Epstein-Barr Virus BARF1 Is Expressed in Lung Cancer and Is Associated with Cancer Progression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Specimens
2.2. Cell Culture and Stable Transfections
2.3. DNA Extraction and EBV Detection
2.4. Reverse Transcription Real-Time PCR
2.5. Immunohistochemistry for EBV EBNA1
2.6. Chromogenic In Situ Hybridization for EBV
2.7. Cell Viability
2.8. Cell Migration
2.9. Cell Invasion
2.10. Epithelial Mesenchymal Transition Using Western Blotting
2.11. Statistical Analysis
3. Results
3.1. EBV Presence in Lung Carcinomas Using Conventional PCR
3.2. EBV Presence in Lung Carcinomas Using EBNA1 Immunohistochemistry
3.3. EBV Presence in Lung Carcinomas Using EBERs CISH
3.4. BARF1 Detection in Lung Carcinomas Using RT-qPCR
3.5. Proliferation of Lung Cells Ectopically Expressing BARF1
3.6. Migration of Lung-Derived Cell Lines Ectopically Expressing BARF1
3.7. Invasion of Lung-Derived Cell Lines Ectopically Expressing BARF1
3.8. Epithelial Mesenchymal Transition in Lung-Derived Cell Lines Ectopically Expressing BARF1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med. 2011, 32, 605–644. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Cani, M.; Turco, F.; Butticè, S.; Vogl, U.M.; Buttigliero, C.; Novello, S.; Capelletto, E. How Does Environmental and Occupational Exposure Contribute to Carcinogenesis in Genitourinary and Lung Cancers? Cancers 2023, 15, 2836. [Google Scholar] [CrossRef]
- Hu, Y.; Ren, S.; He, Y.; Wang, L.; Chen, C.; Tang, J.; Liu, W.; Yu, F. Possible Oncogenic Viruses Associated with Lung Cancer. Onco Targets Ther. 2020, 13, 10651–10666. [Google Scholar] [CrossRef]
- Kheir, F.; Zhao, M.; Strong, M.J.; Yu, Y.; Nanbo, A.; Flemington, E.K.; Morris, G.F.; Reiss, K.; Li, L.; Lin, Z. Detection of Epstein-Barr Virus Infection in Non-Small Cell Lung Cancer. Cancers 2019, 11, 759. [Google Scholar] [CrossRef]
- Smatti, M.K.; Al-Sadeq, D.W.; Ali, N.H.; Pintus, G.; Abou-Saleh, H.; Nasrallah, G.K. Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update. Front. Oncol. 2018, 8, 211. [Google Scholar] [CrossRef]
- Miller, N.; Hutt-Fletcher, L.M. Epstein-Barr virus enters B cells and epithelial cells by different routes. J. Virol. 1992, 66, 3409–3414. [Google Scholar] [CrossRef] [PubMed]
- Niedobitek, G.; Meru, N.; Delecluse, H.J. Epstein-Barr virus infection and human malignancies. Int. J. Exp. Pathol. 2001, 82, 149–170. [Google Scholar]
- Thorley-Lawson, D.A. EBV Persistence—Introducing the Virus. Curr. Top. Microbiol. Immunol. 2015, 390, 151–209. [Google Scholar] [CrossRef]
- Tang, W.; Morgan, D.R.; Meyers, M.O.; Dominguez, R.L.; Martinez, E.; Kakudo, K.; Kuan, P.F.; Banet, N.; Muallem, H.; Woodward, K.; et al. Epstein-barr virus infected gastric adenocarcinoma expresses latent and lytic viral transcripts and has a distinct human gene expression profile. Infect. Agent. Cancer 2012, 7, 21. [Google Scholar] [CrossRef]
- Banko, A.V.; Lazarevic, I.B.; Folic, M.M.; Djukic, V.B.; Cirkovic, A.M.; Karalic, D.Z.; Cupic, M.D.; Jovanovic, T.P. Characterization of the Variability of Epstein-Barr Virus Genes in Nasopharyngeal Biopsies: Potential Predictors for Carcinoma Progression. PLoS ONE 2016, 11, e0153498. [Google Scholar] [CrossRef] [PubMed]
- Borozan, I.; Zapatka, M.; Frappier, L.; Ferretti, V. Analysis of Epstein-Barr Virus Genomes and Expression Profiles in Gastric Adenocarcinoma. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef]
- Feng, P.; Ren, E.C.; Liu, D.; Chan, S.H.; Hu, H. Expression of Epstein-Barr virus lytic gene BRLF1 in nasopharyngeal carcinoma: Potential use in diagnosis. J. Gen. Virol. 2000, 81, 2417–2423. [Google Scholar] [CrossRef] [PubMed]
- Hoebe, E.K.; Le Large, T.Y.; Greijer, A.E.; Middeldorp, J.M. BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator. Rev. Med. Virol. 2013, 23, 367–383. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, W.; Jin, M.; Zhang, J.; Li, S.; Tong, F.; Zhou, Y. Differential expression of EBV proteins LMP1 and BHFR1 in EBV-associated gastric and nasopharyngeal cancer tissues. Mol. Med. Rep. 2016, 13, 4151–4158. [Google Scholar] [CrossRef]
- Chang, M.S.; Kim, D.H.; Roh, J.K.; Middeldorp, J.M.; Kim, Y.S.; Kim, S.; Han, S.; Kim, C.W.; Lee, B.L.; Kim, W.H.; et al. Epstein-Barr virus-encoded BARF1 promotes proliferation of gastric carcinoma cells through regulation of NF-κB. J. Virol. 2013, 87, 10515–10523. [Google Scholar] [CrossRef] [PubMed]
- Peña, N.; Carrillo, D.; Muñoz, J.P.; Chnaiderman, J.; Urzúa, U.; León, O.; Tornesello, M.L.; Corvalán, A.H.; Soto-Rifo, R.; Aguayo, F. Tobacco smoke activates human papillomavirus 16 p97 promoter and cooperates with high-risk E6/E7 for oxidative DNA damage in lung cells. PLoS ONE 2015, 10, e0123029. [Google Scholar] [CrossRef]
- Muñoz, J.P.; González, C.; Parra, B.; Corvalán, A.H.; Tornesello, M.L.; Eizuru, Y.; Aguayo, F. Functional interaction between human papillomavirus type 16 E6 and E7 oncoproteins and cigarette smoke components in lung epithelial cells. PLoS ONE 2012, 7, e38178. [Google Scholar] [CrossRef]
- Oliva, C.; Carrillo-Beltrán, D.; Boettiger, P.; Gallegos, I.; Aguayo, F. Human Papillomavirus Detected in Oropharyngeal Cancers from Chilean Subjects. Viruses 2022, 14, 1212. [Google Scholar] [CrossRef]
- Aguayo, F.; Khan, N.; Koriyama, C.; González, C.; Ampuero, S.; Padilla, O.; Solís, L.; Eizuru, Y.; Corvalán, A.; Akiba, S. Human papillomavirus and Epstein-Barr virus infections in breast cancer from chile. Infect. Agent. Cancer 2011, 6, 7. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Carrillo-Beltrán, D.; Aedo-Aguilera, V.; Calaf, G.M.; León, O.; Maldonado, E.; Tapia, J.C.; Boccardo, E.; Ozbun, M.A.; Aguayo, F. Tobacco Exposure Enhances Human Papillomavirus 16 Oncogene Expression via EGFR/PI3K/Akt/c-Jun Signaling Pathway in Cervical Cancer Cells. Front. Microbiol. 2018, 9, 3022. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Carrillo-Beltrán, D.; Muñoz, J.P.; Osorio, J.C.; Tapia, J.C.; Burzio, V.A.; Gallegos, I.; Calaf, G.M.; Chabay, P.; Aguayo, F. Characterization of High-Risk HPV/EBV Co-Presence in Pre-Malignant Cervical Lesions and Squamous Cell Carcinomas. Microorganisms 2022, 10, 888. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Beltrán, D.; Muñoz, J.P.; Guerrero-Vásquez, N.; Blanco, R.; León, O.; de Souza Lino, V.; Tapia, J.C.; Maldonado, E.; Dubois-Camacho, K.; Hermoso, M.A.; et al. Human Papillomavirus 16 E7 Promotes EGFR/PI3K/AKT1/NRF2 Signaling Pathway Contributing to PIR/NF-κB Activation in Oral Cancer Cells. Cancers 2020, 12, 1904. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Moreno, P.; Indo, S.; Niechi, I.; Huerta, H.; Cabello, P.; Jara, L.; Aguayo, F.; Varas-Godoy, M.; Burzio, V.A.; Tapia, J.C. Endothelin-converting enzyme-1c promotes stem cell traits and aggressiveness in colorectal cancer cells. Mol. Oncol. 2020, 14, 347–362. [Google Scholar] [CrossRef]
- Aedo-Aguilera, V.; Carrillo-Beltrán, D.; Calaf, G.M.; Muñoz, J.P.; Guerrero, N.; Osorio, J.C.; Tapia, J.C.; León, O.; Contreras, H.R.; Aguayo, F. Curcumin decreases epithelial-mesenchymal transition by a Pirin-dependent mechanism in cervical cancer cells. Oncol. Rep. 2019, 42, 2139–2148. [Google Scholar] [CrossRef]
- Karnosky, J.; Dietmaier, W.; Knuettel, H.; Freigang, V.; Koch, M.; Koll, F.; Zeman, F.; Schulz, C. HPV and lung cancer: A systematic review and meta-analysis. Cancer Rep. 2021, 4, e1350. [Google Scholar] [CrossRef]
- Hashida, Y.; Imajoh, M.; Nemoto, Y.; Kamioka, M.; Taniguchi, A.; Taguchi, T.; Kume, M.; Orihashi, K.; Daibata, M. Detection of Merkel cell polyomavirus with a tumour-specific signature in non-small cell lung cancer. Br. J. Cancer 2013, 108, 629–637. [Google Scholar] [CrossRef]
- Linnerth-Petrik, N.M.; Walsh, S.R.; Bogner, P.N.; Morrison, C.; Wootton, S.K. Jaagsiekte sheep retrovirus detected in human lung cancer tissue arrays. BMC Res. Notes 2014, 7, 160. [Google Scholar] [CrossRef]
- Zheng, H.C.; Xue, H.; Zhang, C.Y. The oncogenic roles of JC polyomavirus in cancer. Front. Oncol. 2022, 12, 976577. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Xu, Z.; Dong, M. Association of Epstein-Barr virus (EBV) with lung cancer: Meta-analysis. Front. Oncol. 2023, 13, 1177521. [Google Scholar] [CrossRef]
- Pyöriä, L.; Pratas, D.; Toppinen, M.; Hedman, K.; Sajantila, A.; Perdomo, M.F. Unmasking the tissue-resident eukaryotic DNA virome in humans. Nucleic Acids Res. 2023, 51, 3223–3239. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, N.; Li, Y.; Lu, R.; Wang, H.; Liu, G.; Zou, X.; Xie, Z.; Tan, W. Metagenomic analysis of viral genetic diversity in respiratory samples from children with severe acute respiratory infection in China. Clin. Microbiol. Infect. 2016, 22, 458.e451–459. [Google Scholar] [CrossRef] [PubMed]
- Graf, E.H.; Simmon, K.E.; Tardif, K.D.; Hymas, W.; Flygare, S.; Eilbeck, K.; Yandell, M.; Schlaberg, R. Unbiased Detection of Respiratory Viruses by Use of RNA Sequencing-Based Metagenomics: A Systematic Comparison to a Commercial PCR Panel. J. Clin. Microbiol. 2016, 54, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.C.; Blanco, R.; Corvalán, A.H.; Muñoz, J.P.; Calaf, G.M.; Aguayo, F. Epstein-Barr Virus Infection in Lung Cancer: Insights and Perspectives. Pathogens 2022, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Koshiol, J.; Gulley, M.L.; Zhao, Y.; Rubagotti, M.; Marincola, F.M.; Rotunno, M.; Tang, W.; Bergen, A.W.; Bertazzi, P.A.; Roy, D.; et al. Epstein-Barr virus microRNAs and lung cancer. Br. J. Cancer 2011, 105, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Haldar, D.; Naru, J.; Dey, P.; Aggarwal, A.N.; Minz, R.W.; Aggarwal, R. Prevalence of human papillomavirus, Epstein-Barr virus, and cytomegalovirus in fine needle aspirates from lung carcinoma: A case-control study with review of literature. Diagn. Cytopathol. 2016, 44, 987–993. [Google Scholar] [CrossRef]
- Xia, H.; Wu, J.; Chen, C.; Mao, Y.; Zhu, J.; Chang, Q.; Mi, K.; Zhao, J.; Zhang, M. The relationship between Epstein-Barr-virus infection and expression of p53, Bcl-2 and C-myc gene in lung cancer. Zhongguo Fei Ai Za Zhi 2000, 3, 265–268. [Google Scholar] [CrossRef]
- Gómez-Román, J.J.; Martínez, M.N.; Fernández, S.L.; Val-Bernal, J.F. Epstein-Barr virus-associated adenocarcinomas and squamous-cell lung carcinomas. Mod. Pathol. 2009, 22, 530–537. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Lacedonia, D.; Natalicchio, M.I.; Cotugno, G.; Zoppo, L.; Martinelli, D.; Antonetti, R.; Foschino-Barbaro, M.P. Viral colonization in exhaled breath condensate of lung cancer patients: Possible role of EBV and CMV. Clin. Respir. J. 2018, 12, 418–424. [Google Scholar] [CrossRef]
- Becnel, D.; Abdelghani, R.; Nanbo, A.; Avilala, J.; Kahn, J.; Li, L.; Lin, Z. Pathogenic Role of Epstein-Barr Virus in Lung Cancers. Viruses 2021, 13, 877. [Google Scholar] [CrossRef]
- Li, W.; Yang, C.; Zhao, F.; Li, J.; Li, Z.; Ouyang, P.; Yuan, X.; Wu, S.; Yuan, Y.; Cui, L.; et al. Combination of smoking and Epstein-Barr virus DNA is a predictor of poor prognosis for nasopharyngeal carcinoma: A long-term follow-up retrospective study. BMC Cancer 2022, 22, 1262. [Google Scholar] [CrossRef] [PubMed]
- Hedström, A.K.; Huang, J.; Brenner, N.; Butt, J.; Hillert, J.; Waterboer, T.; Kockum, I.; Olsson, T.; Alfredsson, L. Smoking and Epstein-Barr virus infection in multiple sclerosis development. Sci. Rep. 2020, 10, 10960. [Google Scholar] [CrossRef] [PubMed]
- Wingerchuk, D.M. Environmental factors in multiple sclerosis: Epstein-Barr virus, vitamin D, and cigarette smoking. Mt. Sinai J. Med. 2011, 78, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.B.; Manet, E.; Gruffat, H.; Busson, P.; Blondel, M.; Fahraeus, R. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers 2018, 10, 109. [Google Scholar] [CrossRef]
- Frappier, L. EBNA1. Curr. Top. Microbiol. Immunol. 2015, 391, 3–34. [Google Scholar] [CrossRef]
- Sears, J.; Ujihara, M.; Wong, S.; Ott, C.; Middeldorp, J.; Aiyar, A. The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J. Virol. 2004, 78, 11487–11505. [Google Scholar] [CrossRef]
- Wu, Y.X.; Zhang, W.L.; Wang, T.M.; Liao, Y.; Zhang, Y.J.; Xiao, R.W.; Jia, Y.J.; Wu, Z.Y.; Deng, C.M.; Yang, D.W.; et al. Genomic Landscapes of Epstein-Barr Virus in Pulmonary Lymphoepithelioma-Like Carcinoma. J. Virol. 2022, 96, e0169321. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, X.; Xue, J. Targeted therapy for rare lung cancers: Status, challenges, and prospects. Mol. Ther. 2023, 31, 1960–1978. [Google Scholar] [CrossRef]
- Blanco, R.; Aguayo, F. Role of BamHI-A Rightward Frame 1 in Epstein-Barr Virus-Associated Epithelial Malignancies. Biology 2020, 9, 461. [Google Scholar] [CrossRef]
- Naseem, M.; Barzi, A.; Brezden-Masley, C.; Puccini, A.; Berger, M.D.; Tokunaga, R.; Battaglin, F.; Soni, S.; McSkane, M.; Zhang, W.; et al. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat. Rev. 2018, 66, 15–22. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, D.; Dai, J.; Zhang, Z. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicol. Appl. Pharmacol. 2015, 287, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, C.Y.; Duan, F.G.; Fan, X.X.; Yao, X.J.; Parks, R.J.; Tang, Y.J.; Wang, M.F.; Liu, L.; Tsang, B.K.; et al. p53 sensitizes chemoresistant non-small cell lung cancer via elevation of reactive oxygen species and suppression of EGFR/PI3K/AKT signaling. Cancer Cell Int. 2019, 19, 188. [Google Scholar] [CrossRef]
- Smit, M.A.; Peeper, D.S. Deregulating EMT and senescence: Double impact by a single twist. Cancer Cell 2008, 14, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Shiota, M.; Izumi, H.; Onitsuka, T.; Miyamoto, N.; Kashiwagi, E.; Kidani, A.; Hirano, G.; Takahashi, M.; Naito, S.; Kohno, K. Twist and p53 reciprocally regulate target genes via direct interaction. Oncogene 2008, 27, 5543–5553. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.P.; Wang, W.L.; Chang, Y.L.; Wu, C.T.; Chao, Y.C.; Kao, S.H.; Yuan, A.; Lin, C.W.; Yang, S.C.; Chan, W.K.; et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat. Cell Biol. 2009, 11, 694–704. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Zhang, X.; Chu, F.; Zhou, T. MAPK/c-Jun signaling pathway contributes to the upregulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL induced by Epstein-Barr virus-encoded. Oncol. Lett. 2018, 15, 7537–7544. [Google Scholar] [CrossRef]
- Tsao, S.W.; Tsang, C.M.; To, K.F.; Lo, K.W. The role of Epstein-Barr virus in epithelial malignancies. J. Pathol. 2015, 235, 323–333. [Google Scholar] [CrossRef]
- Wang, Q.; Tsao, S.W.; Ooka, T.; Nicholls, J.M.; Cheung, H.W.; Fu, S.; Wong, Y.C.; Wang, X. Anti-apoptotic role of BARF1 in gastric cancer cells. Cancer Lett. 2006, 238, 90–103. [Google Scholar] [CrossRef]
- Javed, A.; Yarmohammadi, M.; Korkmaz, K.S.; Rubio-Tomás, T. The Regulation of Cyclins and Cyclin-Dependent Kinases in the Development of Gastric Cancer. Int. J. Mol. Sci. 2023, 24, 2848. [Google Scholar] [CrossRef]
- Albanese, M.; Tagawa, T.; Hammerschmidt, W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front. Microbiol. 2022, 13, 955603. [Google Scholar] [CrossRef]
Histological Type | SQC | AdC | p-Value |
---|---|---|---|
N (%) | N (%) | ||
Total | 78 (49) | 80 (51) | |
Age | p = 0.498 *,& | ||
≤65 years | 23 (30) | 28 (35) | |
>65 years | 55 (70) | 52 (65) | |
Differentiation | p = 0.047 *,# | ||
Poor | 49 (63) | 47 (59) | |
Moderate | 29 (37) | 27 (34) | |
Well | 0 (0) | 6 (7) | |
Smoking habit | p = 0.046 *,# | ||
Smoking | 25 (32) | 17 (21) | |
Non-smoking | 1 (1) | 7 (9) | |
Without report | 52 (67) | 56 (70) |
Feature | EBV Presence | Total | p-Value | |
---|---|---|---|---|
(-) Cases (%) | (+) Cases (%) | |||
TOTAL | 121 (77) | 37 (23) | 158 | |
Age | ||||
≤65 years | 35 (69) | 11 (31) | 46 | 0.999 & |
>65 years | 86 (77) | 26 (23) | 112 | |
Smoking habit | ||||
Smoking | 37 (90) | 4 (10) | 41 | 0.052 # |
Non-smoking | 6 (67) | 3 (33) | 9 | |
Unknown | 78 (72) | 30 (28) | 108 | |
Differentiation | ||||
Poor | 67 (71) | 28 (29) | 95 | 0.060 # |
Moderate | 48 (84) | 9 (16) | 57 | |
Well | 6 (100) | 0 (0) | 6 | |
Histology type | ||||
SQC | 59 (76) | 19 (24) | 78 | 0.852 & |
ADC | 62 (77) | 18 (23) | 80 |
EBV (-) | EBV (+) | Exhausted IHC | Exhausted CISH | p-Value | |||
---|---|---|---|---|---|---|---|
N (%) | N (%) | N (%) | (N%) | ||||
EBNA1/IHC | (N = 37) | 1 (3) | 30 (81) | 6 (16) | |||
Location | |||||||
EBNA1 nuclear | 1 (100) | 24 (80) | 0.8065 & | ||||
Stroma | 0 (0) | 6 (20) | |||||
Pattern type | |||||||
Solid | 0 (0) | 8 (28) | 0.9209 # | ||||
Papillary | 0 (0) | 4 (13) | |||||
Trabecular | 0 (0) | 4 (13) | |||||
Lipidic | 0 (0) | 1 (3) | |||||
Acinar | 0 (0) | 1 (3) | |||||
No pattern | 1 (100) | 12 (40) | |||||
Histological type | |||||||
SQC | 1 (100) | 15 (50) | 0.5161 & | ||||
AdC | 0 (0) | 15 (50) | |||||
EBER/CISH | (N = 37) | 3 (8) | 13 (35) | 21 (57) | |||
Location | |||||||
EBNA1 nuclear + EBER | 3 (100) | 9 (69) | 0.3929 & | ||||
Other | 0 | 4(31) | |||||
Histological type | |||||||
SQC | 1 (33) | 6 (46) | 0.5050 & | ||||
AdC | 2 (67) | 7 (54) |
Feature | EBERs EBV Presence | Total | p-Value | |
---|---|---|---|---|
(-) Cases (%) | (+) Cases (%) | |||
TOTAL | 145 (92) | 13 (8) | 158 | |
Age | ||||
≤65 years | 69 (48) | 3 (23) | 72 | 0.02358 & |
>65 years | 76 (52) | 10 (77) | 86 | |
Smoking habit | ||||
Smoking | 40 (98) | 1 (2) | 41 | 0.2913 # |
Non-smoking | 8 (89) | 1 (11) | 9 | |
Unknown | 97 (90) | 11 (10) | 108 | |
Differentiation | ||||
Poor | 89 (94) | 6 (6) | 95 | 0.6708 # |
Moderate | 52 (91) | 5 (9) | 57 | |
Well | 6 (100) | 0 (0) | 6 | |
Histology type | ||||
SQC | 73 (94) | 5 (6) | 78 | 0.2987 & |
ADC | 72 (90) | 8 (10) | 80 |
Feature | BARF1 Expression | Total | p-Value | |
---|---|---|---|---|
(-) | (+) | |||
Total | 30 (81) | 7 (19) | 37 (100) | |
Smoking report | 0.585 # | |||
Smoking | 3 (75) | 1 (25) | 4 | |
Non-smoking | 2 (100) | 0 (0) | 2 | |
Without report | 25 (81) | 6 (19) | 31 | |
Differentiation | ||||
Poor | 22 (85) | 4 (15) | 26 | 0.464 # |
Moderate | 7 (78) | 2 (22) | 9 | |
Well | 0 (0) | 0 (0) | 0 | |
Without report | 1 (50) | 1 (50) | 2 | |
Histology type | 0.758 & | |||
SQC | 15 (79) | 4 (21) | 19 | |
ADC | 15 (83) | 3 (17) | 18 | |
EBV detection | ||||
qPCR | 30 (81%) | 7 (19%) | 37 | 0.06796 # |
IHC | 26 (86%) | 4 (14%) | 30 | |
CISH | 7 (54%) | 6 (46%) | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio, J.C.; Armijo, A.; Carvajal, F.J.; Corvalán, A.H.; Castillo, A.; Fuentes-Pananá, E.M.; Moreno-León, C.; Romero, C.; Aguayo, F. Epstein-Barr Virus BARF1 Is Expressed in Lung Cancer and Is Associated with Cancer Progression. Cells 2024, 13, 1578. https://doi.org/10.3390/cells13181578
Osorio JC, Armijo A, Carvajal FJ, Corvalán AH, Castillo A, Fuentes-Pananá EM, Moreno-León C, Romero C, Aguayo F. Epstein-Barr Virus BARF1 Is Expressed in Lung Cancer and Is Associated with Cancer Progression. Cells. 2024; 13(18):1578. https://doi.org/10.3390/cells13181578
Chicago/Turabian StyleOsorio, Julio C., Alvaro Armijo, Francisco J. Carvajal, Alejandro H. Corvalán, Andrés Castillo, Ezequiel M. Fuentes-Pananá, Carolina Moreno-León, Carmen Romero, and Francisco Aguayo. 2024. "Epstein-Barr Virus BARF1 Is Expressed in Lung Cancer and Is Associated with Cancer Progression" Cells 13, no. 18: 1578. https://doi.org/10.3390/cells13181578
APA StyleOsorio, J. C., Armijo, A., Carvajal, F. J., Corvalán, A. H., Castillo, A., Fuentes-Pananá, E. M., Moreno-León, C., Romero, C., & Aguayo, F. (2024). Epstein-Barr Virus BARF1 Is Expressed in Lung Cancer and Is Associated with Cancer Progression. Cells, 13(18), 1578. https://doi.org/10.3390/cells13181578