R.L.; Daly, R.A.; Firestone, M.K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 2013, 7, 2061–2068. [Google Scholar] [CrossRef]
- Los, D.A.; Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta Biomembr. 2004, 1666, 142–157. [Google Scholar] [CrossRef]
- Avalos, M.; Garbeva, P.; Vader, L.; van Wezel, G.P.; Dickschat, J.S.; Ulanova, D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat. Prod. Rep. 2022, 39, 249–272. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, R.L.; da Silva, A.P.R.; de Magalhães, V.F. Use of the cell quota and chlorophyll content for normalization of cylindropermopsin produced by two Cylindrospermopsis raciborskii strains grown under different light intensities. Ecotoxicol. Environ. Contam. 2013, 8, 93–100. [Google Scholar] [CrossRef]
- Shi, R.; Li, G.; Zhou, L.; Liu, J.; Tan, Y. The increasing aluminum content affects the growth, cellular chlorophyll a and oxidation stress of cyanobacteria Synechocystis sp. WH7803. Oceanol. Hydrobiol. Stud. 2015, 44, 343–351. [Google Scholar] [CrossRef]
- Sigaud, T.C.S.; Aidar, E. Salinity and temperature effects on the growth and chlorophyll-α content of some planktonic aigae. Bol. Inst. Oceanogr. 1993, 41, 95–103. [Google Scholar] [CrossRef]
- Chen, M.; Li, J.; Dai, X.; Sun, Y.; Chen, F. Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology 2011, 12, 187–192. [Google Scholar] [CrossRef]
- Feng, Y.; Morgan, R.M.L.; Fraser, P.D.; Hellgardt, K.; Nixon, P.J. Crystal structure of geranylgeranyl pyrophosphate synthase (CrtE) involved in cyanobacterial terpenoid biosynthesis. Front. Plant Sci. 2020, 11, 589. [Google Scholar] [CrossRef]
- Lin, P.-C.; Pakrasi, H.B. Engineering cyanobacteria for production of terpenoids. Planta 2019, 249, 145–154. [Google Scholar] [CrossRef]
- Post, A.F.; de Wit, R.; Mur, L.R. Interactions between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. J. Plankton Res. 1985, 7, 487–495. [Google Scholar] [CrossRef]
- Espinosa, C.; Abril, M.; Guasch, H.; Pou, N.; Proia, L.; Ricart, M.; Ordeix, M.; Llenas, L. Water flow and light availability influence on intracellular geosmin production in river biofilms. Front. Microbiol. 2020, 10, 3002. [Google Scholar] [CrossRef]
- Formighieri, C.; Melis, A. Sustainable heterologous production of terpene hydrocarbons in cyanobacteria. Photosynth. Res. 2016, 130, 123–135. [Google Scholar] [CrossRef]
- Lin, P.-C.; Saha, R.; Zhang, F.; Pakrasi, H.B. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Sci. Rep. 2017, 7, 17503. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, R.; Yu, M.-N.; Park, J.-H.; Kang, T.; Lee, J.-E. Effect of Culture Temperature on 2-Methylisoborneol Production and Gene Expression in Two Strains of Pseudanabaena sp. Cells 2024, 13, 1386. https://doi.org/10.3390/cells13161386
Park R, Yu M-N, Park J-H, Kang T, Lee J-E. Effect of Culture Temperature on 2-Methylisoborneol Production and Gene Expression in Two Strains of Pseudanabaena sp. Cells. 2024; 13(16):1386. https://doi.org/10.3390/cells13161386
Chicago/Turabian StylePark, Rumi, Mi-Na Yu, Ji-Hyun Park, Taegu Kang, and Jung-Eun Lee. 2024. "Effect of Culture Temperature on 2-Methylisoborneol Production and Gene Expression in Two Strains of Pseudanabaena sp." Cells 13, no. 16: 1386. https://doi.org/10.3390/cells13161386
APA StylePark, R., Yu, M. -N., Park, J. -H., Kang, T., & Lee, J. -E. (2024). Effect of Culture Temperature on 2-Methylisoborneol Production and Gene Expression in Two Strains of Pseudanabaena sp. Cells, 13(16), 1386. https://doi.org/10.3390/cells13161386