V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities
Abstract
:1. Introduction: v-ATPase Structure and Function
2. v-ATPase Gene Variants in Brain Disorders
2.1. Genes Encoding Subunits of the V1 Domain
2.2. De Novo Mutations of the ATP6V1A Gene Cause DEE
2.3. ATP6V1A and Neurodegeneration
2.4. ATP6V1B2 De Novo Truncating Variant in DOORS Syndrome
2.5. ATP6V1B2 Recurrent De Novo Missense Variants in Zimmermann-Laband Syndrome
2.6. ATP6V1B2 Pathogenetic Variants in Epileptic Syndromes and DEE
2.7. Genes Encoding Subunits of the V0 Domain
2.8. De Novo and Biallelic ATP6V0A1 Variants Cause DEE and Progressive Myoclonic Epilepsy with Ataxia
2.9. ATP6V0A1 and Neurodegeneration
2.10. De Novo Heterozygote ATP6V0C Variants in Patients with Neurodevelopmental Disorders with or without Epilepsy
3. The Pathogenetic Role of V-ATPase Accessory Proteins
3.1. De Novo ATP6AP2 Variant in X-Linked Intellectual Disability (XLID), Epilepsy and Neurodegeneration
3.2. Altered Splicing of ATP6AP2 Causes X-Linked Parkinsonism with Spasticity
3.3. Biallelic DMXL2 Variants Cause Ohtahara Syndrome with Progressive Course
3.4. Neurodevelopmental Disorders Associated with TLDc Domains Encoding Genes
4. Therapeutical Potential of V-ATPase Regulation in the Brain
4.1. Direct Modulation of the V-ATPase Activity or Expression
4.2. Indirect Strategies for Compensating V-ATPase Dysfunction
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forgac, M. Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 2007, 8, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Stransky, L.; Cotter, K.; Forgac, M. The Function of V-ATPases in Cancer. Physiol. Rev. 2016, 96, 1071–1091. [Google Scholar] [CrossRef]
- McGuire, C.M.; Forgac, M. Glucose starvation increases V-ATPase assembly and activity in mammalian cells through AMP kinase and phosphatidylinositide 3-kinase/Akt signaling. J. Biol. Chem. 2018, 293, 9113–9123. [Google Scholar] [CrossRef]
- Ratto, E.; Chowdhury, S.R.; Siefert, N.S.; Schneider, M.; Wittmann, M.; Helm, D.; Palm, W. Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly. Nat. Commun. 2022, 13, 4848. [Google Scholar] [CrossRef]
- Collins, M.P.; Forgac, M. Regulation and function of V-ATPases in physiology and disease. Biochim. Biophys. Acta (BBA)—Biomembr. 2020, 1862, 183341. [Google Scholar] [CrossRef]
- Groszer, M. Rare human ATP6V1A variants provide unique insights into V-ATPase functions. Brain 2022, 145, 2626–2628. [Google Scholar] [CrossRef] [PubMed]
- Nnah, I.C.; Wang, B.; Saqcena, C.; Weber, G.F.; Bonder, E.M.; Bagley, D.; De Cegli, R.; Napolitano, G.; Medina, D.L.; Ballabio, A.; et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy 2018, 15, 151–164. [Google Scholar] [CrossRef]
- Roczniak-Ferguson, A.; Petit, C.S.; Froehlich, F.; Qian, S.; Ky, J.; Angarola, B.; Walther, T.C.; Ferguson, S.M. The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis. Sci. Signal. 2012, 5, ra42. [Google Scholar] [CrossRef]
- Settembre, C.; Zoncu, R.; Medina, D.L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M.C.; et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31, 1095–1108. [Google Scholar] [CrossRef]
- Puertollano, R.; Ferguson, S.M.; Brugarolas, J.; Ballabio, A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. 2018, 37, e98804. [Google Scholar] [CrossRef]
- Napolitano, G.; Ballabio, A. TFEB at a glance. J. Cell Sci. 2016, 129, 2475–2481. [Google Scholar] [CrossRef]
- Sardiello, M.; Palmieri, M.; Di Ronza, A.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; et al. A Gene Network Regulating Lysosomal Biogenesis and Function. Science 2009, 325, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Toei, M.; Saum, R.; Forgac, M. Regulation and Isoform Function of the V-ATPases. Biochemistry 2010, 49, 4715–4723. [Google Scholar] [CrossRef]
- Smith, G.A.; Howell, G.J.; Phillips, C.; Muench, S.P.; Ponnambalam, S.; Harrison, M.A. Extracellular and Luminal pH Regulation by Vacuolar H+-ATPase Isoform Expression and Targeting to the Plasma Membrane and Endosomes. J. Biol. Chem. 2016, 291, 8500–8515. [Google Scholar] [CrossRef] [PubMed]
- Eaton, A.F.; Merkulova, M.; Brown, D. The H+-ATPase (V-ATPase): From proton pump to signaling complex in health and disease. Am. J. Physiol. Cell Physiol. 2021, 320, C392–C414. [Google Scholar] [CrossRef] [PubMed]
- Gowrisankaran, S.; Milosevic, I. Regulation of synaptic vesicle acidification at the neuronal synapse. IUBMB Life 2020, 72, 568–576. [Google Scholar] [CrossRef]
- Coupland, C.E.; Karimi, R.; Bueler, S.A.; Liang, Y.; Courbon, G.M.; Di Trani, J.M.; Wong, C.J.; Saghian, R.; Youn, J.-Y.; Wang, L.-Y.; et al. High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles. Science 2024, 385, 168–174. [Google Scholar] [CrossRef]
- Van Damme, T.; Gardeitchik, T.; Mohamed, M.; Guerrero-Castillo, S.; Freisinger, P.; Guillemyn, B.; Kariminejad, A.; Dalloyaux, D.; van Kraaij, S.; Lefeber, D.J.; et al. Mutations in ATP6V1E1 or ATP6V1A Cause Autosomal-Recessive Cutis Laxa. Am. J. Hum. Genet. 2017, 100, 216–227. [Google Scholar] [CrossRef]
- Fassio, A.; Esposito, A.; Kato, M.; Saitsu, H.; Mei, D.; Marini, C.; Conti, V.; Nakashima, M.; Okamoto, N.; Turker, A.O.; et al. De novo mutations of the ATP6V1A gene cause developmental encephalopathy with epilepsy. Brain 2018, 141, 1703–1718. [Google Scholar] [CrossRef]
- Guerrini, R.; Mei, D.; Kerti-Szigeti, K.; Pepe, S.; Koenig, M.K.; Von Allmen, G.; Cho, M.T.; McDonald, K.; Baker, J.; Bhambhani, V.; et al. Phenotypic and genetic spectrum of ATP6V1A encepha-lopathy: A disorder of lysosomal homeostasis. Brain 2022, 145, 2687–2703. [Google Scholar] [CrossRef]
- Abbas, Y.M.; Wu, D.; Bueler, S.A.; Robinson, C.V.; Rubinstein, J.L. Structure of V-ATPase from the mammalian brain. Science 2020, 367, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bueler, S.A.; Rubinstein, J.L. Structural basis of V-ATPase V(O) region assembly by Vma12p, 21p, and 22p. Proc. Natl. Acad. Sci. USA 2023, 120, e2217181120. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lan, S.; Liu, X.-R.; Ji, J.-J.; He, Y.-Y.; Zhang, D.-M.; Xu, J.; Sun, H.; Shi, Z.; Wang, J.; et al. ATP6V1A variants are associated with childhood epilepsy with favorable outcome. Seizure 2024, 116, 81–86. [Google Scholar] [CrossRef]
- Chen, X.; Lou, Y.; Miao, P.; Cheng, H.; Wan, Z.; Wang, Y.; Yang, F.; Liang, M.; Feng, J. Heterozygous pathogenic variant in the ATP6V1A gene trig-gering epilepsy in a large Chinese pedigree. Clin. Neurol. Neurosurg. 2023, 233, 107956. [Google Scholar] [CrossRef]
- Wang, M.; Li, A.; Sekiya, M.; Beckmann, N.D.; Quan, X.; Schrode, N.; Fernando, M.B.; Yu, A.; Zhu, L.; Cao, J.; et al. Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer’s Disease. Neuron 2020, 109, 257–272.e14. [Google Scholar] [CrossRef]
- Byrns, C.N.; Bonini, N.M. An Integrated Multi-omics Approach Identifies Therapeutic Potential for ATP6V1A in Late Onset Alzheimer’s Disease. Neuron 2021, 109, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Neff, R.A.; Wang, M.; Vatansever, S.; Guo, L.; Ming, C.; Wang, Q.; Wang, E.; Horgusluoglu-Moloch, E.; Song, W.-M.; Li, A.; et al. Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets. Sci. Adv. 2021, 7, eabb5398. [Google Scholar] [CrossRef]
- Esposito, A.; Pepe, S.; Cerullo, M.S.; Cortese, K.; Semini, H.T.; Giovedì, S.; Guerrini, R.; Benfenati, F.; Falace, A.; Fassio, A. ATP6V1A is required for synaptic rearrangements and plasticity in murine hippocampal neurons. Acta Physiol. 2024, 240, e14186. [Google Scholar] [CrossRef]
- Beauregard-Lacroix, E.; Pacheco-Cuellar, G.; Ajeawung, N.F.; Tardif, J.; Dieterich, K.; Dabir, T.; Vind-Kezunovic, D.; White, S.M.; Zadori, D.; Castiglioni, C.; et al. DOORS syndrome and a recurrent truncating ATP6V1B2 variant. Genet. Med. 2021, 23, 149–154. [Google Scholar] [CrossRef]
- Rousseau, J.; Tadoum, S.B.T.; Jolin, M.L.; Nguyen, T.T.M.; Ajeawung, N.F.; Flenniken, A.M.; Nutter, L.M.J.; Vukobradovic, I.; Rossignol, E.; Campeau, P.M. The ATP6V1B2 DDOD/DOORS-Associated p.Arg506* Variant Causes Hyperactivity and Seizures in Mice. Genes 2023, 14, 1538. [Google Scholar] [CrossRef]
- Kortüm, F.; Caputo, V.; Bauer, C.K.; Stella, L.; Ciolfi, A.; Alawi, M.; Bocchinfuso, G.; Flex, E.; Paolacci, S.; Dentici, M.L.; et al. Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome. Nat. Genet. 2015, 47, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Popp, B.; Ekici, A.B.; Thiel, C.T.; Hoyer, J.; Wiesener, A.; Kraus, C.; Reis, A.; Zweier, C. Exome Pool-Seq in neurodevelopmental disorders. Eur. J. Hum. Genet. 2017, 25, 1364–1376. [Google Scholar] [CrossRef]
- Shaw, M.; Winczewska-Wiktor, A.; Badura-Stronka, M.; Koirala, S.; Gardner, A.; Kuszel, Ł.; Kowal, P.; Steinborn, B.; Starczewska, M.; Garry, S.; et al. EXOME REPORT: Novel mutation in ATP6V1B2 segregating with autosomal dominant epilepsy, intellectual disability and mild gingival and nail abnormalities. Eur. J. Med. Genet. 2020, 63, 103799. [Google Scholar] [CrossRef] [PubMed]
- Inuzuka, L.M.; Macedo-Souza, L.I.; Della-Rippa, B.; Monteiro, F.P.; Delgado, D.D.S.; Godoy, L.F.; Ramos, L.; de Athayde Costa, L.S.; Garzon, E.; Kok, F. ATP6V1B2-related epileptic encephalopathy. Epileptic Disord. 2020, 22, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Amore, G.; Calì, E.; Spanò, M.; Ceravolo, G.; Mangano, G.D.; Scorrano, G.; Efthymiou, S.; Salpietro, V.; Houlden, H.; Di Rosa, G. ATP6V1B2-related disorders featuring Lennox-Gastaut-syndrome: A case-based overview. Brain Dev. 2023, 45, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Mosquera, L.; Yambire, K.F.; Couto, R.; Pereyra, L.; Pabis, K.; Ponsford, A.H.; Diogo, C.V.; Stagi, M.; Milosevic, I.; Raimundo, N. Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis. Autophagy 2019, 15, 1572–1591. [Google Scholar] [CrossRef]
- Aoto, K.; Kato, M.; Akita, T.; Nakashima, M.; Mutoh, H.; Akasaka, N.; Tohyama, J.; Nomura, Y.; Hoshino, K.; Ago, Y.; et al. ATP6V0A1 encoding the a1-subunit of the V0 domain of vacuolar H+-ATPases is essential for brain development in humans and mice. Nat. Commun. 2021, 12, 2107. [Google Scholar] [CrossRef]
- Bott, L.C.; Forouhan, M.; Lieto, M.; Sala, A.J.; Ellerington, R.O.; Johnson, J.A.; Speciale, A.; Criscuolo, C.; Filla, A.; Chitayat, D.; et al. Variants in ATP6V0A1 cause progressive myoclonus epilepsy and developmental and epileptic encephalopathy. Brain Commun. 2021, 3, fcab245. [Google Scholar] [CrossRef]
- Indrawinata, K.; Argiropoulos, P.; Sugita, S. Structural and functional understanding of disease-associated mutations in V-ATPase subunit a1 and other isoforms. Front. Mol. Neurosci. 2023, 16, 1135015. [Google Scholar] [CrossRef]
- Bagaria, J.; Bagyinszky, E.; An, S.S.A. Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int. J. Mol. Sci. 2022, 23, 10970. [Google Scholar] [CrossRef]
- Lee, J.-H.; Yu, W.H.; Kumar, A.; Lee, S.; Mohan, P.S.; Peterhoff, C.M.; Wolfe, D.M.; Martinez-Vicente, M.; Massey, A.C.; Sovak, G.; et al. Lysosomal Proteolysis and Autophagy Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations. Cell 2010, 141, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Im, E.; Jiang, Y.; Stavrides, P.H.; Darji, S.; Erdjument-Bromage, H.; Neubert, T.A.; Choi, J.Y.; Wegiel, J.; Lee, J.H.; Nixon, R.A. Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by v-ATPase inhibition by Tyr682-phosphorylated APP βCTF. Sci. Adv. 2023, 9, eadg1925. [Google Scholar] [CrossRef] [PubMed]
- Lott, I.T.; Head, E. Dementia in Down syndrome: Unique insights for Alzheimer disease research. Nat. Rev. Neurol. 2019, 15, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Wallings, R.; Connor-Robson, N.; Wade-Martins, R. LRRK2 interacts with the vacuolar-type H+-ATPase pump a1 subunit to regulate lysosomal function. Hum. Mol. Genet. 2019, 28, 2696–2710. [Google Scholar] [CrossRef]
- Bagh, M.B.; Peng, S.; Chandra, G.; Zhang, Z.; Singh, S.P.; Pattabiraman, N.; Liu, A.; Mukherjee, A.B. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat. Commun. 2017, 8, 14612. [Google Scholar] [CrossRef]
- Wang, L.; Wu, D.; Robinson, C.V.; Wu, H.; Fu, T.M. Structures of a complete human V-ATPase reveal mechanisms of its assembly. Mol. Cell 2020, 80, 501–511. [Google Scholar] [CrossRef]
- Mucha, B.E.; Banka, S.; Ajeawung, N.F.; Molidperee, S.; Chen, G.G.; Koenig, M.K.; Adejumo, R.B.; Till, M.; Harbord, M.; Perrier, R.; et al. A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay. Genet. Med. 2019, 21, 1058–1064. [Google Scholar] [CrossRef]
- Tinker, R.J.; Burghel, G.J.; Garg, S.; Steggall, M.; Cuvertino, S.; Banka, S. Haploinsufficiency of ATP6V0C possibly underlies 16p13.3 deletions that cause microcephaly, seizures, and neurodevelopmental disorder. Am. J. Med. Genet. A 2020, 185, 196–202. [Google Scholar] [CrossRef]
- Ittiwut, C.; Poonmaksatit, S.; Boonsimma, P.; Desudchit, T.; Suphapeetiporn, K.; Ittiwut, R.; Shotelersuk, V. Novel de novo mutation substantiates ATP6V0C as a gene causing epilepsy with intellectual disability. Brain Dev. 2020, 43, 490–494. [Google Scholar] [CrossRef]
- Tian, Y.; Zhai, Q.-X.; Li, X.-J.; Shi, Z.; Cheng, C.-F.; Fan, C.-X.; Tang, B.; Zhang, Y.; He, Y.-Y.; Li, W.-B.; et al. ATP6V0C Is Associated with Febrile Seizures and Epilepsy with Febrile Seizures Plus. Front. Mol. Neurosci. 2022, 15, 889534. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, X.; Yang, L.; Wang, Y.; Jia, S.; Li, X.; Wang, Z.; Yang, F.; Liang, M.; Wang, X.; et al. ATP6V0C gene variants were identified in individuals with epilepsy, with or without developmental delay. J. Hum. Genet. 2023, 68, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Mattison, K.; Tossing, G.; Mulroe, F.; Simmons, C.; Butler, K.M.; Schreiber, A.; Alsadah, A.E.; Neilson, D.; Naess, K.; Wedell, A.; et al. ATP6V0C variants impair V-ATPase function causing a neurodevelopmental disorder often associated with epilepsy. Brain 2022, 146, 1357–1372. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, N.; Peters, J. Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: Pathological implications in hypertension, renal and brain development, inflammation, and fibrosis. Pharmacol. Res. 2021, 173, 105922. [Google Scholar] [CrossRef]
- Guida, M.C.; Hermle, T.; Graham, L.A.; Hauser, V.; Ryan, M.; Stevens, T.H.; Simons, M.; Ma, M.; Kumar, S.; Purushothaman, L.; et al. ATP6AP2 functions as a V-ATPase assembly factor in the endoplasmic reticulum. Mol. Biol. Cell 2018, 29, 2156–2164. [Google Scholar] [CrossRef]
- Halbach, O.v.B.U.; Bracke, A. Roles and functions of Atp6ap2 in the brain. Neural Regen. Res. 2018, 13, 2038–2043. [Google Scholar] [CrossRef] [PubMed]
- Dulac, A.; Issa, A.-R.; Sun, J.; Matassi, G.; Jonas, C.; Rahmani, Z.; Chérif-Zahar, B.; Cattaert, D.; Birman, S. A Novel Neuron-Specific Regulator of the V-ATPase in Drosophila. eNeuro 2021, 8, 1–22. [Google Scholar] [CrossRef]
- Hedera, P.; Alvarado, D.; Beydoun, A.; Fink, J.K. Novel mental retardation-epilepsy syndrome linked to Xp21.1-p11. Ann. Neurol. 2002, 51, 45–50. [Google Scholar] [CrossRef]
- Ramser, J.; Abidi, F.E.; Burckle, C.A.; Lenski, C.; Toriello, H.; Wen, G.; Lubs, H.A.; Engert, S.; Stevenson, R.E.; Meindl, A.; et al. A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum. Mol. Genet. 2005, 14, 1019–1027. [Google Scholar] [CrossRef]
- Hirose, T.; Cabrera-Socorro, A.; Chitayat, D.; Lemonnier, T.; Féraud, O.; Cifuentes-Diaz, C.; Gervasi, N.; Mombereau, C.; Ghosh, T.; Stoica, L.; et al. ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration. J. Clin. Investig. 2019, 129, 2145–2162. [Google Scholar] [CrossRef]
- Dubos, A.; Castells-Nobau, A.; Meziane, H.; Oortveld, M.A.; Houbaert, X.; Iacono, G.; Martin, C.; Mittelhaeuser, C.; Lalanne, V.; Kramer, J.M.; et al. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration. Hum. Mol. Genet. 2015, 24, 6736–6755. [Google Scholar] [CrossRef]
- Poorkaj, P.; Raskind, W.H.; Leverenz, J.B.; Matsushita, M.; Zabetian, C.P.; Samii, A.; Kim, S.; Gazi, N.; Nutt, J.G.; Wolff, J.; et al. A novel X-linked four-repeat tauopathy with Parkinsonism and spasticity. Mov. Disord. 2010, 25, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Korvatska, O.; Strand, N.S.; Berndt, J.D.; Strovas, T.; Chen, D.-H.; Leverenz, J.B.; Kiianitsa, K.; Mata, I.F.; Karakoc, E.; Greenup, J.L.; et al. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum. Mol. Genet. 2013, 22, 3259–3268. [Google Scholar] [CrossRef] [PubMed]
- Edelman, W.C.; Kiianitsa, K.; Virmani, T.; Martinez, R.A.; Young, J.E.; Keene, C.D.; Bird, T.D.; Raskind, W.H.; Korvatska, O. Reduced gene dosage is a common mechanism of neuropathologies caused by ATP6AP2 splicing mutations. Park. Relat. Disord. 2022, 101, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Nagano, F.; Kawabe, H.; Nakanishi, H.; Shinohara, M.; Deguchi-Tawarada, M.; Takeuchi, M.; Sasaki, T.; Takai, Y. Rabconnectin-3, a Novel Protein That Binds Both GDP/GTP Exchange Protein and GTPase-activating Protein for Rab3 Small G Protein Family. J. Biol. Chem. 2002, 277, 9629–9632. [Google Scholar] [CrossRef]
- Kawabe, H.; Sakisaka, T.; Yasumi, M.; Shingai, T.; Izumi, G.; Nagano, F.; Deguchi-Tawarada, M.; Takeuchi, M.; Nakanishi, H.; Takai, Y. A novel rabconnectin-3-binding protein that directly binds a GDP/GTP exchange protein for Rab3A small G protein implicated in Ca(2+)-dependent exocytosis of neuro-transmitter. Genes Cells 2003, 8, 537–546. [Google Scholar] [CrossRef]
- Tata, B.; Huijbregts, L.; Jacquier, S.; Csaba, Z.; Genin, E.; Meyer, V.; Leka, S.; Dupont, J.; Charles, P.; Chevenne, D.; et al. Haploinsufficiency of Dmxl2, Encoding a Synaptic Protein, Causes Infertility Associated with a Loss of GnRH Neurons in Mouse. PLoS Biol. 2014, 12, e1001952. [Google Scholar] [CrossRef]
- Gobé, C.; Elzaiat, M.; Meunier, N.; André, M.; Sellem, E.; Congar, P.; Jouneau, L.; Allais-Bonnet, A.; Naciri, I.; Passet, B.; et al. Dual role of DMXL2 in olfactory information transmission and the first wave of spermatogenesis. PLoS Genet. 2019, 15, e1007909. [Google Scholar] [CrossRef]
- Yan, Y.; Denef, N.; Schüpbach, T. The Vacuolar Proton Pump, V-ATPase, Is Required for Notch Signaling and Endosomal Trafficking in Drosophila. Dev. Cell 2009, 17, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Einhorn, Z.; Trapani, J.G.; Liu, Q.; Nicolson, T. Rabconnectin3 promotes stable activity of the HC pump on synaptic vesicles in hair cells. J. Neurosci. 2012, 32, 11144–11156. [Google Scholar] [CrossRef]
- Tuttle, A.M.; Hoffman, T.L.; Schilling, T.F. Rabconnectin-3a Regulates Vesicle Endocytosis and Canonical Wnt Signaling in Zebrafish Neural Crest Migration. PLoS Biol. 2014, 12, e1001852. [Google Scholar] [CrossRef]
- Merkulova, M.; Păunescu, T.G.; Azroyan, A.; Marshansky, V.; Breton, S.; Brown, D. Mapping the H(+) (V)-ATPase interactome: Identification of proteins involved in trafficking, folding, assembly and phosphorylation. Sci. Rep. 2015, 5, 14827. [Google Scholar] [CrossRef] [PubMed]
- Esposito, A.; Falace, A.; Wagner, M.; Gal, M.; Mei, D.; Conti, V.; Pisano, T.; Aprile, D.; Cerullo, M.S.; De Fusco, A.; et al. Biallelic DMXL2 mutations impair autophagy and cause Ohtahara syndrome with progressive course. Brain 2019, 142, 3876–3891. [Google Scholar] [CrossRef] [PubMed]
- Maddirevula, S.; Alzahrani, F.; Al-Owain, M.; Al Muhaizea, M.A.; Kayyali, H.R.; AlHashem, A.; Rahbeeni, Z.; Al-Otaibi, M.; Alzaidan, H.I.; Balobaid, A.; et al. Autozygome and high throughput confirmation of disease genes candidacy. Genet. Med. 2018, 21, 736–742. [Google Scholar] [CrossRef]
- Kannan, M.; Bayam, E.; Wagner, C.; Rinaldi, B.; Kretz, P.F.; Tilly, P.; Roos, M.; McGillewie, L.; Bär, S.; Minocha, S.; et al. WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy. Proc. Natl. Acad. Sci. USA 2017, 114, E9308–E9317. [Google Scholar] [CrossRef]
- Wilkens, S.; Khan, M.; Knight, K.; Oot, R.A. Tender love and disassembly: How a TLDc domain protein breaks the VATPase. BioEssays 2023, 45, e2200251. [Google Scholar] [CrossRef] [PubMed]
- Castroflorio, E.; Hoed, J.D.; Svistunova, D.; Finelli, M.J.; Cebrian-Serrano, A.; Corrochano, S.; Bassett, A.R.; Davies, B.; Oliver, P.L. The Ncoa7 locus regulates V-ATPase formation and function, neurodevelopment and behaviour. Cell. Mol. Life Sci. 2020, 78, 3503–3524. [Google Scholar] [CrossRef]
- Eaton, A.F.; Brown, D.; Merkulova, M. The evolutionary conserved TLDc domain defines a new class of (H+)V-ATPase interacting proteins. Sci. Rep. 2021, 11, 22654. [Google Scholar] [CrossRef]
- Oot, R.A.; Wilkens, S. Human V-ATPase function is positively and negatively regulated by TLDc proteins. Structure 2024, 32, 989–1000.e6. [Google Scholar] [CrossRef]
- Corbett, M.A.; Bahlo, M.; Jolly, L.; Afawi, Z.; Gardner, A.E.; Oliver, K.L.; Tan, S.; Coffey, A.; Mulley, J.C.; Dibbens, L.M.; et al. A Focal Epilepsy and Intellectual Disability Syndrome Is Due to a Mutation in TBC1D. Am. J. Hum. Genet. 2010, 87, 371–375. [Google Scholar] [CrossRef]
- Falace, A.; Filipello, F.; La Padula, V.; Vanni, N.; Madia, F.; Tonelli, D.D.P.; De Falco, F.A.; Striano, P.; Bricarelli, F.D.; Minetti, C.; et al. TBC1D24, an ARF6-Interacting Protein, Is Mutated in Familial Infantile Myoclonic Epilepsy. Am. J. Hum. Genet. 2010, 87, 365–370. [Google Scholar] [CrossRef]
- Afawi, Z.; Mandelstam, S.; Korczyn, A.D.; Kivity, S.; Walid, S.; Shalata, A.; Oliver, K.L.; Corbett, M.; Gecz, J.; Berkovic, S.F.; et al. TBC1D24 mutation associated with focal epilepsy, cog-nitive impairment and a distinctive cerebro-cerebellar malformation. Epilepsy Res. 2013, 105, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Guven, A.; Tolun, A. TBC1D24 truncating mutation resulting in severe neurodegeneration. J. Med. Genet. 2013, 50, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Milh, M.; Falace, A.; Villeneuve, N.; Vanni, N.; Cacciagli, P.; Assereto, S.; Nabbout, R.; Benfenati, F.; Zara, F.; Chabrol, B.; et al. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum. Mutat. 2013, 34, 869–872. [Google Scholar] [CrossRef]
- Balestrini, S.; Milh, M.; Castiglioni, C.; Lüthy, K.; Finelli, M.J.; Verstreken, P.; Cardon, A.; Stražišar, B.G.; Holder, J.L., Jr.; Lesca, G.; et al. TBC1D24 genotype-phenotype correlation: Epilepsies and other neurologic features. Neurology 2016, 87, 77–85. [Google Scholar] [CrossRef]
- Lüthy, K.; Mei, D.; Fischer, B.; De Fusco, M.; Swerts, J.; Paesmans, J.; Parrini, E.; Lubarr, N.A.; Meijer, I.; Mackenzie, K.M.; et al. TBC1D24-TLDc-related epilepsy exercise-induced dystonia: Rescue by antioxidants in a disease model. Brain 2019, 142, 2319–2335. [Google Scholar] [CrossRef]
- Nakashima, M.; Negishi, Y.; Hori, I.; Hattori, A.; Saitoh, S.; Saitsu, H. A case of early-onset epileptic encephalopathy with a ho-mozygous TBC1D24 variant caused by uniparental isodisomy. Am. J. Med. Genet. A 2019, 179, 645–649. [Google Scholar] [CrossRef]
- Campeau, P.M.; Kasperaviciute, D.; Lu, J.T.; Burrage, L.C.; Kim, C.; Hori, M.; Powell, B.R.; Stewart, F.; Félix, T.M.; van den Ende, J.; et al. The genetic basis of DOORS syndrome: An exome-sequencing study. Lancet Neurol. 2014, 13, 44–58. [Google Scholar] [CrossRef]
- Gao, X.; Dai, P.; Yuan, Y.-Y. Genetic architecture and phenotypic landscape of deafness and onychodystrophy syndromes. Hum. Genet. 2021, 141, 821–838. [Google Scholar] [CrossRef] [PubMed]
- Falace, A.; Buhler, E.; Fadda, M.; Watrin, F.; Lippiello, P.; Pallesi-Pocachard, E.; Baldelli, P.; Benfenati, F.; Zara, F.; Represa, A.; et al. TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway. Proc. Natl. Acad. Sci. USA 2014, 111, 2337–2342. [Google Scholar] [CrossRef]
- Aprile, D.; Fruscione, F.; Baldassari, S.; Fadda, M.; Ferrante, D.; Falace, A.; Buhler, E.; Sartorelli, J.; Represa, A.; Baldelli, P.; et al. TBC1D24 regulates axonal outgrowth and membrane trafficking at the growth cone in rodent and human neurons. Cell Death Differ. 2019, 26, 2464–2478. [Google Scholar] [CrossRef]
- Finelli, M.J.; Sanchez-Pulido, L.; Liu, K.X.; Davies, K.E.; Oliver, P.L. The Evolutionarily Conserved Tre2/Bub2/Cdc16 (TBC), Lysin Motif (LysM), Domain Catalytic (TLDc) Domain Is Neuroprotective against Oxidative Stress. J. Biol. Chem. 2016, 291, 2751–2763. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Uytterhoeven, V.; Kuenen, S.; Wang, Y.C.; Slabbaert, J.R.; Swerts, J.; Kasprowicz, J.; Aerts, S.; Verstreken, P. Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration. J. Cell Biol. 2014, 207, 453–462. [Google Scholar] [CrossRef]
- Lin, L.; Lyu, Q.; Kwan, P.-Y.; Zhao, J.; Fan, R.; Chai, A.; Lai, C.S.W.; Chan, Y.-S.; Shen, X.; Lai, K.-O. The epilepsy and intellectual disability-associated protein TBC1D24 regulates the maintenance of excitatory synapses and animal behaviors. PLoS Genet. 2020, 16, e1008587. [Google Scholar] [CrossRef]
- Doan, R.N.; Lim, E.T.; De Rubeis, S.; Betancur, C.; Cutler, D.J.; Chiocchetti, A.G.; Overman, L.M.; Soucy, A.; Goetze, S. Recessive gene disruptions in autism spectrum disorder. Nat. Genet. 2019, 51, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.X.; Edwards, B.; Lee, S.; Finelli, M.J.; Davies, B.; Davies, K.E.; Oliver, P.L. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain 2015, 138, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Finelli, M.J.; Oliver, P.L. TLDc proteins: New players in the oxidative stress response and neurological disease. Mamm. Genome 2017, 28, 395–406. [Google Scholar] [CrossRef]
- Bucknor, E.M.; Johnson, E.; Efthymiou, S.; Alvi, J.R.; Sultan, T.; Houlden, H.; Maroofian, R.; Karimiani, E.G.; Finelli, M.J.; Oliver, P.L. Neuroinflammation and Lysosomal Abnormalities Characterise the Essential Role for Oxidation Resistance 1 in the Developing and Adult Cerebellum. Antioxidants 2024, 13, 685. [Google Scholar] [CrossRef]
- Khan, M.; Lee, S.; Couoh-Cardel, S.A.; Oot, R.; Kim, H.; Wilkens, S.; Roh, S. Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner. EMBO J. 2021, 41, e109360. [Google Scholar] [CrossRef]
- Wang, J.; Rousseau, J.; Kim, E.; Ehresmann, S.; Cheng, Y.-T.; Duraine, L.; Zuo, Z.; Park, Y.-J.; Li-Kroeger, D.; Bi, W.; et al. Loss of Oxidation Resistance 1, OXR1, Is Associated with an Autosomal-Recessive Neurological Disease with Cerebellar Atrophy and Lysosomal Dysfunction. Am. J. Hum. Genet. 2019, 105, 1237–1253. [Google Scholar] [CrossRef]
- Lin, X.; Wang, W.; Yang, M.; Damseh, N.; de Sousa, M.M.L.; Jacob, F.; Lång, A.; Kristiansen, E.; Pannone, M.; Kissova, M.; et al. A loss-of-function mutation in human Oxidation Resistance 1 disrupts the spatial–temporal regulation of histone arginine methylation in neurodevelopment. Genome Biol. 2023, 24, 216. [Google Scholar] [CrossRef]
- Milgrom, E.; Diab, H.; Middleton, F.; Kane, P.M. Loss of Vacuolar Proton-translocating ATPase Activity in Yeast Results in Chronic Oxidative Stress. J. Biol. Chem. 2007, 282, 7125–7136. [Google Scholar] [CrossRef]
- Chung, C.Y.-S.; Shin, H.R.; Berdan, C.A.; Ford, B.; Ward, C.C.; Olzmann, J.A.; Zoncu, R.; Nomura, D.K. Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition. Nat. Chem. Biol. 2019, 15, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Kilic, U.; Kilic, E.; Lingor, P.; Yulug, B.; Bahr, M. Rifampicin inhibits neurodegeneration in the optic nerve transection model in vivo and after 1-methyl-4-phenylpyridinium intoxication in vitro. Acta Neuropathol. 2004, 108, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Shi, Q.; Bi, W.; Zeng, Z.; Liang, Y.; Wu, X.; Xiao, S.; Liu, J.; Yang, L.; Tao, E. Rifampicin protects PC12 cells from rotenone-induced cytotoxicity by activating GRP78 via PERK-eIF2alpha-ATF4 pathway. PLoS ONE 2014, 9, e92110. [Google Scholar] [CrossRef]
- Wu, X.; Liang, Y.; Jing, X.; Lin, D.; Chen, Y.; Zhou, T.; Peng, S.; Zheng, D.; Zeng, Z.; Lei, M.; et al. Rifampicin Prevents SH-SY5Y Cells from Rotenone-Induced Apoptosis via the PI3K/Akt/GSK-3β/CREB Signaling Pathway. Neurochem. Res. 2018, 43, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zheng, D.; Peng, S.; Lin, D.; Jing, X.; Zeng, Z.; Chen, Y.; Huang, K.; Xie, Y.; Zhou, T.; et al. Rifampicin attenuates rotenone-treated microglia inflammation via improving lysosomal function. Toxicol. Vitr. 2020, 63, 104690. [Google Scholar] [CrossRef]
- Dumont, F.J. FK506, An Immunosuppressant Targeting Calcineurin Function. Curr. Med. Chem. 2000, 7, 731–748. [Google Scholar] [CrossRef]
- Kim, D.; Hwang, H.-Y.; Kim, J.Y.; Lee, J.Y.; Yoo, J.S.; Marko-Varga, G.; Kwon, H.J. FK506, an Immunosuppressive Drug, Induces Autophagy by Binding to the V-ATPase Catalytic Subunit A in Neuronal Cells. J. Proteome Res. 2016, 16, 55–64. [Google Scholar] [CrossRef]
- Li, L.S.; Lu, Y.L.; Nie, J.; Xu, Y.Y.; Zhang, W.; Yang, W.J.; Gong, Q.H.; Lu, Y.F.; Lu, Y.; Shi, J.S. Dendrobium nobile Lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Aβ25–35 in hippocampus neurons in vitro. CNS Neurosci. Ther. 2017, 23, 329. [Google Scholar] [CrossRef]
- Nie, J.; Jiang, L.S.; Zhang, Y.; Tian, Y.; Li, L.S.; Lu, Y.L.; Yang, W.J.; Shi, J.S. Dendrobium nobile Lindl. Alkaloids Decreases the Level of Intracellular β-Amyloid by Improving Impaired Autolysosomal Proteolysis in APP/PS1 Mice. Front. Pharmacol. 2018, 18, 1479. [Google Scholar] [CrossRef]
- Kim, G.; Nakayama, L.; Blum, J.A.; Akiyama, T.; Boeynaems, S.; Chakraborty, M.; Couthouis, J.; Tassoni-Tsuchida, E.; Rodriguez, C.M.; Bassik, M.C.; et al. Genome-wide CRISPR screen reveals v-ATPase as a drug target to lower levels of ALS protein ataxin-2. Cell Rep. 2022, 41, 111508. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Bai, J.; Zhong, S.; Zhang, R.; Kang, K.; Zhang, X.; Xu, Y.; Zhao, C.; Zhao, M. Downregulation of ATP6V1A Involved in Alzheimer’s Disease via Synaptic Vesicle Cycle, Phagosome, and Oxidative Phosphorylation. Oxid. Med. Cell. Longev. 2021, 2021, 5555634. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Carney, K.E.; Falgoust, L.; Pan, J.W.; Sun, D.; Zhang, Z. Emerging roles of Na+/H+ exchangers in epilepsy and developmental brain disorders. Prog. Neurobiol. 2016, 138–140, 19–35. [Google Scholar] [CrossRef]
- Kondapalli, K.C.; Prasad, H.; Rao, R. An inside job: How endosomal Na+/H+ exchangers link to autism and neurological disease. Front. Cell. Neurosci. 2014, 23, 172. [Google Scholar] [CrossRef]
- Previtali, S.C.; Gidaro, T.; Díaz-Manera, J.; Zambon, A.; Carnesecchi, S.; Roux-Lombard, P.; Spitali, P.; Signorelli, M.; Szigyarto, C.A.-K.; Johansson, C.; et al. Rimeporide as a first- in-class NHE-1 inhibitor: Results of a phase Ib trial in young patients with Duchenne Muscular Dystrophy. Pharmacol. Res. 2020, 159, 104999. [Google Scholar] [CrossRef]
- Englhardt, S.; Hein, L.; Keller, U.; Klämbt, K.; Lohse, M.J. Inhibition of Na+-H+ exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice. Circ. Res. 2002, 90, 814–819. [Google Scholar] [CrossRef]
- Xian, X.; Pohlkamp, T.; Durakoglugil, M.S.; Wong, C.H.; Beck, J.K.; Lane-Donovan, C.; Plattner, F.; Herz, J. Reversal of ApoE4-induced recycling block as a novel prevention approach for Alzheimer’s disease. eLife 2018, 7, 40048. [Google Scholar] [CrossRef]
- Metwally, S.A.H.; Paruchuri, S.S.; Yu, L.; Capuk, O.; Pennock, N.; Sun, D.; Song, S. Pharmacological Inhibition of NHE1 Protein Increases White Matter Resilience and Neurofunctional Recovery after Ischemic Stroke. Int. J. Mol. Sci. 2023, 24, 13289. [Google Scholar] [CrossRef]
- Weinert, S.; Jabs, S.; Supanchart, C.; Schweizer, M.; Gimber, N.; Richter, M.; Rademann, J.; Stauber, T.; Kornak, U.; Jentsch, T.J. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl− accumulation. Science 2010, 328, 1401–1403. [Google Scholar] [CrossRef]
- Zifarelli, G. The Role of the Lysosomal Cl−/H+ Antiporter ClC-7 in Osteopetrosis and Neurodegeneration. Cells 2022, 11, 366. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Wolfe, D.M.; Darji, S.; McBrayer, M.K.; Colacurcio, D.J.; Kumar, A.; Stavrides, P.; Mohan, P.S.; Nixon, R.A. β2-adrenergic Agonists Rescue Lysosome Acidification and Function in PSEN1 Deficiency by Reversing Defective ER-to-lysosome Delivery of ClC-7. Mol. Biol. 2020, 432, 2633–2650. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, K.M. Chapter 23—Adrenergic mechanisms and drugs. In Clinical Pharmacology, 11th ed.; Bennett, P.N., Brown, M.J., Sharma, P., Eds.; Churchill Livingstone: London, UK, 2012; pp. 382–392. [Google Scholar]
- Wu, L.; Lin, Y.; Song, J.; Li, L.; Rao, X.; Wan, W.; Wei, G.; Hua, F.; Ying, J. TMEM175: A lysosomal ion channel associated with neurological diseases. Neurobiol. Dis. 2023, 185, 106244. [Google Scholar] [CrossRef]
- Jinn, S.; Blauwendraat, C.; Toolan, D.A.; Gretzula, C.E.; Drolet, R.; Smith, S.A.; Nalls, M.; Marcus, J.; Singleton, A.B.; Stone, D.J. Functionalization of the TMEM175 p.M393T variant as a risk factor for Parkinson disease. Hum. Mol. Genet. 2019, 28, 3244–3254. [Google Scholar] [CrossRef]
- Rudakou, U.; Yu, E.; Krohn, L.; Ruskey, J.A.; Asayesh, F.; Dauvilliers, Y.; Spiegelman, D.; Greenbaum, L.; Fahn, S.; Waters, C.H.; et al. Targeted sequencing of Parkinson’s disease loci genes highlights SYT11, FGF20 and other associations. Brain 2021, 144, 462–472. [Google Scholar] [CrossRef]
- Wie, J.; Liu, Z.; Song, H.; Tropea, T.F.; Yang, L.; Wang, H.; Liang, Y.; Cang, C.; Aranda, K.; Lohmann, J.; et al. A growth-factor-activated lysosomal K+ channel regulates Parkinson’s pathology. Nature 2021, 591, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.; Kumar Sreelatha, A.A.; Pihlstrom, L.; Domenighetti, C.; Schulte, C.; Sugier, P.E.; Radivojkov-Blagojevic, M.; Lichtner, P.; Mohamed, O.; Portugal, B.; et al. Genome-wide Association and Meta-analysis of Age at Onset in Parkinson Disease: Evidence from the COURAGE-PD Consortium. Neurology 2022, 99, e698–e710. [Google Scholar] [CrossRef]
- Oh, S.; Stix, R.; Zhou, W.; Faraldo-Gómez, J.D.; Hite, R.K. Mechanism of 4-aminopyridine inhibition of the lysosomal channel TMEM. Proc. Natl. Acad. Sci. USA 2022, 119, e2208882119. [Google Scholar] [CrossRef]
- Brunner, J.D.; Jakob, R.P.; Schulze, T.; Neldner, Y.; Moroni, A.; Thiel, G.; Maier, T.; Schenck, S. Structural basis for ion selectivity in TMEM175 K+ channels. eLife 2020, 9, 53683. [Google Scholar] [CrossRef]
- Guo, Z.-H.; Khattak, S.; Rauf, M.A.; Ansari, M.A.; Alomary, M.N.; Razak, S.; Yang, C.-Y.; Wu, D.-D.; Ji, X.-Y. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023, 28, 1283. [Google Scholar] [CrossRef]
- Sahay, G.; Alakhova, D.Y.; Kabanov, A.V. Endocytosis of nanomedicines. J. Control. Release 2010, 145, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Bourdenx, M.; Daniel, J.; Genin, E.; Soria, F.N.; Blanchard-Desce, M.; Bezard, E.; Dehay, B. Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases. Autophagy 2016, 12, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.; Gaubert, A.; Latxague, L.; Dehay, B. PLGA-Based Nanoparticles for Neuroprotective Drug Delivery in Neurodegenerative Diseases. Pharmaceutics 2021, 13, 1042. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; McBrayer, M.K.; Wolfe, D.M.; Haslett, L.J.; Kumar, A.; Sato, Y.; Lie, P.P.; Mohan, P.; Coffey, E.E.; Kompella, U.; et al. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. Cell Rep. 2015, 12, 1430–1444. [Google Scholar] [CrossRef]
- Arotcarena, M.; Soria, F.N.; Cunha, A.; Doudnikoff, E.; Prévot, G.; Daniel, J.; Blanchard-Desce, M.; Barthélémy, P.; Bezard, E.; Crauste-Manciet, S.; et al. Acidic nanoparticles protect against α-synuclein-induced neurodegeneration through the restoration of lysosomal function. Aging Cell 2022, 21, e13584. [Google Scholar] [CrossRef]
- Ramachandran, N.; Munteanu, I.; Wang, P.; Ruggieri, A.; Rilstone, J.J.; Israelian, N.; Naranian, T.; Paroutis, P.; Guo, R.; Ren, Z.-P.; et al. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol. 2013, 125, 439–457. [Google Scholar] [CrossRef]
- Ndayisaba, A.; Kaindlstorfer, C.; Wenning, G.K. Iron in Neurodegeneration—Cause or Consequence? Front. Neurosci. 2019, 13, 180. [Google Scholar] [CrossRef]
- Rizzollo, F.; More, S.; Vangheluwe, P.; Agostinis, P. The lysosome as a master regulator of iron metabolism. Trends Biochem. Sci. 2021, 46, 960–975. [Google Scholar] [CrossRef]
- Yambire, K.F.; Rostosky, C.; Watanabe, T.; Pacheu-Grau, D.; Torres-Odio, S.; Sanchez-Guerrero, A.; Senderovich, O.; Meyron-Holtz, E.G.; Milosevic, I.; Frahm, J.; et al. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. eLife 2019, 8, 51031. [Google Scholar] [CrossRef]
- Hughes, C.E.; Coody, T.K.; Jeong, M.-Y.; Berg, J.A.; Winge, D.R.; Hughes, A.L. Cysteine Toxicity Drives Age-Related Mitochondrial Decline by Altering Iron Homeostasis. Cell 2020, 180, 296–310.e18. [Google Scholar] [CrossRef]
- Weber, R.A.; Yen, F.S.; Nicholson, S.P.; Alwaseem, H.; Bayraktar, E.C.; Alam, M.; Timson, R.C.; La, K.; Abu-Remaileh, M.; Molina, H.; et al. Maintaining Iron Homeostasis Is the Key Role of Lysosomal Acidity for Cell Proliferation. Mol. Cell 2020, 77, 645–655.e7. [Google Scholar] [CrossRef]
- Rogers, J.T.; Cahill, C.M. Iron Responsiveness to Lysosomal Disruption: A Novel Pathway to Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 96, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Villalón-García, I.; Álvarez-Córdoba, M.; Povea-Cabello, S.; Talaverón-Rey, M.; Villanueva-Paz, M.; Luzón-Hidalgo, R.; Suárez-Rivero, J.M.; Suárez-Carrillo, A.; Munuera-Cabeza, M.; Salas, J.J.; et al. Vitamin E prevents lipid peroxidation and iron accumulation in PLA2G6-Associated Neurodegeneration. Neurobiol. Dis. 2022, 165, 105649. [Google Scholar] [CrossRef] [PubMed]
- Giustizieri, M.; Petrillo, S.; D’Amico, J.; Torda, C.; Quatrana, A.; Vigevano, F.; Specchio, N.; Piemonte, F.; Cherubini, E. The ferroptosis inducer RSL3 triggers in-terictal epileptiform activity in mice cortical neurons. Front. Cell. Neurosci. 2023, 17, 1213732. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xian, X.; Tan, Z.; Dong, F.; Xu, G.; Zhang, M.; Zhang, F. The Role of Iron Metabolism, Lipid Metabolism, and Redox Homeostasis in Alzheimer’s Disease: From the Perspective of Ferroptosis. Mol. Neurobiol. 2023, 60, 2832–2850. [Google Scholar] [CrossRef]
- Fassio, A.; Falace, A.; Esposito, A.; Aprile, D.; Guerrini, R.; Benfenati, F. Emerging Role of the Autophagy/Lysosomal Degradative Pathway in Neurodevelopmental Disorders with Epilepsy. Front. Cell. Neurosci. 2020, 14, 39. [Google Scholar] [CrossRef]
- Zhao, W.; Gao, X.; Qiu, S.; Gao, B.; Gao, S.; Zhang, X.; Kang, D.; Han, W.; Dai, P.; Yuan, Y. A subunit of V-ATPases, ATP6V1B2, underlies the pathology of intellectual disability. EBioMedicine 2019, 45, 408–421. [Google Scholar] [CrossRef]
- Colacurcio, D.J.; Nixon, R.A. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neu-rodegenerative disease. Ageing Res. Rev. 2016, 32, 75–88. [Google Scholar] [CrossRef]
Human Gene (NCBI Ref.Seq) | Gene Product | Inheritance | Associated Neurogenetic Conditions (OMIM) | Main and Clinical Manifestations |
---|---|---|---|---|
ATP6V1A (NM_001690.4) | V1 subunit A | AD | DEE 93 (OMIM #618012) | delayed psychomotor development; early-onset refractory seizures; impaired intellectual development; cerebral and cerebellar atrophy; progressive neurodegeneration |
ATP6V1B2 (NM_001693.3) | V1 subunit B | AD | DOORS syndrome (OMIM #220050); ZLS2 syndrome (OMIM #616455); DEE.; Autosomal dominant epilepsy with or without intellectual disability | delayed psychomotor development; early-onset refractory seizures; impaired intellectual development; cerebral and cerebellar atrophy; progressive neurodegeneration; specific dysmorphic features (DOORS patients) |
ATP6V0A1 (NM_001130020.3) | V0 subunit A | AD/AR | DEE 104 (OMIM #619970); NDDs with epilepsy and brain atrophy (OMIM #619971) | delayed psychomotor development; early-onset refractory seizures; impaired intellectual development; cerebral and cerebellar atrophy; progressive myoclonus epilepsy with ataxia |
ATP6V0C (NM_001694.4) | V0 subunit C | AD | EEO3, with or without developmental delay (OMIM #620465) | delayed psychomotor development; early-onset refractory seizures; impaired intellectual development; gait ataxia, nonspecific dysmorphic features |
ATP6AP2 (NM_005765.3) | ATPase, H+ transporting lysosomal accessory protein 2 | XLR | XLID, epilepsy and neurodegeneration (OMIM #300423); XPDS (OMIM #300911) | parkinsonian features and spasticity; delayed psychomotor development; early-onset refractory seizures; impaired intellectual development; cerebral and cerebellar atrophy; progressive neurodegeneration |
DMXL2 (NM_001174116.3) | Rabconnectin-3α | AR | DEE 81 (OMIM #618663) | delayed psychomotor development; early-onset refractory seizures; impaired intellectual development; cerebral and cerebellar atrophy; progressive neurodegeneration; facial dysmorphism; progressive leukoencephalopathy |
TBC1D24 (NM_001199107.2) | TBC1 Domain Family Member 24 | AR | FIME (OMIM #605021); DEE 16 (OMIM #615338); DOORS syndrome (OMIM# 220050); EPRPDC (OMIM# 608105) | delayed psychomotor development; early-onset refractory seizures; impaired intellectual development; myoclonic epilepsy (FIME patients), specific dysmorphic features (DOORS patients); exercise-induced dystonia (EPRPDC patients) |
OXR1 (NM_001198532.1) | Oxidation Resistance 1 | AR | CHEGDD (OMIM# 213000) | delayed psychomotor development; impaired intellectual development; seizures; cerebellar atrophy and dysplasia; ataxia; nonspecific dysmorphic features |
NCOA7 (NM_001199619.2) | Nuclear receptor coactivator 7 | AR | ASD | autistic features |
Treatment | Target | Mechanism(s) of Action | Tested Models | Ref |
---|---|---|---|---|
EN6 | ATP6V1A | Covalent targeting of cysteine 277 of the ATP6V1A subunit and enhancement of autophagy as consequence of mTORC1 inactivation | Mouse and human cells lines; skeletal muscle and heart mouse tissues | [102] |
NCH-51 | ATP6V1A | Histone deacetylase inhibitor, selective enhancement of ATP6V1A expression | Drosophila model and human-induced pluripotent stem cell-derived neurons | [25] |
Rifampicin | ATP6V0A1 | Enhancement of ATP6V0A1 expression | Immortalized human microglia cells | [106] |
FK506 (Tacrolimus) | ATP6V1A | Binding with ATP6V1A followed by TFEB nuclear translocation and activation of autophagy | SH-SYSY neuroblastoma cell line | [108] |
Dendrobium nobile Lindl. alkaloids | ATP6V1A | Increased ATP6V1A expression, improved lysosome acidification, and autophagy | amyloid-β and APP/PS1 mice mouse models | [109,110] |
Etidronate | ATP6V1A | ATP6V1A inhibition | Ataxin-2 mouse model | [111] |
EMD87580 (rimeporide) | NHE6 channel | Contrasting lysosomal deacidification by preventing proton efflux at the endolysosome | Animal models of myocardial infarction, dystrophic cardiomyopathy, and DMD models; phase I clinical trials in DMD patients | [116,117,118,119] |
Isoproterenol (ISO) | CIC-7 channel | Contrasting lysosomal deacidification by enhancing parallel Cl− conductance at the lysosome | PS1 KO cells; primary fibroblasts derived from PS1 patients with familial AD | [122] |
Poly(DL-lactide-co-glycolide) acidic nanoparticles (PLGA-aNP) | Lysosomes | Direct lowering of lysosomal pH after internalization | Human fibroblasts; BE(2)-M17 neuroblastoma cell line; mouse brain tissues, injected with PD patient-derived Lewy body extracts | [133,135,136,137] |
Iron supplementation | Cellular iron homeostasis | Contrasting bioavailable iron deficiency associated with v-ATPase dysfunction | Yeast lacking v-ATPase components; HEK293T depleted for ATP6V0C.; Gaa-KO mice | [140,141,142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falace, A.; Volpedo, G.; Scala, M.; Zara, F.; Striano, P.; Fassio, A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells 2024, 13, 1441. https://doi.org/10.3390/cells13171441
Falace A, Volpedo G, Scala M, Zara F, Striano P, Fassio A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells. 2024; 13(17):1441. https://doi.org/10.3390/cells13171441
Chicago/Turabian StyleFalace, Antonio, Greta Volpedo, Marcello Scala, Federico Zara, Pasquale Striano, and Anna Fassio. 2024. "V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities" Cells 13, no. 17: 1441. https://doi.org/10.3390/cells13171441
APA StyleFalace, A., Volpedo, G., Scala, M., Zara, F., Striano, P., & Fassio, A. (2024). V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells, 13(17), 1441. https://doi.org/10.3390/cells13171441