The Role of Astrocytes in CNS Disorders: Historic and Contemporary Views
1. Introduction
2. A Brief History of Astrocytes and Their Role in CNS Disorders
“Elsewhere I have exposed the arguments that can make us to think that the actions carried out at the level of the neuronal articulations [synapses], between neuronal terminals and dendrites and cellular bodies of subsequent neurons, are of chemical nature. Every nervous ending would undergo in the moment of the excitation a chemical modification and this chemical modification would act as a stimulus on the other neuron. If that were [true], the interneuronal articulations would be a center of active chemical exchanges; and one would therefore comprise the infiltrating of protoplasmic “tufted” extensions of neuroglia in all the nearby free interstices, in order to perhaps pick and instantaneously to fix even the smallest product of refusal” (page 294 of ref. [20]; translation in [21]).
“The facts that I have just observed seem to shed new light on the physiology of neuroglial cells, not only of those which associate closely to neuronal cells and deserve the name of satellite cells, but also, and especially, of cells which are in connection with the vasculature walls.
Indeed, I was able to present evidence of robust active secretion phenomena in the protoplasm of these cells in rabbit and guinea pig. This observation is especially visible within the protoplasmic extensions which cross the empty space created by the retraction of tissues around the vascular walls, on which they [neuroglial cell extensions] attach using an enlarged foot.
In a previous note, I have described the mitochondria that exist in these protoplasmic extensions, and I have shown that many, and maybe all of the granulations located in the gray matter outside the protoplasm of neuronal cells, in reality belong to the neuroglia. Today, I am poised to follow the evolution that occurs within these granulations and to show their progressive transformation into secretion grains. These phenomena are exactly similar to those described by Altmann in the glandular cells; the observed granulations are of three types: 1. excessively small round grains that, by the Altmann method, color themselves in intense red; 2. more voluminous grains, with clear centers; 3. grains that do not take color with fuchsin. The last ones are slightly smaller than the most voluminous red grains. All intermediates exist between these three types, which represent the successive phases of the transformation of mitochondria into secretion grains.
Using Benda’s method, the smallest grains color themselves in blue, the largest ones in purple and the secretion grains in red.”
3. Overview of the Special Issue Papers
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bedner, P.; Steinhäuser, C. Role of impaired astrocyte gap junction coupling in epileptogenesis. Cells 2023, 12, 1669. [Google Scholar] [CrossRef]
- Kruk, P.K.; Nader, K.; Skupien-Jaroszek, A.; Wójtowicz, T.; Buszka, A.; Olech-Kochańczyk, G.; Wilczynski, G.M.; Worch, R.; Kalita, K.; Włodarczyk, J.; et al. Astrocytic CD44 deficiency reduces the severity of kainate-induced epilepsy. Cells 2023, 12, 1483. [Google Scholar] [CrossRef]
- Valori, C.F.; Sulmona, C.; Brambilla, L.; Rossi, D. Astrocytes: Dissecting their diverse roles in amyotrophic lateral sclerosis and frontotemporal dementia. Cells 2023, 12, 1450. [Google Scholar] [CrossRef]
- Man, J.H.K.; van Gelder, C.; Breur, M.; Okkes, D.; Molenaar, D.; van der Sluis, S.; Abbink, T.; Altelaar, M.; van der Knaap, M.S.; Bugiani, M. Cortical pathology in vanishing white matter. Cells 2022, 11, 3581. [Google Scholar] [CrossRef] [PubMed]
- Brignone, M.S.; Lanciotti, A.; Michelucci, A.; Mallozzi, C.; Camerini, S.; Catacuzzeno, L.; Sforna, L.; Caramia, M.; D’Adamo, M.C.; Ceccarini, M.; et al. The CaMKII/MLC1 axis confers Ca2+-dependence to volume-regulated anion channels (VRAC) in astrocytes. Cells 2022, 11, 2656. [Google Scholar] [CrossRef]
- Endo, F.; Kasai, A.; Soto, J.S.; Yu, X.; Qu, Z.; Hashimoto, H.; Gradinaru, V.; Kawaguchi, R.; Khakh, B.S. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science 2022, 378, eadc9020. [Google Scholar] [CrossRef]
- Virchow, R. Die Cellularpathologie in Ihrer Begründung auf Physiologische and Pathologische Gewebelehre. Zwanzig Vorlesungen Gehalten Während der Monate Februar, März und April 1858 im Pathologischen Institut zu Berlin, 1st ed.; August Hirschwald: Berlin, Germany, 1858; p. 440. [Google Scholar]
- Jastrowitz, M. Studien über die encephalitis und myelitis des ersten kindesalters. Arch. Psychiatr. Nervenkrankh. 1872, 3, 162–213. [Google Scholar] [CrossRef]
- Andriezen, W.L. The neuroglia elements of the brain. Br. Med. J. 1893, 2, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Kölliker, A. Handbuch der Gewebelchre des Menschen; Wilhelm Engelmann: Leipzig, Germany, 1893. [Google Scholar]
- Baldwin, K.T.; Murai, K.K.; Khakh, B.S. Astrocyte morphology. Trends Cell Biol. 2024, 34, 547–565. [Google Scholar] [CrossRef] [PubMed]
- Lenhossék, M.V. Der Feinere bau des Nervensystems im Lichte Neuester Forschung, 2nd ed.; Fischer’s Medicinische Buchhandlung H. Kornfield: Berlin, Germany, 1895. [Google Scholar]
- His, W. Die Formentwickelung des Menschlichen Vorderhirns vom Ende des Ersten bis Zum Beginn des Dritten Moknats. Abh. Kgl. Sachs. Ges. Wissensch. Math. Phys. Kl 1889, 15, 673–736. [Google Scholar]
- His, W. Die Neuroblasten und Deren Entstehung im Embryonalen Mark. Abh. Kgl. Sachs. Ges. Wissensch. Math. Phys. Kl 1889, 15, 311–372. [Google Scholar]
- Ramón y Cajal, S. Un nuevo proceder para la impregnación de la neuroglía. Bol. Soc. Esp. Biol. 1913, II, 104–108. [Google Scholar]
- Kimelberg, H.K. The problem of astrocyte identity. Neurochem. Int. 2004, 45, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Kiernan, J.A. Histological & Histochemical Methods: Theory & Practice, 2nd ed.; Pergamon Press: Oxford, UK, 1990. [Google Scholar]
- Gottipati, M.K.; Bekyarova, E.; Brenner, M.; Haddon, R.C.; Parpura, V. Changes in the morphology and proliferation of astrocytes induced by two modalities of chemically functionalized single-walled carbon nanotubes are differentially mediated by glial fibrillary acidic protein. Nano Lett. 2014, 14, 3720–3727. [Google Scholar] [CrossRef] [PubMed]
- Golgi, C. Sulla Fina Anatomia Degli Organi Centrali del Sistema Nervoso; Calderini e Figlio: Reggio-Emila, Italy, 1895. [Google Scholar]
- Lugaro, E. Sulle funzioni della nevroglia. Riv. Patol. Nerv. E Ment. 1907, 12, 225–233. [Google Scholar]
- Parpura, V.; Verkhratsky, A. Astrocytes revisited: Concise historic outlook on glutamate homeostasis and signaling. Croat. Med. J. 2012, 53, 518–528. [Google Scholar] [CrossRef]
- Mennerick, S.; Zorumski, C.F. Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 1994, 368, 59–62. [Google Scholar] [CrossRef]
- Danbolt, N.C. Glutamate uptake. Prog. Neurobiol. 2001, 65, 1–105. [Google Scholar]
- Martinez-Hernandez, A.; Bell, K.P.; Norenberg, M.D. Glutamine synthetase: Glial localization in brain. Science 1977, 195, 1356–1358. [Google Scholar] [CrossRef]
- Kettenmann, H.; Faissner, A.; Trotter, J. Neuron-glia interactions in homeostasis and degeneration. In Comprehensive Human Physiology; Greger, R., Windhorst, U., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Volume I, pp. 533–543. [Google Scholar]
- Parpura, V.; Basarsky, T.A.; Liu, F.; Jeftinija, K.; Jeftinija, S.; Haydon, P.G. Glutamate-mediated astrocyte-neuron signalling. Nature 1994, 369, 744–747. [Google Scholar] [CrossRef]
- Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 1998, 10, 2129–2142. [Google Scholar] [CrossRef] [PubMed]
- Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci. 1999, 22, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Glees, P. Neuroglia Morphology and Function; Blackwell: Oxford, UK, 1955. [Google Scholar]
- Held, H. Über die neuroglia marginalis der menschlichen grosshirnrinde. Monatschr. Psychol. Neurol. 1909, 26, 360–416. [Google Scholar] [CrossRef]
- Nageotte, J. Phenomenes de secretion dans le protoplasma des cellules nevrogliques de la substance grise. C. R. Soc. Biol. 1910, 68, 1068–1069. [Google Scholar]
- Shain, W.G.; Martin, D.L. Activation of beta-adrenergic receptors stimulates taurine release from glial cells. Cell. Mol. Neurobiol. 1984, 4, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, A.; Matteoli, M.; Parpura, V.; Mothet, J.P.; Zorec, R. Astrocytes as secretory cells of the central nervous system: Idiosyncrasies of vesicular secretion. EMBO J. 2016, 35, 239–257. [Google Scholar] [CrossRef]
- Pasantes-Morales, H.; Schousboe, A. Volume regulation in astrocytes: A role for taurine as an osmoeffector. J. Neurosci. Res. 1988, 20, 503–509. [Google Scholar]
- Cotrina, M.L.; Lin, J.H.; Alves-Rodrigues, A.; Liu, S.; Li, J.; Azmi-Ghadimi, H.; Kang, J.; Naus, C.C.; Nedergaard, M. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 1998, 95, 15735–15740. [Google Scholar] [CrossRef]
- Duan, S.; Anderson, C.M.; Keung, E.C.; Chen, Y.; Chen, Y.; Swanson, R.A. P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J. Neurosci. 2003, 23, 1320–1328. [Google Scholar] [CrossRef]
- Szatkowski, M.; Barbour, B.; Attwell, D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 1990, 348, 443–446. [Google Scholar] [CrossRef]
- Warr, O.; Takahashi, M.; Attwell, D. Modulation of extracellular glutamate concentration in rat brain slices by cystine-glutamate exchange. J. Physiol. 1999, 514 Pt 3, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, P.A.; Knowles, R.; Knowles, K.P.; Li, Y. Beta-adrenergic receptor-mediated regulation of extracellular adenosine in cerebral cortex in culture. J. Neurosci. 1994, 14, 2953–2965. [Google Scholar] [CrossRef]
- Schleich, C.L. Schmerzlose Operationen: Örtliche Betäubung Mit Indiffrenten Flüssigkeiten. Psychophysik des Natürlichen und Künstlichen Schlafes; Julius Springer: Berlin/Heidelberg, Germany, 1894; p. 256. [Google Scholar]
- Ramón y Cajal, S. Algunas Conjeturas Sobre el Mechanismoanatomico de la Ideacion, Asociacion y Atencion; Imprenta y Libreria de Nicolas Moya: Madrid, Spain, 1895. [Google Scholar]
- Ramón y Cajal, S. Contribution a la connaissance de la nevroglia cerebrale et cerebeleuse dans la paralyse generale progressive. Trab. Lab. Investig. Biol. Univ. Madr. 1925, 23, 157–216. [Google Scholar]
- Hatton, G.I. Glial-neuronal interactions in the mammalian brain. Adv. Physiol. Educ. 2002, 26, 225–237. [Google Scholar] [CrossRef]
- Brenner, M.; Johnson, A.B.; Boespflug-Tanguy, O.; Rodriguez, D.; Goldman, J.E.; Messing, A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat. Genet. 2001, 27, 117–120. [Google Scholar] [CrossRef]
- Hagemann, T.L.; Coyne, S.; Levin, A.; Wang, L.; Feany, M.B.; Messing, A. STAT3 drives GFAP accumulation and astrocyte pathology in a mouse model of Alexander disease. Cells 2023, 12, 978. [Google Scholar] [CrossRef] [PubMed]
- van der Knaap, M.S.; Pronk, J.C.; Scheper, G.C. Vanishing white matter disease. Lancet Neurol. 2006, 5, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Scali, O.; Di Perri, C.; Federico, A. The spectrum of mutations for the diagnosis of vanishing white matter disease. Neurol. Sci. 2006, 27, 271–277. [Google Scholar] [CrossRef]
- Nethisinghe, S.; Pigazzini, M.L.; Pemble, S.; Sweeney, M.G.; Labrum, R.; Manso, K.; Moore, D.; Warner, J.; Davis, M.B.; Giunti, P. PolyQ tract toxicity in SCA1 is length dependent in the absence of CAG repeat interruption. Front. Cell. Neurosci. 2018, 12, 200. [Google Scholar] [CrossRef]
- Cvetanovic, M.; Ingram, M.; Orr, H.; Opal, P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience 2015, 289, 289–299. [Google Scholar] [CrossRef]
- Kim, J.H.; Lukowicz, A.; Qu, W.; Johnson, A.; Cvetanovic, M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia 2018, 66, 1972–1987. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.G.; Hamel, K.; Sheeler, C.; Borgenheimer, E.; Gilliat, S.; Soles, A.; Ghannoum, F.J.; Sbrocco, K.; Handler, H.P.; Rainwater, O.; et al. Spatial and temporal diversity of astrocyte phenotypes in spinocerebellar ataxia type 1 mice. Cells 2022, 11, 3323. [Google Scholar] [CrossRef] [PubMed]
- Obel, L.F.; Müller, M.S.; Walls, A.B.; Sickmann, H.M.; Bak, L.K.; Waagepetersen, H.S.; Schousboe, A. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front. Neuroenerg. 2012, 4, 3. [Google Scholar] [CrossRef]
- Suzuki, A.; Stern, S.A.; Bozdagi, O.; Huntley, G.W.; Walker, R.H.; Magistretti, P.J.; Alberini, C.M. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011, 144, 810–823. [Google Scholar] [CrossRef]
- López-Ramos, J.C.; Duran, J.; Gruart, A.; Guinovart, J.J.; Delgado-García, J.M. Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy. Front. Cell. Neurosci. 2015, 9, 431. [Google Scholar] [CrossRef]
- Montana, V.; Flint, D.; Waagepetersen, H.S.; Schousboe, A.; Parpura, V. Two metabolic fuels, glucose and lactate, differentially modulate exocytotic glutamate release from cultured astrocytes. Neurochem. Res. 2021, 46, 2551–2579. [Google Scholar]
- Duran, J. Role of astrocytes in the pathophysiology of Lafora disease and other glycogen storage disorders. Cells 2023, 12, 722. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Pajarillo, E.; Nyarko-Danquah, I.; Aschner, M.; Lee, E. Role of astrocytes in Parkinson’s disease associated with genetic mutations and neurotoxicants. Cells 2023, 12, 622. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; de Vos, R.A.; Jansen, E.N.; Bratzke, H.; Braak, E. Neuropathological hallmarks of Alzheimer’s and Parkinson’s diseases. Prog. Brain Res. 1998, 117, 267–285. [Google Scholar]
- Selkoe, D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 2001, 81, 741–766. [Google Scholar] [CrossRef]
- Olabarria, M.; Noristani, H.N.; Verkhratsky, A.; Rodriguez, J.J. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 2010, 58, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.J.; Verkhratsky, A. Neuroglial roots of neurodegenerative diseases? Mol. Neurobiol. 2011, 43, 87–96. [Google Scholar] [CrossRef]
- Fuller, S.; Munch, G.; Steele, M. Activated astrocytes: A therapeutic target in Alzheimer’s disease? Expert Rev. Neurother. 2009, 9, 1585–1594. [Google Scholar] [CrossRef]
- Kelly, P.; Sanchez-Mico, M.V.; Hou, S.S.; Whiteman, S.; Russ, A.; Hudry, E.; Arbel-Ornath, M.; Greenberg, S.M.; Bacskai, B.J. Neuronally derived soluble Abeta evokes cell-wide astrocytic calcium dysregulation in absence of amyloid plaques in vivo. J. Neurosci. 2023, 43, 4926–4940. [Google Scholar] [CrossRef]
- Fontana, I.C.; Scarpa, M.; Malarte, M.L.; Rocha, F.M.; Ausellé-Bosch, S.; Bluma, M.; Bucci, M.; Chiotis, K.; Kumar, A.; Nordberg, A. Astrocyte signature in Alzheimer’s disease continuum through a multi-PET tracer imaging perspective. Cells 2023, 12, 1469. [Google Scholar] [CrossRef]
- Michinaga, S.; Hishinuma, S.; Koyama, Y. Roles of astrocytic endothelin ETB receptor in traumatic brain injury. Cells 2023, 12, 719. [Google Scholar] [CrossRef]
- Rao, V.L.; Başkaya, M.K.; Doğan, A.; Rothstein, J.D.; Dempsey, R.J. Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J. Neurochem. 1998, 70, 2020–2027. [Google Scholar] [PubMed]
- Gržeta Krpan, N.; Harej Hrkać, A.; Janković, T.; Dolenec, P.; Bekyarova, E.; Parpura, V.; Pilipović, K. Chemically functionalized single-walled carbon nanotubes prevent the reduction in plasmalemmal glutamate transporter EAAT1 expression in, and increase the release of selected cytokines from, stretch-injured astrocytes in vitro. Cells 2024, 13, 225. [Google Scholar] [CrossRef]
- Garcia, T.A.; Jonak, C.R.; Binder, D.K. The role of aquaporins in spinal cord injury. Cells 2023, 12, 1701. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.; Estévez, R. Megalencephalic leukoencephalopathy: Insights into pathophysiology and perspectives for therapy. Front. Cell. Neurosci. 2020, 14, 627887. [Google Scholar] [CrossRef]
- Kraig, R.P.; Petito, C.K.; Plum, F.; Pulsinelli, W.A. Hydrogen ions kill brain at concentrations reached in ischemia. J. Cereb. Blood Flow Metab. 1987, 7, 379–386. [Google Scholar] [CrossRef]
- Kogure, T.; Kogure, K. Molecular and biochemical events within the brain subjected to cerebral ischemia (targets for therapeutical intervention). Clin. Neurosci. 1997, 4, 179–183. [Google Scholar]
- Everaerts, K.; Thapaliya, P.; Pape, N.; Durry, S.; Eitelmann, S.; Roussa, E.; Ullah, G.; Rose, C.R. Inward operation of sodium-bicarbonate cotransporter 1 promotes astrocytic Na+ loading and loss of ATP in mouse neocortex during brief chemical ischemia. Cells 2023, 12, 2675. [Google Scholar] [CrossRef]
- Dzwonek, J.; Wilczynski, G.M. CD44: Molecular interactions, signaling and functions in the nervous system. Front. Cell. Neurosci. 2015, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Al-Dalahmah, O.; Sosunov, A.A.; Sun, Y.; Liu, Y.; Madden, N.; Connolly, E.S.; Troy, C.M.; McKhann, G.M., 2nd; Goldman, J.E. The matrix receptor CD44 is present in astrocytes throughout the human central nervous system and accumulates in hypoxia and seizures. Cells 2024, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Aenlle, K.K.; Cohen, J.; Mathew, A.; Isler, D.; Pangeni, R.P.; Nathanson, L.; Theoharides, T.C.; Klimas, N.G. COVID-19 and long COVID: Disruption of the neurovascular unit, blood-brain barrier, and tight junctions. Neuroscientist 2023, 30, 421–439. [Google Scholar] [CrossRef] [PubMed]
- Mhatre, R.; Mahadevan, A.; Shankar, S.K. Biology of astrocytes in CNS infection. In The Biology of Glial Cells: Recent Advances; Patro, I., Seth, P., Patro, N., Tandon, P.N., Eds.; Springer: Singapore, 2022; pp. 171–198. [Google Scholar]
- Potokar, M.; Zorec, R.; Jorgačevski, J. Astrocytes are a key target for neurotropic viral infection. Cells 2023, 12, 2307. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, M.A.S.; Singh, K.; Ravichandran, S.; Halder, R.; Nicot, N.; Birck, C.; Grandbarbe, L.; Del Sol, A.; Michelucci, A. Transcriptional and chromatin accessibility profiling of neural stem cells differentiating into astrocytes reveal dynamic signatures affected under inflammatory conditions. Cells 2023, 12, 948. [Google Scholar] [CrossRef]
- Ede, R.J.; Williams, R.W. Hepatic encephalopathy and cerebral edema. Semin. Liver Dis. 1986, 6, 107–118. [Google Scholar] [CrossRef]
- Felipo, V. Hepatic encephalopathy: Effects of liver failure on brain function. Nat. Rev. Neurosci. 2013, 14, 851–858. [Google Scholar] [CrossRef]
- Link, A.; Kaplan, B.T.; Bohm, M. 21-jährige Patientin mit Reye-Syndrom nach grippalem Infekt. Dtsch. Med. Wochenschr. 2012, 137, 1853–1856. [Google Scholar] [CrossRef]
- Rama Rao, K.V.; Jayakumar, A.R.; Norenberg, M.D. Brain edema in acute liver failure: Mechanisms and concepts. Metab. Brain Dis. 2014, 29, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Norenberg, M.D. The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol. 1987, 6, 13–33. [Google Scholar] [CrossRef]
- Rose, C.F.; Verkhratsky, A.; Parpura, V. Astrocyte glutamine synthetase: Pivotal in health and disease. Biochem. Soc. Trans. 2013, 41, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.; Zielinska, M.; Norenberg, M.D. Glutamine as a mediator of ammonia neurotoxicity: A critical appraisal. Biochem. Pharmacol. 2010, 80, 1303–1308. [Google Scholar] [PubMed]
- Obara-Michlewska, M.; Ruszkiewicz, J.; Zielinska, M.; Verkhratsky, A.; Albrecht, J. Astroglial NMDA receptors inhibit expression of Kir4.1 channels in glutamate-overexposed astrocytes in vitro and in the brain of rats with acute liver failure. Neurochem. Int. 2014, 88, 20–25. [Google Scholar] [CrossRef]
- Rangroo Thrane, V.; Thrane, A.S.; Wang, F.; Cotrina, M.L.; Smith, N.A.; Chen, M.; Xu, Q.; Kang, N.; Fujita, T.; Nagelhus, E.A.; et al. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat. Med. 2013, 19, 1643–1648. [Google Scholar] [CrossRef]
- Haack, N.; Dublin, P.; Rose, C.R. Dysbalance of astrocyte calcium under hyperammonemic conditions. PLoS ONE 2014, 9, e105832. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.; Kafitz, K.W.; Roderigo, C.; Rose, C.R. Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 2009, 57, 921–934. [Google Scholar] [CrossRef]
- Görg, B.; Morwinsky, A.; Keitel, V.; Qvartskhava, N.; Schrör, K.; Häussinger, D. Ammonia triggers exocytotic release of L-glutamate from cultured rat astrocytes. Glia 2010, 58, 691–705. [Google Scholar] [CrossRef]
- Sepehrinezhad, A.; Stolze Larsen, F.; Ashayeri Ahmadabad, R.; Shahbazi, A.; Sahab Negah, S. The glymphatic system may play a vital role in the pathogenesis of hepatic encephalopathy: A narrative review. Cells 2023, 12, 979. [Google Scholar] [CrossRef]
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111. [Google Scholar] [CrossRef] [PubMed]
- Kruyer, A.; Scofield, M.D. Astrocytes in addictive disorders. Adv. Neurobiol. 2021, 26, 231–254. [Google Scholar]
- Siemsen, B.M.; Denton, A.R.; Parrila-Carrero, J.; Hooker, K.N.; Carpenter, E.A.; Prescot, M.E.; Brock, A.G.; Westphal, A.M.; Leath, M.N.; McFaddin, J.A.; et al. Heroin self-administration and extinction increase prelimbic cortical astrocyte-synapse proximity and alter dendritic spine morphometrics that are reversed by N-acetylcysteine. Cells 2023, 12, 1812. [Google Scholar] [CrossRef] [PubMed]
- Moussawi, K.; Zhou, W.; Shen, H.; Reichel, C.M.; See, R.E.; Carr, D.B.; Kalivas, P.W. Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proc. Natl. Acad. Sci. USA 2011, 108, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Reissner, K.J.; Gipson, C.D.; Tran, P.K.; Knackstedt, L.A.; Scofield, M.D.; Kalivas, P.W. Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement. Addict. Biol. 2015, 20, 316–323. [Google Scholar] [CrossRef]
- Kruyer, A.; Scofield, M.D.; Wood, D.; Reissner, K.J.; Kalivas, P.W. Heroin cue-evoked astrocytic structural plasticity at nucleus accumbens synapses inhibits heroin seeking. Biol. Psychiatry 2019, 86, 811–819. [Google Scholar] [CrossRef]
- Murlanova, K.; Jouroukhin, Y.; Novototskaya-Vlasova, K.; Huseynov, S.; Pletnikova, O.; Morales, M.J.; Guan, Y.; Kamiya, A.; Bergles, D.E.; Dietz, D.M.; et al. Loss of astrocytic µ opioid receptors exacerbates aversion associated with morphine withdrawal in mice: Role of mitochondrial respiration. Cells 2023, 12, 1412. [Google Scholar] [CrossRef]
- Zhang, X.; Wolfinger, A.; Wu, X.; Alnafisah, R.; Imami, A.; Hamoud, A.R.; Lundh, A.; Parpura, V.; McCullumsmith, R.E.; Shukla, R.; et al. Gene enrichment analysis of astrocyte subtypes in psychiatric disorders and psychotropic medication datasets. Cells 2022, 11, 3315. [Google Scholar] [CrossRef]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, R.; Pappas, A.C.; Seifert, P.; Savol, A.; Sadreyev, R.I.; Sun, D.; Jakobs, T.C. Astrocytes in the optic nerve are heterogeneous in their reactivity to glaucomatous injury. Cells 2023, 12, 2131. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brenner, M.; Parpura, V. The Role of Astrocytes in CNS Disorders: Historic and Contemporary Views. Cells 2024, 13, 1388. https://doi.org/10.3390/cells13161388
Brenner M, Parpura V. The Role of Astrocytes in CNS Disorders: Historic and Contemporary Views. Cells. 2024; 13(16):1388. https://doi.org/10.3390/cells13161388
Chicago/Turabian StyleBrenner, Michael, and Vladimir Parpura. 2024. "The Role of Astrocytes in CNS Disorders: Historic and Contemporary Views" Cells 13, no. 16: 1388. https://doi.org/10.3390/cells13161388
APA StyleBrenner, M., & Parpura, V. (2024). The Role of Astrocytes in CNS Disorders: Historic and Contemporary Views. Cells, 13(16), 1388. https://doi.org/10.3390/cells13161388