High Stretch Modulates cAMP/ATP Level in Association with Purine Metabolism via miRNA–mRNA Interactions in Cultured Human Airway Smooth Muscle Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Human ASMCs Cultured with/without High Stretch
2.3. Whole Genome-Wide RNA Sequencing of Cultured ASMCs
2.4. Analysis of Differentially Expressed mRNAs and miRNAs in ASMCs
2.5. Bioinformatics Analysis
2.6. Analysis of Protein–Protein Interaction (PPI)
2.7. Transfection of Cultured ASMCs with miRNA Mimics or Inhibitor
2.8. Assessment of ATP/cAMP Level in Cultured ASMCs
2.9. Quantitative PCR Analysis of mRNA Expression in ASMCs Transfected with miRNA Mimics/Inhibitor
2.10. Statistical Analysis
3. Results
3.1. High Stretch-Induced Differentially Expressed mRNAs and miRNAs in ASMCs
3.2. High Stretch-Induced Enrichment of Cellular Functions and Signaling Pathways in Cultured ASMCs
3.3. High Stretch-Induced Enrichments of PPI in Cultured ASMCs
3.4. High Stretch-Responsive miRNA–mRNA Interactions in Relation to Regulation of cAMP/ATP in Cultured ASMCs
3.5. Effect of miR-370-5p on the High Stretch-Induced Variation of cAMP/ATP Concentration in Cultured ASMCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, S.E.; Molthen, R.C.; Haworth, S.T.; Dawson, C.A.; Waters, C.M. Airway strain during mechanical ventilation in an intact animal model. Am. J Respir. Crit. Care Med. 2007, 176, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.B.M.; Aghasafari, P.; Pidaparti, R.M. Transient mechanical response of lung airway tissue during mechanical ventilation. Bioengineering 2016, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, A.; Vidal Melo, M.F. Follow the voxel-a new method for the analysis of regional strain in lung injury. Crit. Care Med. 2018, 46, 1033–1035. [Google Scholar] [CrossRef]
- Retamal, J.; Hurtado, D.; Villarroel, N.; Bruhn, A.; Bugedo, G.; Amato, M.B.P.; Costa, E.L.V.; Hedenstierna, G.; Larsson, A.; Borges, J.B. Does regional lung strain correlate with regional inflammation in acute respiratory distress syndrome during nonprotective ventilation? An experimental porcine study. Crit. Care Med. 2018, 46, e591–e599. [Google Scholar] [CrossRef] [PubMed]
- Slutsky, A.S. Lung injury caused by mechanical ventilation. Chest 1999, 116, 9S–15S. [Google Scholar] [CrossRef]
- Grieco, D.L.; Bongiovanni, F.; Chen, L.; Menga, L.S.; Cutuli, S.L.; Pintaudi, G.; Carelli, S.; Michi, T.; Torrini, F.; Lombardi, G.; et al. Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit. Care 2020, 24, 529. [Google Scholar] [CrossRef]
- Fan, E.; Del Sorbo, L.; Goligher, E.C.; Hodgson, C.L.; Munshi, L.; Walkey, A.J.; Adhikari, N.K.J.; Amato, M.B.P.; Branson, R.; Brower, R.G.; et al. An official american thoracic society/european society of intensive care medicine/society of critical care medicine clinical practice guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 1253–1263. [Google Scholar] [CrossRef]
- Slutsky, A.S.; Ranieri, V.M. Ventilator-induced lung injury. N. Engl. J. Med. 2013, 369, 2126–2136. [Google Scholar] [CrossRef]
- Cabrera-Benitez, N.E.; Laffey, J.G.; Parotto, M.; Spieth, P.M.; Villar, J.; Zhang, H.; Slutsky, A.S. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: A significant contributor to poor outcome. Anesthesiology 2014, 121, 189–198. [Google Scholar] [CrossRef]
- Villar, J.; Ferrando, C.; Tusman, G.; Berra, L.; Rodriguez-Suarez, P.; Suarez-Sipmann, F. Unsuccessful and successful clinical trials in acute respiratory distress syndrome: Addressing physiology-based gaps. Front. Physiol. 2021, 12, 774025. [Google Scholar] [CrossRef]
- Tsumura, H.; Harris, E.; Brandon, D.; Pan, W.; Vacchiano, C. Review of the mechanisms of ventilator induced lung injury and the principles of intraoperative lung protective ventilation. AANA J. 2021, 89, 227–233. [Google Scholar] [PubMed]
- Cronin, J.N.; Camporota, L.; Formenti, F. Mechanical ventilation in COVID-19: A physiological perspective. Exp. Physiol. 2022, 107, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Seeley, E.J.; McAuley, D.F.; Eisner, M.; Miletin, M.; Zhuo, H.; Matthay, M.A.; Kallet, R.H. Decreased respiratory system compliance on the sixth day of mechanical ventilation is a predictor of death in patients with established acute lung injury. Respir. Res. 2011, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Puentes, G.A.; Keenan, J.C.; Adams, A.B.; Parker, E.D.; Dries, D.J.; Marini, J.J. Impact of chest wall modifications and lung injury on the correspondence between airway and transpulmonary driving pressures. Crit. Care Med. 2015, 43, e287–e295. [Google Scholar] [CrossRef]
- Nair, G.B.; Al-Katib, S.; Podolsky, R.; Quinn, T.; Stevens, C.; Castillo, E. Dynamic lung compliance imaging from 4DCT-derived volume change estimation. Phys. Med. Biol. 2021, 66, 21NT06. [Google Scholar] [CrossRef]
- Shapiro, M.B.; Bartlett, R.H. Pulmonary compliance and mechanical ventilation. Arch. Surg. 1992, 127, 485–486. [Google Scholar] [CrossRef] [PubMed]
- Katira, B.H. Ventilator-induced lung injury: Classic and novel concepts. Respir. Care 2019, 64, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Mauri, T.; Lazzeri, M.; Bellani, G.; Zanella, A.; Grasselli, G. Respiratory mechanics to understand ARDS and guide mechanical ventilation. Physiol. Meas. 2017, 38, R280. [Google Scholar] [CrossRef]
- Guérin, C.; Cour, M.; Argaud, L. Airway closure and expiratory flow limitation in acute respiratory distress syndrome. Front. Physiol. 2022, 12, 815601. [Google Scholar] [CrossRef]
- Asano, S.; Ito, S.; Morosawa, M.; Furuya, K.; Naruse, K.; Sokabe, M.; Yamaguchi, E.; Hasegawa, Y. Cyclic stretch enhances reorientation and differentiation of 3-D culture model of human airway smooth muscle. Biochem. Biophys. Rep. 2018, 16, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, A. The role of stretch-activated ion channels in acute respiratory distress syndrome: Finally a new target? Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 311, L639–L652. [Google Scholar] [CrossRef]
- Bartolak-Suki, E.; LaPrad, A.S.; Harvey, B.C.; Suki, B.; Lutchen, K.R. Tidal stretches differently regulate the contractile and cytoskeletal elements in intact airways. PLoS ONE 2014, 9, e94828. [Google Scholar] [CrossRef]
- Uhlig, S.; Uhlig, U. Pharmacological interventions in ventilator-induced lung injury. Trends Pharmacol. Sci. 2004, 25, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Maneechotesuwan, K. Role of microRNA in severe asthma. Respir. Investig. 2019, 57, 9–19. [Google Scholar] [CrossRef]
- Müller, D.W.; Bosserhoff, A.K. Integrin β3 expression is regulated by let-7a mirna in malignant melanoma. Oncogene 2008, 27, 6698–6706. [Google Scholar] [CrossRef]
- Wen, K.; Ni, K.; Guo, J.; Bu, B.; Liu, L.; Pan, Y.; Li, J.; Luo, M.; Deng, L. MircroRNA let-7a-5p in airway smooth muscle cells is most responsive to high stretch in association with cell mechanics modulation. Front. Physiol. 2022, 13, 830406. [Google Scholar] [CrossRef] [PubMed]
- Pairet, N.; Mang, S.; Fois, G.; Keck, M.; Kuhnbach, M.; Gindele, J.; Frick, M.; Dietl, P.; Lamb, D.J. TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation. PLoS ONE 2018, 13, e0196055. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Ni, K.; Guo, J.; Li, Y.; Zhou, Y.; Sheng, H.; Bu, B.; Luo, M.; Ouyang, M.; Deng, L. FRET visualization of cyclic stretch-activated erk via calcium channels mechanosensation while not integrin β1 in airway smooth muscle cells. Front. Cell Dev. Biol. 2022, 10, 847852. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Jhaveri, D.J.; Marshall, V.M.; Bauer, D.C.; Edson, J.; Narayanan, R.K.; Robinson, G.J.; Lundberg, A.E.; Bartlett, P.F.; Wray, N.R.; et al. A comparative study of techniques for differential expression analysis on RNA-seq data. PLoS ONE 2014, 9, e103207. [Google Scholar] [CrossRef]
- Costa-Silva, J.; Domingues, D.; Lopes, F.M. RNA-seq differential expression analysis: An extended review and a software tool. PLoS ONE 2017, 12, e0190152. [Google Scholar] [CrossRef]
- Da Huang, W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef]
- Mukherjee, S.; Banerjee, B.; Karasik, D.; Frenkel-Morgenstern, M. mRNA-lncRNA co-expression network analysis reveals the role of lncrnas in immune dysfunction during severe SARS-CoV-2 infection. Viruses 2021, 13, 402. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gonzalez, A.; Kourembanas, S.; Wyatt, T.A.; Mitsialis, S.A. Mutation of murine adenylate kinase 7 underlies a primary ciliary dyskinesia phenotype. Am. J. Respir. Cell Mol. Biol. 2009, 40, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; Abbott-Banner, K.; Thomas, D.Y.; Hanrahan, J.W. Cyclic nucleotide phosphodiesterase inhibitors as therapeutic interventions for cystic fibrosis. Pharmacol. Ther. 2021, 224, 107826. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, A.; Zhang, M.; Zeng, H.; Lu, Y.; Liu, L.; Li, J.; Deng, L. Artesunate attenuates airway resistance in vivo and relaxes airway smooth muscle cells in vitro via bitter taste receptor-dependent calcium signalling. Exp. Physiol. 2019, 104, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Ni, K.; Gu, R.; Qin, Y.; Guo, J.; Che, B.; Pan, Y.; Li, J.; Liu, L.; Deng, L. Chemical activation of piezo1 alters biomechanical behaviors toward relaxation of cultured airway smooth muscle cells. Biol. Pharm. Bull. 2023, 46, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Guo, J.; Ni, K.; Wen, K.; Qin, Y.; Gu, R.; Wang, C.; Liu, L.; Pan, Y.; Li, J.; et al. Mechanical ventilation-related high stretch mainly induces endoplasmic reticulum stress and thus mediates inflammation response in cultured human primary airway smooth muscle cells. Int. J. Mol. Sci. 2023, 24, 3811. [Google Scholar] [CrossRef]
- Deng, L.; Fairbank, N.J.; Fabry, B.; Smith, P.G.; Maksym, G.N. Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 2004, 287, C440–C448. [Google Scholar] [CrossRef]
- Deng, L.; Bosse, Y.; Brown, N.; Chin, L.Y.M.; Connolly, S.C.; Fairbank, N.J.; King, G.G.; Maksym, G.N.; Paré, P.D.; Seow, C.Y.; et al. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle. Pulm. Pharmacol. Ther. 2009, 22, 407–416. [Google Scholar] [CrossRef]
- Liu, G.; Liao, R.; Lv, Y.; Zhu, L.; Lin, Y. Altered expression of mirnas and mrnas reveals the potential regulatory role of mirnas in the developmental process of early weaned goats. PLoS ONE 2019, 14, e0220907. [Google Scholar] [CrossRef]
- Yao, Y.; Jiang, C.; Wang, F.; Yan, H.; Long, D.; Zhao, J.; Wang, J.; Zhang, C.; Li, Y.; Tian, X.; et al. Integrative analysis of mirna and mRNA expression profiles associated with human atrial aging. Front. Physiol. 2019, 10, 1226. [Google Scholar] [CrossRef]
- Huang, P.; Li, F.; Mo, Z.; Geng, C.; Wen, F.; Zhang, C.; Guo, J.; Wu, S.; Li, L.; Brünner, N.; et al. A comprehensive RNA study to identify circrna and mirna biomarkers for docetaxel resistance in breast cancer. Front. Oncol. 2021, 11, 669270. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, G.; Shi, C.; Liu, L.; Guo, Q.; Han, C.; Zhang, D.; Zhang, L.; Liu, B.; Gao, H.; et al. Majorbio cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta 2022, 1, e12. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Xiao, X.; Chintagari, N.R.; Breshears, M.; Wang, Y.; Liu, L. MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome. BMC Med. Genom. 2014, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Chen, Y.; Chen, M.; Wang, S.; Wen, X.; Zhang, S. Identification of key candidate genes and biological pathways in bladder cancer. PeerJ 2018, 6, e6036. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Guo, J.; Bu, B.; Pan, Y.; Li, J.; Liu, L.; Luo, M.; Deng, L. Naringin as a plant-derived bitter tastant promotes proliferation of cultured human airway epithelial cells via activation of TAS2R signaling. Phytomedicine 2021, 84, 153491. [Google Scholar] [CrossRef] [PubMed]
- Pedley, A.M.; Benkovic, S.J. A new view into the regulation of purine metabolism: The purinosome. Trends Biochem. Sci. 2017, 42, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Billington, C.K.; Penn, R.B. Signaling and regulation of g protein-coupled receptors in airway smooth muscle. Respir. Res. 2003, 4, 4. [Google Scholar] [CrossRef]
- Smith, P.G.; Deng, L.; Fredberg, J.J.; Maksym, G.N. Mechanical strain increases cell stiffness through cytoskeletal filament reorganization. Am. J. Physiol. Lung Cell Mol. Physiol. 2003, 285, L456–L463. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Lam, H.; Jude, J.A.; Karmacharya, N.; Kan, M.; Jester, W.; Koziol-White, C.; Himes, B.E.; Chupp, G.L.; An, S.S.; et al. Inhibition of ABCC1 decreases cAMP egress and promotes human airway smooth muscle cell relaxation. Am. J. Respir. Cell Mol. Biol. 2022, 66, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Kir, J.; Liu, D.; Bryant, D.; Guo, Y.; Stephens, R.; Baseler, M.W.; Lane, H.C.; et al. DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007, 35, W169–W175. [Google Scholar] [CrossRef]
- Wang, G.; Zou, R.; Liu, L.; Wang, Z.; Zou, Z.; Tan, S.; Xu, W.; Fan, X. A circular network of purine metabolism as coregulators of dilated cardiomyopathy. J. Transl. Med. 2022, 20, 532. [Google Scholar] [CrossRef] [PubMed]
- Esther, C.R.; Peden, D.B.; Alexis, N.E.; Hernandez, M.L. Airway purinergic responses in healthy, atopic nonasthmatic, and atopic asthmatic subjects exposed to ozone. Inhal. Toxicol. 2011, 23, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Verbrugge, S.J.; de Jong, J.W.; Keijzer, E.; Vazquez de Anda, G.; Lachmann, B. Purine in bronchoalveolar lavage fluid as a marker of ventilation-induced lung injury. Crit. Care Med. 1999, 27, 779–783. [Google Scholar] [CrossRef]
- Esther, J.C.R.; Alexis, N.E.; Clas, M.L.; Lazarowski, E.R.; Donaldson, S.H.; Ribeiro, C.M.P.; Moore, C.G.; Davis, S.D.; Boucher, R.C. Extracellular purines are biomarkers of neutrophilic airway inflammation. Eur. Respir. J. 2008, 31, 949–956. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, X.; Larsson, L. Metabolomic profiling of respiratory muscles and lung in response to long-term controlled mechanical ventilation. Front. Cell Dev. Biol. 2022, 10, 849973. [Google Scholar] [CrossRef]
- Takahara, N.; Ito, S.; Furuya, K.; Naruse, K.; Aso, H.; Kondo, M.; Sokabe, M.; Hasegawa, Y. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 2014, 51, 772–782. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, R.; Qin, Y.; Ji, J.; Xu, M.; Wu, W.; Chen, M.; Wu, D.; Song, L.; Shen, H.; et al. Mitochondria-related mir-151a-5p reduces cellular ATP production by targeting cytb in asthenozoospermia. Sci. Rep. 2015, 5, 17743. [Google Scholar] [CrossRef]
- Lorès, P.; Coutton, C.; El Khouri, E.; Stouvenel, L.; Givelet, M.; Thomas, L.; Rode, B.; Schmitt, A.; Louis, B.; Sakheli, Z.; et al. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum. Mol. Genet. 2018, 27, 1196–1211. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Santos, M.D.; Alvarez-Gonzalez, M.; Eslava-De-Jesus, E.; Gonzalez-Lopez, A.; Pacheco-Alba, I.; Perez-Del-Valle, Y.; Rojas-Madrid, R.; Bazan-Perkins, B. Role of airway smooth muscle cell phenotypes in airway tone and obstruction in guinea pig asthma model. Allergy Asthma Clin. Immunol. 2022, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.J.; Jang, J.H.; Panariti, A.; Bedrat, A.; Ijpma, G.; Lemos, B.; Park, J.A.; Lauzon, A.M.; Martin, J.G. Airway epithelial cells drive airway smooth muscle cell phenotype switching to the proliferative and pro-inflammatory phenotype. Front. Physiol. 2021, 12, 687654. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.A.; Matthay, M.A. Science review: Mechanisms of ventilator-induced injury. Crit. Care 2003, 7, 233. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.R.; Choudhury, S.; Goddard, M.E.; O’Dea, K.P.; Nicholson, A.G.; Takata, M. High tidal volume upregulates intrapulmonary cytokines in an in vivo mouse model of ventilator-induced lung injury. J. Appl. Physiol. 2003, 95, 1385–1393. [Google Scholar] [CrossRef]
- Yang, G.; Hamacher, J.; Gorshkov, B.; White, R.; Sridhar, S.; Verin, A.; Chakraborty, T.; Lucas, R. The dual role of TNF in pulmonary edema. J. Cardiovasc. Dis. Res. 2010, 1, 29–36. [Google Scholar] [CrossRef]
- Luan, X.; Le, Y.; Jagadeeshan, S.; Murray, B.; Carmalt, J.L.; Duke, T.; Beazley, S.; Fujiyama, M.; Swekla, K.; Gray, B.; et al. cAMP triggers Na+ absorption by distal airway surface epithelium in cystic fibrosis swine. Cell Rep. 2021, 37, 109795. [Google Scholar] [CrossRef]
- Cavanaugh, K.J., Jr.; Oswari, J.; Margulies, S.S. Role of stretch on tight junction structure in alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 2001, 25, 584–591. [Google Scholar] [CrossRef]
No. | DE-miRNA | Log2FC(Stretch/Static) | padjust | Regulate |
---|---|---|---|---|
1 | miR-12136 | 2.25 | 3.07 × 10−62 | up |
2 | miR-192-5p | 1.40 | 3.22 × 10−15 | up |
3 | miR-146a-5p | 1.29 | 5.34 × 10−3 | up |
4 | miR-194-5p | 1.18 | 1.31 × 10−17 | up |
5 | miR-29b-3p | 1.16 | 2.23 × 10−7 | up |
6 | miR-148a-3p | 1.16 | 7.06 × 10−20 | up |
7 | miR-137-3p | 1.10 | 8.46 × 10−9 | up |
8 | miR-370-5p | −1.01 | 2.93 × 10−4 | down |
9 | miR-27b-5p | −1.23 | 1.63 × 10−11 | down |
10 | miR-543 | −1.30 | 2.80 × 10−19 | down |
11 | miR-485-3p | −1.47 | 9.13 × 10−19 | down |
12 | miR-335-3p | −2.16 | 4.85 × 10−7 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Wang, C.; Guo, J.; Wen, K.; Yang, C.; Ni, K.; Liu, L.; Pan, Y.; Li, J.; Deng, L. High Stretch Modulates cAMP/ATP Level in Association with Purine Metabolism via miRNA–mRNA Interactions in Cultured Human Airway Smooth Muscle Cells. Cells 2024, 13, 110. https://doi.org/10.3390/cells13020110
Luo M, Wang C, Guo J, Wen K, Yang C, Ni K, Liu L, Pan Y, Li J, Deng L. High Stretch Modulates cAMP/ATP Level in Association with Purine Metabolism via miRNA–mRNA Interactions in Cultured Human Airway Smooth Muscle Cells. Cells. 2024; 13(2):110. https://doi.org/10.3390/cells13020110
Chicago/Turabian StyleLuo, Mingzhi, Chunhong Wang, Jia Guo, Kang Wen, Chongxin Yang, Kai Ni, Lei Liu, Yan Pan, Jingjing Li, and Linhong Deng. 2024. "High Stretch Modulates cAMP/ATP Level in Association with Purine Metabolism via miRNA–mRNA Interactions in Cultured Human Airway Smooth Muscle Cells" Cells 13, no. 2: 110. https://doi.org/10.3390/cells13020110
APA StyleLuo, M., Wang, C., Guo, J., Wen, K., Yang, C., Ni, K., Liu, L., Pan, Y., Li, J., & Deng, L. (2024). High Stretch Modulates cAMP/ATP Level in Association with Purine Metabolism via miRNA–mRNA Interactions in Cultured Human Airway Smooth Muscle Cells. Cells, 13(2), 110. https://doi.org/10.3390/cells13020110