Modulation of Spontaneous Action Potential Rate by Inositol Trisphosphate in Myocytes from the Rabbit Atrioventricular Node
Abstract
:1. Introduction
2. Materials and Methods
2.1. AVN Cell Isolation
2.2. Electrophysiological Recording
2.3. Calcium Imaging
2.4. Flash Photolysis
2.5. Immunohistochemistry
2.6. Experimental Compounds
2.7. Data Analysis and Statistics
3. Results
3.1. Immunohistochemistry
3.2. Effects of Cell Permeant IP3: Bt3-(1,4,5)IP3-AM
3.3. IP3-R Inhibition with Xestospongin C
3.4. Effect of Photoreleased IP3 on AP Rate
3.5. Effects of 2-APB
3.6. Effect of Photoreleased IP3 under AP Voltage Clamp
4. Discussion
4.1. IP3-R2s in the Rabbit AVN
4.2. ICa,L and IKr Inhibition by 2-APB
4.3. Evidence for Constitutive and IP3-R Activity in Modulating AVN Cell Rate
4.4. Limitations, Future Work and Conclusions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tawara, S. Das Reizleitungssystem des Saugetierherzens, 1st ed.; Fischer: Jena, Germany, 1906. [Google Scholar]
- Meijler, F.L.; Janse, M.J. Morphology and electrophysiology of the mammalian atrioventricular node. Physiol. Rev. 1988, 68, 608–647. [Google Scholar] [CrossRef] [PubMed]
- Childers, R. The AV node: Normal and abnormal physiology. Prog. Cardiovasc. Dis. 1977, 19, 361–381. [Google Scholar] [CrossRef]
- Meijler, F.L.; Jalife, J.; Beaumont, J.; Vaidya, D. AV nodal function during atrial fibrillation: The role of electronic modulation of propagation. J. Cardiovas. Electrophys. 1996, 7, 843–861. [Google Scholar] [CrossRef]
- Selzer, A. Atrial fibrillation revisited. N. Engl. J. Med. 1982, 306, 1044–1045. [Google Scholar] [CrossRef]
- Hancox, J.C.; Yuill, K.H.; Mitcheson, J.S.; Convery, M.K. Progress and gaps in understanding the electrophysiological properties of morphologically normal cells from the cardiac atrioventricular node. Int. J. Bifurc. Chaos 2003, 13, 3675–3691. [Google Scholar] [CrossRef]
- Marger, L.; Mesirca, P.; Alig, J.; Torrente, A.; Dubel, S.; Engeland, B.; Kanani, S.; Fontanaud, P.; Striessnig, J.; Shin, H.-S.; et al. Functional roles of Cav 1.3, Cav 3.1 and HCN channels in automaticity of mouse atrioventricular cells: Insights into the atrioventricular pacemaker mechanism. Channels 2011, 5, 251–261. [Google Scholar] [CrossRef]
- Marger, L.; Mesirca, P.; Alig, J.; Torrente, A.; Dubel, S.; Engeland, B.; Kanani, S.; Fontanaud, P.; Striessnig, J.; Shin, H.-S.; et al. Pacemaker activity and ionic currents in mouse atrioventricular node cells. Channels 2011, 5, 241–250. [Google Scholar] [CrossRef]
- Yuill, K.H.; Hancox, J.C. Characteristics of single cells isolated from the atrioventricular node of the adult guinea-pig heart. Pflug. Arch. 2002, 224, 311–320. [Google Scholar] [CrossRef]
- Yuill, K.H.; Tosh, D.; Hancox, J.C. Streptozotocin-induced diabetes modulates action potentials and ion channel currents from the rat atrioventricular node. Exp. Physiol. 2010, 95, 508–517. [Google Scholar] [CrossRef]
- Munk, A.A.; Adjeiman, R.A.; Zhao, J.; Ogbaghebriel, A.; Shrier, A. Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. J. Physiol. 1996, 493, 801–818. [Google Scholar] [CrossRef]
- Dobrzynski, H.; Nikolski, V.P.; Sambelashvili, A.T.; Greener, I.D.; Yamamoto, M.; Boyett, M.R.; Efimov, I.R. Site of origin and molecular substrate of atrioventricular junctional rhythm in the rabbit heart. Circ. Res. 2003, 93, 1102–1110. [Google Scholar] [CrossRef]
- Mitcheson, J.S.; Hancox, J.C. An investigation of the role played by the E-4031-sensitive (rapid delayed rectifier) potassium current in isolated rabbit atrioventricular nodal and ventricular myocytes. Pflug. Arch. Eur. J. Physiol. 1999, 438, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Tanaka, H.; Habuchi, Y.; Giles, W.R. Electrophysiological effects of ibutilide on the delayed rectifier K+ current in rabbit sinoatrial and atrioventricular node cells. Eur. J. Pharmacol. 2000, 404, 281–288. [Google Scholar] [CrossRef]
- Hancox, J.C.; Levi, A.J. L-type calcium current in rod- and spindle-shaped myocytes isolated from the rabbit atrioventricular node. Am. J. Physiol. 1994, 267, H1670–H1680. [Google Scholar] [CrossRef]
- Inada, S.; Hancox, J.C.; Zhang, H.; Boyett, M.R. One-dimensional mathematical model of the atrioventricular node including atrio-nodal, nodal, and nodal-his cells. Biophys. J. 2009, 97, 2117–2127. [Google Scholar] [CrossRef]
- Cheng, H.; Li, J.; James, A.F.; Inada, S.; Choisy, S.C.; Orchard, C.H.; Zhang, H.; Boyett, M.R.; Hancox, J.C. Characterization and influence of cardiac background sodium current in the atrioventricular node. J. Mol. Cell. Cardiol. 2016, 97, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Nikmaram, M.R.; Liu, J.; Abdelrahman, M.; Dobrzynski, H.; Boyett, M.R.; Lei, M. Characterization of the effects of ryanodine, TTX, E-4031 and 4-AP on the sinoatrial and atrioventricular nodes. Prog. Biophys. Mol. Biol. 2008, 96, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Noble, P.J.; Xiao, G.; Abdelrahman, M.; Dobrzynski, H.; Boyett, M.R.; Lei, M.; Noble, D. Role of pacemaking current in cardiac nodes: Insights from a comparative study of sinoatrial node and atrioventricular node. Prog. Biophys. Mol. Biol. 2008, 96, 294–304. [Google Scholar] [CrossRef]
- Maltsev, V.A.; Vinogradova, T.M.; Lakatta, E.G. The emergence of a general theory of the initiation and strength of the heartbeat. J. Pharmacol. 2006, 100, 338–369. [Google Scholar] [CrossRef]
- Lakatta, E.G.; Maltsev, V.A.; Vinogradova, T.M. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ. Res. 2010, 106, 659–673. [Google Scholar] [CrossRef]
- Cheng, H.; Smith, G.L.; Orchard, C.H.; Hancox, J.C.; Burton, F.L. Inhibition of sarcoplasmic reticulum Ca2+-ATPase decreases atrioventricular node-paced heart rate in rabbits. Exp. Physiol. 2012, 97, 1131–1139. [Google Scholar] [CrossRef]
- Kim, D.; Shinohara, T.; Joung, B.; Maruyama, M.; Choi, E.K.; On, Y.K.; Han, S.; Fishbein, M.C.; Lin, S.-F.; Chen, P.S. Calcium dynamics and the mechanisms of atrioventricular junctional rhythm. J. Am. Coll. Cardiol. 2010, 56, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Hancox, J.C.; Levi, A.J.; Brooksby, P. Intracellular calcium transients recorded with Fura-2 in spontaneously active myocytes isolated from the atrioventricular node of the rabbit heart. Proc. R. Soc. Lond. B Biol. Sci. 1994, 255, 99–105. [Google Scholar]
- Cheng, H.; Smith, G.L.; Hancox, J.C.; Orchard, C.H. Inhibition of spontaneous activity of rabbit atrioventricular node cells by KB-R7943 and inhibitors of sarcoplasmic reticulum Ca2+ ATPase. Cell Calcium 2011, 49, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Convery, M.K.; Hancox, J.C. Na+-Ca2+ exchange current from rabbit isolated atrioventricular nodal and ventricular myocytes compared using action potential and ramp waveforms. Acta Physiol. Scand. 2000, 168, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Ridley, J.M.; Cheng, H.; Harrison, O.J.; Jones, S.K.; Smith, G.L.; Hancox, J.C.; Orchard, C.H. Spontaneous frequency of rabbit atrioventricular node myocytes depends on SR function. Cell Calcium 2008, 44, 580–591. [Google Scholar] [CrossRef]
- Ju, Y.K.; Woodcock, E.A.; Allen, D.G.; Cannell, M.B. Inositol 1,4,5-trisphosphate receptors and pacemaker rhythms. J. Mol. Cell. Cardiol. 2012, 53, 375–381. [Google Scholar] [CrossRef]
- Kockskamper, J.; Zima, A.V.; Roderick, H.L.; Pieske, B.; Blatter, L.A.; Bootman, M.D. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J. Mol. Cell. Cardiol. 2008, 45, 128–147. [Google Scholar] [CrossRef]
- Lipp, P.; Laine, M.; Tovey, S.C.; Burrell, K.M.; Berridge, M.J.; Li, W.; Bootman, M.D. Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr. Biol. 2000, 10, 939–942. [Google Scholar] [CrossRef]
- Bare, D.J.; Kettlun, C.S.; Liang, M.; Bers, D.M.; Mignery, G.A. Cardiac type 2 inositol 1,4,5-trisphosphate receptor: Interaction and modulation by calcium/calmodulin-dependent protein kinase, I.I. J. Biol. Chem. 2005, 280, 15912–15920. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, T.; Bossuyt, J.; Li, X.; McKinsey, T.A.; Dedman, J.R.; Olson, E.N.; Chen, J.; Brown, J.H.; Bers, D.M. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J. Clin. Investig. 2006, 116, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Ljubojevic, S.; Walther, S.; Asgarzoei, M.; Sedej, S.; Pieske, B.; Kockskamper, J. In situ calibration of nucleoplasmic versus cytoplasmic Ca2+ concentration in adult cardiomyocytes. Biophys. J. 2011, 100, 2356–2366. [Google Scholar] [CrossRef]
- Jin, X.; Amoni, M.; Gilbert, G.; Dries, E.; Donate, P.R.; Tomar, A.; Nagaraju, C.K.; Pradhan, A.; Yule, D.I.; Martens, T.; et al. InsP3R-RyR Ca2+ channel crosstalk facilitates arrhythmias in the failing human ventricle. Basic Res. Cardiol. 2022, 117, 60. [Google Scholar] [CrossRef] [PubMed]
- Demydenko, K.; Sipido, K.R.; Roderick, H.L. Ca2+ release via InsP3Rs enhances RyR recruitment during Ca2+ transients by increasing dyadic [Ca2+] in cardiomyocytes. J. Cell Sci. 2021, 134, jcs258671. [Google Scholar] [CrossRef]
- Mackenzie, L.; Bootman, M.D.; Laine, M.; Berridge, M.J.; Thuring, J.; Holmes, A.; Li, W.H.; Lipp, P. The role of inositol 1,4,5-trisphosphate receptors in Ca2+ signalling and the generation of arrhythmias in rat atrial myocytes. J. Physiol. 2002, 541 Pt 2, 395–409. [Google Scholar] [CrossRef]
- Zima, A.V.; Blatter, L.A. Inositol-1,4,5-trisphosphate-dependent Ca2+ signalling in cat atrial excitation-contraction coupling and arrhythmias. J. Physiol. 2004, 555 Pt 3, 607–615. [Google Scholar] [CrossRef]
- Li, X.; Zima, A.V.; Sheikh, F.; Blatter, L.A.; Chen, J. Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Circ. Res. 2005, 96, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Takano, M.; Ohba, T.; Ono, K. Arrhythmogenic coupling between the Na+-Ca2+ exchanger and inositol 1,4,5-triphosphate receptor in rat pulmonary vein cardiomyocytes. J. Mol. Cell. Cardiol. 2012, 52, 988–997. [Google Scholar] [CrossRef]
- Boyden, P.A.; Dun, W.; Barbhaiya, C.; ter Keurs, H.E. 2APB and JTV519(K201)-sensitive micro Ca waves in arrhythmogenic Purkinje cells that survive in infarcted canine heart. Heart Rhythm 2004, 1, 218–226. [Google Scholar] [CrossRef]
- Bramich, N.J.; Cousins, H.M.; Edwards, F.R.; Hirst, G.D. Parallel metabotropic pathways in the heart of the toad, Bufo marinus. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H1771–H1777. [Google Scholar] [CrossRef]
- Ju, Y.K.; Liu, J.; Lee, B.H.; Lai, D.; Woodcock, E.A.; Lei, M.; Cannell, M.B.; Allen, D.G. Distribution and Functional Role of Inositol 1,4,5-trisphosphate Receptors in Mouse Sinoatrial Node. Circ. Res. 2011, 109, 848–857. [Google Scholar] [CrossRef]
- Capel, R.A.; Bose, S.J.; Collins, T.P.; Rajasundaram, S.; Ayagama, T.; Zaccolo, M.; Burton, R.A.B.; Terrar, D.A. IP3-mediated Ca2+ release regulates atrial Ca2+ transients and pacemaker function by stimulation of adenylyl cyclases. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H95–H107. [Google Scholar] [CrossRef] [PubMed]
- Perez, P.J.; Ramos-Franco, J.; Fill, M.; Mignery, G.A. Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. J. Biol. Chem. 1997, 272, 23961–23969. [Google Scholar] [CrossRef] [PubMed]
- McMartin, L.; Summers, R.J. Cardiac binding of [3H]inositol 1,4,5-trisphosphate following chronic stimulation of cyclic AMP signalling in guinea pigs. Pharmacol. Res. 1998, 37, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Howarth, F.C.; Levi, A.J.; Hancox, J.C. Characteristics of delayed rectifier K current compared myocytes isolated from the atrioventricular node and ventricle of the rabbit heart. Pflug. Arch. 1996, 431, 713–722. [Google Scholar] [CrossRef]
- Cheng, H.; Smith, G.L.; Orchard, C.H.; Hancox, J.C. Acidosis inhibits spontaneous activity and membrane currents in myocytes isolated from the rabbit atrioventricular node. J. Mol. Cell. Cardiol. 2009, 46, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Isenberg, G.; Klockner, U. Calcium tolerant ventricular myocytes prepared by incubation in a “KB medium”. Pflug. Arch. 1982, 395, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Choisy, S.C.; Cheng, H.; Smith, G.L.; James, A.F.; Hancox, J.C. Modulation by endothelin-1 of spontaneous activity and membrane currents of atrioventricular node myocytes from the rabbit heart. PLoS ONE 2012, 7, e33448. [Google Scholar] [CrossRef]
- Cheng, H.; Curtis, A.E.; Fellingham, C.; Hancox, J.C. Multiple ion channel block by the cation channel inhibitor SKF-96365 in myocytes from the rabbit atrioventricular node. Physiol. Rep. 2016, 4, e12819. [Google Scholar] [CrossRef] [PubMed]
- Choisy, S.C.; Cheng, H.; Orchard, C.H.; James, A.F.; Hancox, J.C. Electrophysiological properties of myocytes isolated from the mouse atrioventricular node: L-type ICa, IKr, If, and Na-Ca exchange. Physiol. Rep. 2015, 3, e12633. [Google Scholar] [CrossRef] [PubMed]
- Levi, A.J.; Hancox, J.C.; Howarth, F.C.; Croker, J.; Vinnicombe, J. A method for making rapid changes of superfusate whilst maintaining temperature at 37 °C. Pflug. Arch. 1996, 432, 930–937. [Google Scholar] [CrossRef]
- Li, W.; Schultz, C.; Llopis, J.; Tsien, R.Y. Membrane-permeant esters of inositol polyphosphates, chemical syntheses and biological applications. Tetrahedron 1997, 53, 12017–12040. [Google Scholar] [CrossRef]
- Mijares, A.; Espinosa, R.; Adams, J.; Lopez, J.R. Increases in [IP3]i aggravates diastolic [Ca2+] and contractile dysfunction in Chagas’ human cardiomyocytes. PLoS Negl. Trop. Dis. 2020, 14, e0008162. [Google Scholar] [CrossRef]
- Horn, T.; Ullrich, N.D.; Egger, M. ‘Eventless’ InsP3-dependent SR-Ca2+ release affecting atrial Ca2+ sparks. J. Physiol. 2013, 591 Pt 8, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.D.; Shah, T.; Garcia, J. Immunolocalization of type 2 inositol 1,4,5-trisphosphate receptors in cardiac myocytes from newborn mice. Am. J. Physiol. Cell Physiol. 2004, 287, C1048–C1057. [Google Scholar] [CrossRef] [PubMed]
- Gafni, J.; Munsch, J.A.; Lam, T.H.; Catlin, M.C.; Costa, L.G.; Molinski, T.F.; Pessah, I.N. Xestospongins: Potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 1997, 19, 723–733. [Google Scholar] [CrossRef]
- Cui, Z.J.; Kanno, T. Photodynamic triggering of calcium oscillation in the isolated rat pancreatic acini. J. Physiol. 1997, 504 Pt 1, 47–55. [Google Scholar] [CrossRef]
- Maruyama, T.; Kanaji, T.; Nakade, S.; Kanno, T.; Mikoshiba, K. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J. Biochem. 1997, 122, 498–505. [Google Scholar] [CrossRef]
- Ma, H.T.; Venkatachalam, K.; Parys, J.B.; Gill, D.L. Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J. Biol. Chem. 2002, 277, 6915–6922. [Google Scholar] [CrossRef]
- Prakriya, M.; Lewis, R.S. Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J. Physiol. 2001, 536 Pt 1, 3–19. [Google Scholar] [CrossRef]
- Harteneck, C.; Gollasch, M. Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr. Pharm. Biotechnol. 2011, 12, 35–41. [Google Scholar] [CrossRef]
- Beltran, L.; Beltran, M.; Aguado, A.; Gisselmann, G.; Hatt, H. 2-Aminoethoxydiphenyl borate activates the mechanically gated human KCNK channels KCNK 2 (TREK-1), KCNK 4 (TRAAK), and KCNK 10 (TREK-2). Front. Pharmacol. 2013, 4, 63. [Google Scholar] [CrossRef]
- Zhao, W.; Pan, L.; Stalin, A.; Xu, J.; Wu, L.; Ke, X.; Chen, Y. Inhibitory Effects of 2-Aminoethoxydiphenyl Borate (2-APB) on Three KV1 Channel Currents. Molecules 2023, 28, 871. [Google Scholar] [CrossRef]
- Saleem, H.; Tovey, S.C.; Molinski, T.F.; Taylor, C.W. Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor. Br. J. Pharmacol. 2014, 171, 3298–3312. [Google Scholar] [CrossRef]
- Vogelsang, M.; Broede-Sitz, A.; Schafer, E.; Zerkowski, H.R.; Brodde, O.E. Endothelin ETA-receptors couple to inositol phosphate formation and inhibition of adenylate cyclase in human right atrium. J. Cardiovasc. Pharmacol. 1994, 23, 344–347. [Google Scholar] [CrossRef]
Parameter | Control | 10 µM Bt3-(1,4,5)IP3-AM |
---|---|---|
Spontaneous AP rate (beats s−1) (Percentage increase %) | 2.85 ± 0.17 | 3.96 ± 0.21 ** (40.5 ± 5.7%) |
Slope of pacemaker diastolic depolarization (mV s−1) | 64.6 ± 8.4 | 102.3 ± 10.6 * |
Maximal upstroke velocity (Vmax, V s−1) | 4.67 ± 0.80 | 3.89 ± 1.14 |
Maximal repolarization velocity (Vrep, V s−1) | −1.22 ± 0.08 | −1.09 ± 0.08 |
AP duration at 50% repolarization (APD50, ms) | 77.4 ± 3.5 | 73.3 ± 3.8 |
Maximal diastolic potential (MDP, mV) | −51.8 ± 2.8 | −49.4 ± 1.9 |
Overshoot (mV) | 20.6 ± 2.1 | 11.6 ± 2.9 * |
AP amplitude (mV) | 71.5 ± 4.0 | 61.0 ± 4.4 |
Parameter | Untreated Cells | Xestospongin C (Start of Recording) | Xestospongin C (~1 min of Recording) |
---|---|---|---|
Spontaneous AP rate (beats s−1) (Percentage decrease %) | 2.85 ± 0.17 | 2.63 ± 0.14 (7.7%, vs. untreated cells) | 1.94 ± 0.17 * ## (23.1 ± 8.7%, vs. Xe-C At Start) |
Slope of pacemaker diastolic depolarization (mV s−1) | 64.6 ± 8.4 | 97.8 ± 13.2 | 51.0 ± 5.2 ** |
Maximal upstroke velocity (Vmax, V s−1) | 4.67 ± 0.80 | 8.66 ± 1.30 | 8.47 ± 1.42 # |
Maximal repolarization velocity (Vrep, V s−1) | −1.22 ± 0.08 | −1.61 ± 0.16 | −1.49 ± 0.12 |
AP duration at 50% repolarization (APD50, ms) | 77.4 ± 3.5 | 84.7 ± 3.5 | 83.5 ± 3.1 |
Maximal diastolic potential (MDP, mV) | −51.8 ± 2.8 | −53.4 ± 2.1 | −57.6 ± 2.3 ** |
Overshoot (mV) | 20.6 ± 2.1 | 31.8 ± 2.2 | 30.5 ± 2.2 ## |
AP amplitude (mV) | 71.5 ± 4.0 | 85.2 ± 4.0 | 88.1 ± 4.3 # |
Parameter | Control | With UV Excitation of Caged IP3 |
---|---|---|
Spontaneous AP rate (beats s−1) (Percentage increase %) | 2.30 ± 0.37 | 2.90 ± 0.36 * (32.1 ± 9.5%) |
Slope of pacemaker diastolic depolarization (mV s−1) | 73.4 ± 17.6 | 110.5 ± 14.0 * |
Maximal upstroke velocity (Vmax, V s−1) | 6.55 ± 1.49 | 7.73 ± 1.66 |
Maximal repolarization velocity (Vrep, V s−1) | −1.86 ± 0.15 | −1.82 ± 0.17 |
AP duration at 50% repolarization (APD50, ms) | 69.1 ± 5.1 | 71.0 ± 4.5 |
Maximal diastolic potential (MDP, mV) | −65.8 ± 1.9 | −65.3 ± 2.3 |
Overshoot (mV) | 26.1 ± 4.5 | 27.9 ± 4.4 |
AP amplitude (mV) | 91.9 ± 4.5 | 93.2 ± 4.3 |
Parameter | Control | 10 μM 2-APB | Control | 1 μM 2-APB |
---|---|---|---|---|
Spontaneous AP rate (beats s−1) (Percentage decrease %) | 3.10 ± 0.36 | 2.28 ± 0.37 ** (28.0 ± 4.3%) | 2.78 ± 0.22 | 2.07 ± 0.22 ** (25.2 ± 6.2%) |
Slope of pacemaker diastolic depolarization (mV s−1) | 79.2 ± 18.9 | 24.6 ± 7.7 ** | 82.0 ± 9.2 | 34.8 ± 3.6 ** |
Maximal upstroke velocity (Vmax, V s−1) | 5.50 ± 1.05 | 0.78 ± 0.12 ** | 7.03 ± 2.14 | 4.55 ± 1.54 ** |
Maximal repolarization velocity (Vrep, V s−1) | −1.34 ± 0.11 | −0.66 ± 0.05 ** | −2.49 ± 0.50 | −2.43 ± 0.51 |
AP duration at 50% repolarization (APD50, ms) | 68.4 ± 3.1 | 117.8 ± 11.6 ** | 75.2 ± 5.7 | 90.7 ± 5.0 ** |
Maximal diastolic potential (MDP, mV) | −51.8 ± 2.5 | −38.9 ± 3.4 ** | −62.7 ± 2.8 | −58.2 ± 3.5 * |
Overshoot (mV) | 24.5 ± 3.5 | −0.19 ± 3.1 ** | 23.0 ± 4.3 | 13.6 ± 5.2 ** |
AP amplitude (mV) | 76.3 ± 5.5 | 38.7 ± 3.0 ** | 85.5 ± 6.6 | 71.8 ± 8.4 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Kong, C.H.T.; James, A.F.; Cannell, M.B.; Hancox, J.C. Modulation of Spontaneous Action Potential Rate by Inositol Trisphosphate in Myocytes from the Rabbit Atrioventricular Node. Cells 2024, 13, 1455. https://doi.org/10.3390/cells13171455
Cheng H, Kong CHT, James AF, Cannell MB, Hancox JC. Modulation of Spontaneous Action Potential Rate by Inositol Trisphosphate in Myocytes from the Rabbit Atrioventricular Node. Cells. 2024; 13(17):1455. https://doi.org/10.3390/cells13171455
Chicago/Turabian StyleCheng, Hongwei, Cherrie H. T. Kong, Andrew F. James, Mark B. Cannell, and Jules C. Hancox. 2024. "Modulation of Spontaneous Action Potential Rate by Inositol Trisphosphate in Myocytes from the Rabbit Atrioventricular Node" Cells 13, no. 17: 1455. https://doi.org/10.3390/cells13171455
APA StyleCheng, H., Kong, C. H. T., James, A. F., Cannell, M. B., & Hancox, J. C. (2024). Modulation of Spontaneous Action Potential Rate by Inositol Trisphosphate in Myocytes from the Rabbit Atrioventricular Node. Cells, 13(17), 1455. https://doi.org/10.3390/cells13171455