Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence
Abstract
:1. Introduction
2. Molecular Impacts of Micro- and Nanoplastic Exposure in Human Cells
2.1. Generation of Reactive Oxygen Species (ROS)
2.2. Cellular Strategies for Relieving Oxidative Stress
2.3. DNA Damage
3. Cellular Impacts of Micro- and Nanoplastic Exposure
3.1. Effects on Cell Viability
3.2. Cell Type-Specific Effects
4. Activation of Inflammatory Pathways
5. Micro- and Nanoplastics in Senescence: Implication for Development and Aging
6. Perspectives and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Tao, L.; Wang, Q.; Wang, F.; Li, G.; Song, M. Potential health impact of microplastics: A review of environmental distribution, human exposure, and toxic effects. Environ. Health 2023, 1, 249–257. [Google Scholar] [CrossRef]
- Saalah, S.; Saallah, S.; Rajin, M.; Yaser, A.Z. Management of biodegradable plastic waste: A review. In Advances in Waste Processing Technology; Springer Nature: Singapore, 2020; pp. 127–143. [Google Scholar]
- Lange, J.-P. Managing plastic waste–sorting, recycling, disposal, and product redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J.; Jin, H.; Guo, L. Current research progress of physical and biological methods for disposing waste plastics. J. Clean. Prod. 2023, 408, 137199. [Google Scholar] [CrossRef]
- Seah, C.C.; Tan, C.H.; Arifin, N.; Hafriz, R.; Salmiaton, A.; Nomanbhay, S.; Shamsuddin, A. Co-pyrolysis of biomass and plastic: Circularity of wastes and comprehensive review of synergistic mechanism. Results Eng. 2023, 17, 100989. [Google Scholar] [CrossRef]
- Rhodes, C.J. Solving the plastic problem: From cradle to grave, to reincarnation. Sci. Prog. 2019, 102, 218–248. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Ragusa, A.; Matta, M.; Cristiano, L.; Matassa, R.; Battaglione, E.; Svelato, A.; De Luca, C.; D’Avino, S.; Gulotta, A.; Rongioletti, M.C.A. Deeply in plasticenta: Presence of microplastics in the intracellular compartment of human placentas. Int. J. Environ. Res. Public Health 2022, 19, 11593. [Google Scholar] [CrossRef] [PubMed]
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of various microplastics in human stool: A prospective case series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef]
- Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; Cowen, M.; Tentzeris, V.; Sadofsky, L.R. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar] [CrossRef]
- Horvatits, T.; Tamminga, M.; Liu, B.; Sebode, M.; Carambia, A.; Fischer, L.; Püschel, K.; Huber, S.; Fischer, E.K. Microplastics detected in cirrhotic liver tissue. EBioMedicine 2022, 82, 104147. [Google Scholar] [CrossRef]
- Das, A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Sci. Total Environ. 2023, 895, 165076. [Google Scholar] [CrossRef] [PubMed]
- Kadac-Czapska, K.; Ośko, J.; Knez, E.; Grembecka, M. Microplastics and Oxidative Stress—Current Problems and Prospects. Antioxidants 2024, 13, 579. [Google Scholar] [CrossRef] [PubMed]
- Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014, 395, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.-D.; Chen, C.-W.; Chen, Y.-C.; Chen, H.-H.; Lee, J.-S.; Lin, C.-H. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. J. Hazard. Mater. 2020, 385, 121575. [Google Scholar] [CrossRef] [PubMed]
- Boukhenouna, S.; Wilson, M.A.; Bahmed, K.; Kosmider, B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev. 2018, 2018, 5730395. [Google Scholar] [CrossRef]
- Murata, M.; Thanan, R.; Ma, N.; Kawanishi, S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. BioMed Res. Int. 2012, 2012, 623019. [Google Scholar] [CrossRef]
- Faraonio, R. Oxidative stress and cell senescence process. Antioxidants 2022, 11, 1718. [Google Scholar] [CrossRef]
- Pole, A.; Dimri, M.; Dimri, G.P. Oxidative stress, cellular senescence and ageing. AIMS Mol. Sci. 2016, 3, 300–324. [Google Scholar] [CrossRef]
- Pérez-Mancera, P.A.; Young, A.R.; Narita, M. Inside and out: The activities of senescence in cancer. Nat. Rev. Cancer 2014, 14, 547–558. [Google Scholar] [CrossRef]
- Colonna-Romano, G.; Bulati, M.; Aquino, A.; Vitello, S.; Lio, D.; Candore, G.; Caruso, C. B cell immunosenescence in the elderly and in centenarians. Rejuvenation Res. 2008, 11, 433–439. [Google Scholar] [CrossRef]
- Holtzman, D.; Ulrich, J. Senescent glia spell trouble in Alzheimer’s disease. Nat. Neurosci. 2019, 22, 683–684. [Google Scholar] [CrossRef] [PubMed]
- Musi, N.; Valentine, J.M.; Sickora, K.R.; Baeuerle, E.; Thompson, C.S.; Shen, Q.; Orr, M.E. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 2018, 17, e12840. [Google Scholar] [CrossRef]
- Zhang, P.; Kishimoto, Y.; Grammatikakis, I.; Gottimukkala, K.; Cutler, R.G.; Zhang, S.; Abdelmohsen, K.; Bohr, V.A.; Misra Sen, J.; Gorospe, M. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 2019, 22, 719–728. [Google Scholar] [CrossRef]
- Hu, M.; Palić, D. Micro-and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol. 2020, 37, 101620. [Google Scholar] [CrossRef] [PubMed]
- Pulvirenti, E.; Ferrante, M.; Barbera, N.; Favara, C.; Aquilia, E.; Palella, M.; Cristaldi, A.; Conti, G.O.; Fiore, M. Effects of nano and microplastics on the inflammatory process: In vitro and in vivo studies systematic review. Front. Biosci.-Landmark 2022, 27, 287. [Google Scholar] [CrossRef]
- Ren, J.-L.; Pan, J.-S.; Lu, Y.-P.; Sun, P.; Han, J. Inflammatory signaling and cellular senescence. Cell. Signal. 2009, 21, 378–383. [Google Scholar] [CrossRef]
- Valacchi, G.; Daiber, A. Environmental Stressors and Oxinflammatory Tissues Responses; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Hellack, B.; Nickel, C.; Albrecht, C.; Kuhlbusch, T.A.; Boland, S.; Baeza-Squiban, A.; Wohlleben, W.; Schins, R.P. Analytical methods to assess the oxidative potential of nanoparticles: A review. Environ. Sci. Nano 2017, 4, 1920–1934. [Google Scholar] [CrossRef]
- Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. Formation of environmentally persistent free radicals on microplastics under light irradiation. Environ. Sci. Technol. 2019, 53, 8177–8186. [Google Scholar] [CrossRef] [PubMed]
- Hrycay, E.G.; Bandiera, S.M. Involvement of cytochrome P450 in reactive oxygen species formation and cancer. Adv. Pharmacol. 2015, 74, 35–84. [Google Scholar]
- Jeon, S.; Lee, D.-K.; Jeong, J.; Yang, S.I.; Kim, J.-S.; Kim, J.; Cho, W.-S. The reactive oxygen species as pathogenic factors of fragmented microplastics to macrophages. Environ. Pollut. 2021, 281, 117006. [Google Scholar] [CrossRef]
- Andrady, A.; Barnes, P.; Bornman, J.; Gouin, T.; Madronich, S.; White, C.; Zepp, R.; Jansen, M. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Sci. Total Environ. 2022, 851, 158022. [Google Scholar] [CrossRef] [PubMed]
- Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene. SpringerPlus 2013, 2, 398. [Google Scholar] [CrossRef] [PubMed]
- Bracco, P.; Costa, L.; Luda, M.P.; Billingham, N. A review of experimental studies of the role of free-radicals in polyethylene oxidation. Polym. Degrad. Stab. 2018, 155, 67–83. [Google Scholar] [CrossRef]
- Pannetier, P.; Cachot, J.; Clérandeau, C.; Faure, F.; Van Arkel, K.; de Alencastro, L.F.; Levasseur, C.; Sciacca, F.; Bourgeois, J.-P.; Morin, B. Toxicity assessment of pollutants sorbed on environmental sample microplastics collected on beaches: Part I-adverse effects on fish cell line. Environ. Pollut. 2019, 248, 1088–1097. [Google Scholar] [CrossRef]
- Shi, Q.; Tang, J.; Liu, X.; Liu, R. Ultraviolet-induced photodegradation elevated the toxicity of polystyrene nanoplastics on human lung epithelial A549 cells. Environ. Sci. Nano 2021, 8, 2660–2675. [Google Scholar] [CrossRef]
- Choi, D.; Hwang, J.; Bang, J.; Han, S.; Kim, T.; Oh, Y.; Hwang, Y.; Choi, J.; Hong, J. In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis. Sci. Total Environ. 2021, 752, 142242. [Google Scholar] [CrossRef]
- Choi, D.; Bang, J.; Kim, T.; Oh, Y.; Hwang, Y.; Hong, J. In vitro chemical and physical toxicities of polystyrene microfragments in human-derived cells. J. Hazard. Mater. 2020, 400, 123308. [Google Scholar] [CrossRef]
- Surai, P.; Fisinin, V. Antioxidant system regulation: From vitamins to vitagenes. In Handbook of Cholesterol; Academic Publishers: Wageningen, The Netherlands, 2016; pp. 1387–1393. [Google Scholar]
- Madkour, L.H. Function of reactive oxygen species (ROS) inside the living organisms and sources of oxidants. Pharm. Sci. Anal. Res. J. 2019, 2, 180023. [Google Scholar]
- Banerjee, A.; Shelver, W.L. Micro-and nanoplastic induced cellular toxicity in mammals: A review. Sci. Total Environ. 2021, 755, 142518. [Google Scholar] [CrossRef]
- Aslam, M.; Ali, M.H.; Erum, W.; Shehzadi, S.; Khalid, Z. Effect of Environmental Pollutants on Neurological Disorders. Markhor (J. Zool.) 2021, 2, 9–13. [Google Scholar] [CrossRef]
- Domenech, J.; Annangi, B.; Marcos, R.; Hernández, A.; Catalán, J. Insights into the potential carcinogenicity of micro-and nano-plastics. Mutat. Res. /Rev. Mutat. Res. 2023, 791, 108453. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Du, Y.; Li, P.; Guan, C.; Zhou, M.; Wu, L.; Liu, Z.; Huang, Z. Nanoplastics causes heart aging/myocardial cell senescence through the Ca2+/mtDNA/cGAS-STING signaling cascade. J. Nanobiotechnol. 2024, 22, 96. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhang, M.; Bao, T.T.; Lan, H. Long-term exposure to polystyrene microplastics triggers premature testicular aging. Part. Fibre Toxicol. 2023, 20, 35. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-L.; Lee, Y.-H.; Hsu, Y.-H.; Chiu, I.-J.; Huang, C.C.-Y.; Huang, C.-C.; Chia, Z.-C.; Lee, C.-P.; Lin, Y.-F.; Chiu, H.-W. The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells HK-2 and male C57BL/6 mice. Environ. Health Perspect. 2021, 129, 057003. [Google Scholar] [CrossRef] [PubMed]
- Çobanoğlu, H.; Belivermiş, M.; Sıkdokur, E.; Kılıç, Ö.; Çayır, A. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere 2021, 272, 129805. [Google Scholar] [CrossRef]
- Visalli, G.; Facciolà, A.; Pruiti Ciarello, M.; De Marco, G.; Maisano, M.; Di Pietro, A. Acute and sub-chronic effects of microplastics (3 and 10 µm) on the human intestinal cells HT-29. Int. J. Environ. Res. Public Health 2021, 18, 5833. [Google Scholar] [CrossRef]
- Qin, J.; Xia, P.-F.; Yuan, X.-Z.; Wang, S.-G. Chlorine disinfection elevates the toxicity of polystyrene microplastics to human cells by inducing mitochondria-dependent apoptosis. J. Hazard. Mater. 2022, 425, 127842. [Google Scholar] [CrossRef]
- Bonanomi, M.; Salmistraro, N.; Porro, D.; Pinsino, A.; Colangelo, A.M.; Gaglio, D. Polystyrene micro and nano-particles induce metabolic rewiring in normal human colon cells: A risk factor for human health. Chemosphere 2022, 303, 134947. [Google Scholar] [CrossRef]
- Peng, M.; Vercauteren, M.; Grootaert, C.; Rajkovic, A.; Boon, N.; Janssen, C.; Asselman, J. Cellular and bioenergetic effects of polystyrene microplastic in function of cell type, differentiation status and post-exposure time. Environ. Pollut. 2023, 337, 122550. [Google Scholar] [CrossRef]
- Domenech, J.; de Britto, M.; Velázquez, A.; Pastor, S.; Hernández, A.; Marcos, R.; Cortés, C. Long-term effects of polystyrene nanoplastics in human intestinal Caco-2 cells. Biomolecules 2021, 11, 1442. [Google Scholar] [CrossRef]
- Sun, R.; Liu, M.; Xiong, F.; Xu, K.; Huang, J.; Liu, J.; Wang, D.; Pu, Y. Polystyrene micro-and nanoplastics induce gastric toxicity through ROS mediated oxidative stress and P62/Keap1/Nrf2 pathway. Sci. Total Environ. 2024, 912, 169228. [Google Scholar] [CrossRef] [PubMed]
- Goodman, K.E.; Hua, T.; Sang, Q.-X.A. Effects of polystyrene microplastics on human kidney and liver cell morphology, cellular proliferation, and metabolism. ACS Omega 2022, 7, 34136–34153. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Li, D.; Guo, J.; Chen, J. Mechanistic toxicity assessment of differently sized and charged polystyrene nanoparticles based on human placental cells. Water Res. 2022, 223, 118960. [Google Scholar] [CrossRef] [PubMed]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef] [PubMed]
- Im, G.-B.; Kim, Y.G.; Jo, I.-S.; Yoo, T.Y.; Kim, S.-W.; Park, H.S.; Hyeon, T.; Yi, G.-R.; Bhang, S.H. Effect of polystyrene nanoplastics and their degraded forms on stem cell fate. J. Hazard. Mater. 2022, 430, 128411. [Google Scholar] [CrossRef]
- Najahi, H.; Alessio, N.; Squillaro, T.; Conti, G.O.; Ferrante, M.; Di Bernardo, G.; Galderisi, U.; Messaoudi, I.; Minucci, S.; Banni, M. Mesenchymal Stromal Cells showed an alteration of differentiation potential under Environmental Micro and Nanoplastics Exposure. Res. Sq. 2022. preprint. [Google Scholar]
- Zhu, K.; Jia, H.; Jiang, W.; Sun, Y.; Zhang, C.; Liu, Z.; Wang, T.; Guo, X.; Zhu, L. The first observation of the formation of persistent aminoxyl radicals and reactive nitrogen species on photoirradiated nitrogen-containing microplastics. Environ. Sci. Technol. 2021, 56, 779–789. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Q.; Yang, N.; Xu, S. Polystyrene-microplastics and DEHP co-exposure induced DNA damage, cell cycle arrest and necroptosis of ovarian granulosa cells in mice by promoting ROS production. Sci. Total Environ. 2023, 871, 161962. [Google Scholar] [CrossRef]
- Markkanen, E.; Hübscher, U.; van Loon, B. Regulation of oxidative DNA damage repair: The adenine: 8-oxo-guanine problem. Cell Cycle 2012, 11, 1070–1075. [Google Scholar] [CrossRef]
- Poetsch, A.R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 2020, 18, 207–219. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, J.; Lee, S.; Choi, I.; Choi, J. Identification of adverse outcome pathway related to high-density polyethylene microplastics exposure: Caenorhabditis elegans transcription factor RNAi screening and zebrafish study. J. Hazard. Mater. 2020, 388, 121725. [Google Scholar] [CrossRef] [PubMed]
- Cimini, D.; Degrassi, F. Aneuploidy: A matter of bad connections. Trends Cell Biol. 2005, 15, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.I.G.N. Polystyrene Microplastics Accumulation and Biomarkers Response in Scrobicularia Plana; Universidade do Algarve: Faro, Portugal, 2016. [Google Scholar]
- Avio, C.G.; Gorbi, S.; Milan, M.; Benedetti, M.; Fattorini, D.; d’Errico, G.; Pauletto, M.; Bargelloni, L.; Regoli, F. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut. 2015, 198, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Yazdimamaghani, M.; Moos, P.J.; Dobrovolskaia, M.A.; Ghandehari, H. Genotoxicity of amorphous silica nanoparticles: Status and prospects. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 106–125. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Lao, F.; Liu, Y.; Wang, L.; Bai, R.; Zhao, Y.; Chen, C. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 2011, 32, 8291–8303. [Google Scholar] [CrossRef]
- Paget, V.; Dekali, S.; Kortulewski, T.; Grall, R.; Gamez, C.; Blazy, K.; Aguerre-Chariol, O.; Chevillard, S.; Braun, A.; Rat, P. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages. PLoS ONE 2015, 10, e0123297. [Google Scholar] [CrossRef] [PubMed]
- Sarma, D.K.; Dubey, R.; Samarth, R.M.; Shubham, S.; Chowdhury, P.; Kumawat, M.; Verma, V.; Tiwari, R.R.; Kumar, M. The biological effects of polystyrene nanoplastics on human peripheral blood lymphocytes. Nanomaterials 2022, 12, 1632. [Google Scholar] [CrossRef]
- Poma, A.M.; Morciano, P.; Aloisi, M. Beyond genetics: Can micro and nanoplastics induce epigenetic and gene-expression modifications? Front. Epigenetics Epigenomics 2023, 1, 1241583. [Google Scholar] [CrossRef]
- Goodman, K.E.; Hare, J.T.; Khamis, Z.I.; Hua, T.; Sang, Q.-X.A. Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes. Chem. Res. Toxicol. 2021, 34, 1069–1081. [Google Scholar] [CrossRef]
- Salimi, A.; Alavehzadeh, A.; Ramezani, M.; Pourahmad, J. Differences in sensitivity of human lymphocytes and fish lymphocytes to polyvinyl chloride microplastic toxicity. Toxicol. Ind. Health 2022, 38, 100–111. [Google Scholar] [CrossRef]
- Pan, C.; Wu, Y.; Hu, S.; Li, K.; Liu, X.; Shi, Y.; Lin, W.; Wang, X.; Shi, Y.; Xu, Z. Polystyrene microplastics arrest skeletal growth in puberty through accelerating osteoblast senescence. Environ. Pollut. 2023, 322, 121217. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Chen, K.-F.; Lin, K.-Y.A.; Chen, J.-K.; Jiang, X.-Y.; Lin, C.-H. The nephrotoxic potential of polystyrene microplastics at realistic environmental concentrations. J. Hazard. Mater. 2022, 427, 127871. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.M.; Singer, D.; Schmidt, A.; Bekeschus, S. Immune and inflammatory responses of human macrophages, dendritic cells, and T-cells in presence of micro- and nanoplastic of different types and sizes. J. Hazard. Mater. 2023, 459, 132194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shi, J.; Huang, Q.; Xie, Y.; Wu, R.; Zhong, J.; Deng, H. Multi-omics analysis reveals size-dependent toxicity and vascular endothelial cell injury induced by microplastic exposure in vivo and in vitro. Environ. Sci. Nano 2022, 9, 663–683. [Google Scholar] [CrossRef]
- Rahman, A.M.N.A.A.; Rusli, A.; Abdullah, M.K.; Shuib, R.K.; Hamid, Z.A.A.; Ishak, K.M.K.; Makhtar, M.M.Z.; Jaafar, M.; Shafiq, M.D. A review of microplastic surface interactions in water and potential capturing methods. Water Sci. Eng. 2023, 17, 361–370. [Google Scholar] [CrossRef]
- Chen, L.; Wang, D.; Sun, T.; Fan, T.; Wu, S.; Fang, G.; Yang, M.; Zhou, D. Quantification of the redox properties of microplastics and their effect on arsenite oxidation. Fundam. Res. 2023, 3, 777–785. [Google Scholar] [CrossRef]
- Jeon, M.S.; Kim, J.W.; Han, Y.B.; Jeong, M.H.; Kim, H.R.; Sik Kim, H.; Park, Y.J.; Chung, K.H. Polystyrene microplastic particles induce autophagic cell death in BEAS-2B human bronchial epithelial cells. Environ. Toxicol. 2023, 38, 359–367. [Google Scholar] [CrossRef]
- Gautam, R.; Jo, J.; Acharya, M.; Maharjan, A.; Lee, D.; Kc, P.B.; Kim, C.; Kim, K.; Kim, H.; Heo, Y. Evaluation of potential toxicity of polyethylene microplastics on human derived cell lines. Sci. Total Environ. 2022, 838, 156089. [Google Scholar] [CrossRef]
- Lee, H.-S.; Amarakoon, D.; Wei, C.-i.; Choi, K.Y.; Smolensky, D.; Lee, S.-H. Adverse effect of polystyrene microplastics (PS-MPs) on tube formation and viability of human umbilical vein endothelial cells. Food Chem. Toxicol. 2021, 154, 112356. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, W.; Tang, H.; Wang, P.; Zhang, Y.; Liu, S.; Qiu, J.; Chen, H.; Wang, L.; Wang, R. Microplastics exposure causes the senescence of human lung epithelial cells and mouse lungs by inducing ROS signaling. Environ. Int. 2024, 185, 108489. [Google Scholar]
- Luo, H.; Xiao, T.; Sun, X.; Song, Y.; Shi, W.; Lu, K.; Chen, D.; Sun, C.; Bian, Q. The regulation of circRNA_kif26b on alveolar epithelial cell senescence via miR-346-3p is involved in microplastics-induced lung injuries. Sci. Total Environ. 2023, 882, 163512. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Li, X.; Zhou, Y.; Yu, H.; Xie, Y.; Guo, H.; Wang, H.; Li, Y.; Feng, Y.; Wang, Y. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids. Sci. Total Environ. 2022, 806, 150328. [Google Scholar] [CrossRef] [PubMed]
- Sivagami, M.; Selvambigai, M.; Devan, U.; Velangani, A.A.J.; Karmegam, N.; Biruntha, M.; Arun, A.; Kim, W.; Govarthanan, M.; Kumar, P. Extraction of microplastics from commonly used sea salts in India and their toxicological evaluation. Chemosphere 2021, 263, 128181. [Google Scholar] [CrossRef]
- Braun, A.; Seitz, H. Uptake and Cellular Effects of Polymethylmethacrylate on Human Cell Lines. Microplastics 2024, 3, 205–216. [Google Scholar] [CrossRef]
- Wang, K.; Du, Y.; Li, P.; Guan, C.; Zhou, M.; Wu, L.; Liu, Z.; Huang, Z. Microplastics accelerates the premature aging of blood vessels though ROS-mediated CDK5 signaling pathway. Res. Sq. 2023. preprint. [Google Scholar]
- Cui, J.; Sun, G.; Miao, X.; Pufang, Z. Nano-sized microplastics exposure induces skin cell senescence via triggering the mitochondrial localization of GSDMD. Environ. Pollut. 2024, 349, 123874. [Google Scholar]
- Thompson, P.A.; Khatami, M.; Baglole, C.J.; Sun, J.; Harris, S.A.; Moon, E.-Y.; Al-Mulla, F.; Al-Temaimi, R.; Brown, D.G.; Colacci, A.M. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis 2015, 36, S232–S253. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef]
- Cicchese, J.M.; Evans, S.; Hult, C.; Joslyn, L.R.; Wessler, T.; Millar, J.A.; Marino, S.; Cilfone, N.A.; Mattila, J.T.; Linderman, J.J. Dynamic balance of pro-and anti-inflammatory signals controls disease and limits pathology. Immunol. Rev. 2018, 285, 147–167. [Google Scholar] [CrossRef]
- Kwon, W.; Kim, D.; Kim, H.-Y.; Jeong, S.W.; Lee, S.-G.; Kim, H.-C.; Lee, Y.-J.; Kwon, M.K.; Hwang, J.-S.; Han, J.E. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Sci. Total Environ. 2022, 807, 150817. [Google Scholar] [CrossRef]
- Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 2012, 8, 1237. [Google Scholar] [CrossRef] [PubMed]
- da Silva Brito, W.A.; Singer, D.; Miebach, L.; Saadati, F.; Wende, K.; Schmidt, A.; Bekeschus, S. Comprehensive in vitro polymer type, concentration, and size correlation analysis to microplastic toxicity and inflammation. Sci. Total Environ. 2023, 854, 158731. [Google Scholar] [CrossRef] [PubMed]
- Mattioda, V.; Benedetti, V.; Tessarolo, C.; Oberto, F.; Favole, A.; Gallo, M.; Martelli, W.; Crescio, M.I.; Berio, E.; Masoero, L. Pro-inflammatory and cytotoxic effects of polystyrene microplastics on human and murine intestinal cell lines. Biomolecules 2023, 13, 140. [Google Scholar] [CrossRef]
- Alijagic, A.; Kotlyar, O.; Larsson, M.; Salihovic, S.; Hedbrant, A.; Eriksson, U.; Karlsson, P.; Persson, A.; Scherbak, N.; Färnlund, K. Immunotoxic, genotoxic, and endocrine disrupting impacts of polyamide microplastic particles and chemicals. Environ. Int. 2024, 183, 108412. [Google Scholar] [CrossRef] [PubMed]
- KC, P.B.; Maharjan, A.; Acharya, M.; Lee, D.; Kusma, S.; Gautam, R.; Kwon, J.-T.; Kim, C.; Kim, K.; Kim, H. Polytetrafluorethylene microplastic particles mediated oxidative stress, inflammation, and intracellular signaling pathway alteration in human derived cell lines. Sci. Total Environ. 2023, 897, 165295. [Google Scholar]
- Park, S.B.; Jung, W.H.; Choi, K.J.; Koh, B.; Kim, K.Y. A comparative systematic analysis of the influence of microplastics on colon cells, mouse and colon organoids. Tissue Eng. Regen. Med. 2023, 20, 49–58. [Google Scholar] [CrossRef]
- Forte, M.; Iachetta, G.; Tussellino, M.; Carotenuto, R.; Prisco, M.; De Falco, M.; Laforgia, V.; Valiante, S. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicology 2016, 31, 126–136. [Google Scholar] [CrossRef]
- Prietl, B.; Meindl, C.; Roblegg, E.; Pieber, T.; Lanzer, G.; Fröhlich, E. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol. Toxicol. 2014, 30, 1–16. [Google Scholar] [CrossRef]
- Jin, Y.; Xia, J.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 2018, 235, 322–329. [Google Scholar] [CrossRef]
- Greven, A.C.; Merk, T.; Karagöz, F.; Mohr, K.; Klapper, M.; Jovanović, B.; Palić, D. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 2016, 35, 3093–3100. [Google Scholar] [CrossRef]
- Brown, D.M.; Wilson, M.R.; MacNee, W.; Stone, V.; Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 2001, 175, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Cao, J.-W.; Geng, Y.; Xu, T.-C.; Guo, M.-Y. Polystyrene nano-plastics impede skeletal muscle development and induce lipid accumulation via the PPARγ/LXRβ pathway in vivo and in vitro in mice. Arch. Toxicol. 2024, 98, 3713–3725. [Google Scholar] [CrossRef]
- Yang, Q.; Dai, H.; Cheng, Y.; Wang, B.; Xu, J.; Zhang, Y.; Chen, Y.; Xu, F.; Ma, Q.; Lin, F. Oral feeding of nanoplastics affects brain function of mice by inducing macrophage IL-1 signal in the intestine. Cell Rep. 2023, 42, 112346. [Google Scholar] [CrossRef]
- Han, S.; Bang, J.; Choi, D.; Hwang, J.; Kim, T.; Oh, Y.; Hwang, Y.; Choi, J.; Hong, J. Surface pattern analysis of microplastics and their impact on human-derived cells. ACS Appl. Polym. Mater. 2020, 2, 4541–4550. [Google Scholar] [CrossRef]
- Weber, A.; Schwiebs, A.; Solhaug, H.; Stenvik, J.; Nilsen, A.M.; Wagner, M.; Relja, B.; Radeke, H.H. Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells. Environ. Int. 2022, 163, 107173. [Google Scholar] [CrossRef]
- Donkers, J.M.; Höppener, E.M.; Grigoriev, I.; Will, L.; Melgert, B.N.; van der Zaan, B.; van de Steeg, E.; Kooter, I.M. Advanced epithelial lung and gut barrier models demonstrate passage of microplastic particles. Microplastics Nanoplastics 2022, 2, 6. [Google Scholar] [CrossRef]
- Park, J.H.; Hong, S.; Kim, O.-H.; Kim, C.-H.; Kim, J.; Kim, J.-W.; Hong, S.; Lee, H.J. Polypropylene microplastics promote metastatic features in human breast cancer. Sci. Rep. 2023, 13, 6252. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Cao, M.; Tian, M.; Huang, Q. Internalization and cytotoxicity of polystyrene microplastics in human umbilical vein endothelial cells. J. Appl. Toxicol. 2023, 43, 262–271. [Google Scholar] [CrossRef]
- Milillo, C.; Aruffo, E.; Di Carlo, P.; Patruno, A.; Gatta, M.; Bruno, A.; Dovizio, M.; Marinelli, L.; Dimmito, M.P.; Di Giacomo, V. Polystyrene nanoplastics mediate oxidative stress, senescence, and apoptosis in a human alveolar epithelial cell line. Front. Public Health 2024, 12, 1385387. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiao, R.; Zhang, S.; Wang, G. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio). J. Hazard. Mater. 2021, 403, 123663. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ding, Y.; Cheng, X.; Sheng, D.; Xu, Z.; Rong, Q.; Wu, Y.; Zhao, H.; Ji, X.; Zhang, Y. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere 2020, 244, 125492. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Chen, N.; Yang, X.; Xia, Y.; Wu, D. Effects induced by polyethylene microplastics oral exposure on colon mucin release, inflammation, gut microflora composition and metabolism in mice. Ecotoxicol. Environ. Saf. 2021, 220, 112340. [Google Scholar] [CrossRef] [PubMed]
- Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; Van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef]
- Huang, W.; Hickson, L.J.; Eirin, A.; Kirkland, J.L.; Lerman, L.O. Cellular senescence: The good, the bad and the unknown. Nat. Rev. Nephrol. 2022, 18, 611–627. [Google Scholar] [CrossRef]
- McHugh, D.; Gil, J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 2018, 217, 65–77. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, Y.; Lu, C.; Cheng, Y.; Jiang, X.; Yang, B.; Li, Y.; Chen, Q.; Ao, L.; Cao, J. Polystyrene nanoplastics exposure triggers spermatogenic cell senescence via the Sirt1/ROS axis. Ecotoxicol. Environ. Saf. 2024, 279, 116461. [Google Scholar] [CrossRef]
- Jeong, B.; Baek, J.Y.; Koo, J.; Park, S.; Ryu, Y.-K.; Kim, K.-S.; Zhang, S.; Chung, C.; Dogan, R.; Choi, H.-S. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny. J. Hazard. Mater. 2022, 426, 127815. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, S.; Guo, X.; Ullah, S.; Ullah, S.; Nabi, G.; Wanghe, K. A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals. Front. Endocrinol. 2023, 13, 1084236. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, Z.; Hu, R.; Huang, Y.; Li, F.; Ma, W.; Wu, X.; Dong, H.; Song, K.; Xu, X. Toxicity of microplastics and nanoplastics: Invisible killers of female fertility and offspring health. Front. Physiol. 2023, 14, 1254886. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.; Liu, S.; Chen, G.; Liao, H.; Wang, J. Transgenerational impacts of micro (nano) plastics in the aquatic and terrestrial environment. J. Hazard. Mater. 2023, 443, 130274. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.; Siddiqui, J.A.; Liu, S.; Lan, R.; Abbas, Z.; Chen, G.; Wang, J. Adverse multigeneration combined impacts of micro (nano) plastics and emerging pollutants in the aquatic environment. Sci. Total Environ. 2023, 882, 163679. [Google Scholar] [CrossRef] [PubMed]
- Hua, T.; Kiran, S.; Li, Y.; Sang, Q.-X.A. Microplastics exposure affects neural development of human pluripotent stem cell-derived cortical spheroids. J. Hazard. Mater. 2022, 435, 128884. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, B.; Shiwakoti, S.; Park, E.-Y.; Kang, K.-W.; Schini-Kerth, V.B.; Park, S.-H.; Ji, H.-Y.; Park, J.S.; Ko, J.-Y.; Oak, M.-H. SGLT2 inhibition ameliorates nano plastics-induced premature endothelial senescence and dysfunction. Sci. Rep. 2023, 13, 6256. [Google Scholar] [CrossRef]
- González-Caballero, M.C.; de Alba González, M.; Torres-Ruiz, M.; Iglesias-Hernández, P.; Zapata, V.; Terrón, M.C.; Sachse, M.; Morales, M.; Martin-Folgar, R.; Liste, I. Internalization and toxicity of polystyrene nanoplastics on inmortalized human neural stem cells. Chemosphere 2024, 355, 141815. [Google Scholar] [CrossRef]
- Najahi, H.; Alessio, N.; Squillaro, T.; Conti, G.O.; Ferrante, M.; Di Bernardo, G.; Galderisi, U.; Messaoudi, I.; Minucci, S.; Banni, M. Environmental microplastics (EMPs) exposure alter the differentiation potential of mesenchymal stromal cells. Environ. Res. 2022, 214, 114088. [Google Scholar] [CrossRef]
- Ruan, L.; Zhang, X.; Li, R. Recent insights into the cellular and molecular determinants of aging. J. Cell Sci. 2018, 131, jcs210831. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Nehme, J.; Varela-Eirin, M.; Demaria, M. Molecular mechanisms of cellular senescence. In Regenerative Nephrology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 221–230. [Google Scholar]
- Pontecorvi, P.; Ceccarelli, S.; Cece, F.; Camero, S.; Lotti, L.V.; Niccolai, E.; Nannini, G.; Gerini, G.; Anastasiadou, E.; Scialis, E.S. Assessing the impact of polyethylene nano/microplastic exposure on human vaginal keratinocytes. Int. J. Mol. Sci. 2023, 24, 11379. [Google Scholar] [CrossRef]
- Burgoyne, J.R. Oxidative stress impairs autophagy through oxidation of ATG3 and ATG7. Autophagy 2018, 14, 1092–1093. [Google Scholar] [CrossRef] [PubMed]
- Korovila, I.; Hugo, M.; Castro, J.P.; Weber, D.; Höhn, A.; Grune, T.; Jung, T. Proteostasis, oxidative stress and aging. Redox Biol. 2017, 13, 550–567. [Google Scholar] [CrossRef] [PubMed]
- Vojnits, K.; de León, A.; Rathore, H.; Liao, S.; Zhao, M.; Gibon, J.; Pakpour, S. ROS-dependent degeneration of human neurons induced by environmentally relevant levels of micro-and nanoplastics of diverse shapes and forms. J. Hazard. Mater. 2024, 469, 134017. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Tong, D.; Tian, D.; Yu, Y.; Huang, L.; Zhang, W.; Yu, Y.; Lu, L.; Zhang, X.; Pan, W. Exposure to polystyrene nanoplastics led to learning and memory deficits in zebrafish by inducing oxidative damage and aggravating brain aging. Adv. Healthc. Mater. 2023, 12, 2301799. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Ulhassan, Z.; Li, G.; Lou, J.; Iqbal, B.; Salam, A.; Azhar, W.; Batool, S.; Zhao, T.; Li, K. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. Sci. Total Environ. 2023, 912, 169420. [Google Scholar] [CrossRef]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res. Int. 2013, 2013, 942916. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef]
Particle (s) | Particle Sizes | Concentration and Duration of Exposure | Cell Lines | Relevant Inflammatory Biomarkers | References |
---|---|---|---|---|---|
PS | 1.878 ± 0.677 μm | 0.025, 0.05, 0.1, 0.2, 0.4 0.8 μg/mL, 120 min; 0.8 μg/mL, 0, 5, 10, 30, 60 min; 0.05, 0.1, 0.2, 0.4, and 0.8 mg/mL, 1 and 2 h | HK-2, kidney cells of 6 week old male C57BL/6 mice | Upregulation of cPLA2, COX-1, Bad, Bcl2, p38. ROS generation | [47] |
HD-PE and LD-PE | 1–10, 50, and 100 μm; 25–75 and 75–200 μm | 10, 100 μg/mL and 1 mg/mL; 2 days for histamine release, 4 days for cytokine release | HMC-1 | Upregulation of IL-6, TNF-α, and histamine | [38] |
PS | 3 and 10 µm | 100–1600 particles/mL; 0.5, 1, 2, 3, 4, 5, 6, and 24 h; 7, 14, 21, 28, and 48 days | HT-29 | Expression of ROS | [49] |
PS | 1–200 µm | 1000, 100, 10 µg/mL | PBMC, Kato III, HeLa, HDFs | Upregulation of IL-6 and TNF-α | [39] |
PP, PS | 100 µm | 200 mg/mL; 0.5, 1, 2, 3, 4, 5, 6, and 24 h | Caco-2, HepG2, THP-1 | THP-1: Upregulation of IL-6, IL-8, IL-1β, TNF-α; ROS generation; Caco-2, HepG2: Upregulation of IL-6, IL-8, TNF-α | [32] |
PS | 1.72 ± 0.26 μm | 1–1000 μg/cm2; 24 and 48 h | BEAS-2B | Upregulation of IL-6 and IL-8 | [15] |
PS, FRPS, PMMA | PS: 50, 200 nm and 1 μm. FRPS: 44 nm, 190 nm, and 1.04 μm PMMA: 70, 400 nm, and 1.1 μm | 1, 10, and 100 μg/mL; 24, 72 h | A549, HEK293, HeLa | Upregulation of IL-6, IL-8, and TNF-α | [96] |
PTFE | 31.7 ± 5.6 μm and 6.0 ± 2.1 μm | 10, 100, 500, 1000 μg/mL; 24 h, 48 h | A549, U937, THP-1, Jurkat, HaCaT | Upregulation of TNF-α and IL-6 in U937; downregulation of TNF-α in THP-1; upregulation of IL-6 in A549; mixed regulation of IL-6 in HaCaT depending on concentration | [99] |
PS | 213.7 ± 8.2 nm. | 1, 10, 20, 50, 100 mg/L; 48 h | GES-1 | Upregulation of IL-1β and IL-6 | [50] |
PS, F-PS HDPE, Nylon, Car tire, and Ocean Cleanup | PS: 0.05, 0.1, 1 and 10 μm. F-PS: 0.05, 1, 10. HDPE: 0–80. Nylon: 3 × 13 and 10 × 30 μm. Car tire: 0–120 μm Ocean cleanup: 0–40 μm. | 1 mg/mL; 24, 48, 96 h | Human intestinal colon tissue and MucilAir™ | Upregulation of IL-6 in MucilAir™ | [111] |
PS | 4.8–5.8 μm | 1 mg/mL; 6, 24, 48 h | HRT-18 | Upregulation of IL-8 | [97] |
Fl-PS, PPS | 20, 50, 100, 500 nm; 5, 10 μm. | 1000 μg/mL; 24 h | Human umbilical vein endothelial cells | Upregulation of IL-1β, IL-6, and TNF-α | [78] |
PA-12 | 1–5, 20–60 μm | 100 μg/mL; 24 h, 14 d | PBMC-derived macrophages | Upregulation of IL-8 | [98] |
PP | 16.4 μm | 3–300 ng/mL for 24 h | MDA-MB-231 and MF-7 | Upregulation of IL-6 | [112] |
PS | 3.39 ± 0.30 μm | 3–300 ng/mL; 24 h | HEK293 | Upregulation of 33 inflammatory cytokines at 3 ng/mL, inhibition of NLRP-3 at 300 ng/mL, and reduction in inflammatory response | [76] |
PS, NH2-labeled PS, PMMA | 1 μm, 200, 50 nm | 1, 100 μg/mL; 24, 72 h | PBMCs | Downregulation of IL-1β, IFN-γ; upregulation of CCL-2, IL-17A, IL-10; varying regulation of IL-6 depending on MP type and concentration | [77] |
PS | 1 μm | 0.25, 2.5, and 25 μg/mL; 48 h | H1 ES, differentiated toward hepatic function | Upregulation of IL-6 and COL1A1 | [86] |
PS | 0.2, 2, and 10 μm | 1, 5, and 10 μg/mL; 24 h | HMC-3 | Downregulation of IL-1β, CCL2, and TGF-β | [94] |
Fluoresbrite- dyed MP particles | 50 and 100 nm | 0.008, 0.04, 0.2, 1, 5, and 10 mg/mL; 48 h. | Human Colon Fibroblasts (CCD18-Co) | Upregulation of IL1-Ra, CXCL1, MIF, serpin E1, and IL-8 | [100] |
PS | 1 μm | 5, 10, 25, 100 μg/mL; 48 h | Human umbilical vein endothelial cells | Upregulation of IL-6, IL-8, TNF, IL-1β, and MCP-1 | [113] |
NH2- and COOH-labeled PS | 25, 50, 100, 500 nm | 0, 20, 39, 78, 156, 313, 625, 1250, 2500, 5000 μg/mL; 24 h | JEG-3 | Upregulation of CXCL6, ATF3, A20, and CCL by PS-NH2; upregulation of CXCL2, CXCL6, ATF3, and A20 by PS-COOH | [56] |
PS | 1 μm | 0.25, 0.5, and 1 mg/mL; 24 h | TM4 | Upregulation of NF-κB, IL-6, IL-8, and TNF-α | [46] |
PE | 30.5 ± 10.5 and 6.2 ± 2.0 μm | 1–1000 μg/mL; HaCaT treated for 24 h, THP-1 and U937 treated for 48 h | HaCaT, THP-1, and U937 | Upregulation of IL-6 in HaCaT; downregulation of IL-6 in Thp-1 and U937 | [82] |
PVC, ABS | 25–200 µm | 10, 100, 1000 µg/mL; 1, 5 d | HRBC | Upregulation of IL-5 and TNF-α | [109] |
PS | 1 μm | 40 mg/kg; 24 h | HCAEC, HUVEC | Upregulation of TNF-α, IL-1β, and IL-6; downregulation of IL-8 and MCP-1 | [89] |
Fluorescence-labeled nanoplastics | N/A | 0.1–1 mg/mL; 24 h | A549, BEAS-2B | Upregulation of IL-6, TNF-α, and IL-1β | [45] |
PS | 800 nm | 10, 100, and 500 μg/mL; 96 h | A549 | Upregulation of IL-8 | [114] |
PS | 100 nm | 10, 25, 50, 100 μg/mL; 24–72 h | HaCaT | Upregulation of AIM2, IL-6, IL-1β | [90] |
PP, SFb, LFb | 20 µm, 50 ± 26 µm, 200 ± 90 µm | 10, 000 µg/L, 24 h | Gut of 18 week old Danio rerio | Upregulation of IL-1α, Expression of ROS | [115] |
PE | 10–150 µm | 2, 20, 200 µg/L; 3 d/week for 5 weeks | Intestinal tissue of male, 5 week old SPF grade mice C57BL/6 | Upregulation of IL-1α IL-2, IL-5, IL-6, IL-9, IP-10, and transcription factors TRL4, AP-1, and IRF5; upregulation of growth factor G-CSF | [116] |
PE | 1–10 µm | 0.002, 0.2 µg/g/d; 31 days | Stool and colon tissue of 8 week old female ICR mice | Upregulation of IL-6, IL-8, IL-10, and IL-1β; downregulation of transcription factors NF-κB and ERK1 | [117] |
Particle (s) | Particle Sizes | Particle Concentration and Length of Exposure | Cell Model or Tissue (s) | Senescence Markers | Species | References |
---|---|---|---|---|---|---|
PS | 1 μm | 0.25, 0.5, and 1 mg/mL; 24 h | TM4 | Downregulation of Lamin A | Mice | [46] |
PS | 1 μm | 0.3, 0.6, and 0.9 mg/mL | HCAEC, HUVEC | Upregulation of SA-β-gal, p16, p21 | Human | [89] |
Fluorophore-labeled nanoplastics | 1–1000 nm | 0.1–1 mg/mL; 0–90 min | H9c2, AC16 | Upregulation of SA-β-gal by PE, PP, and PS; upregulation of p16 and p21 by PE and PVC | Rat, human | [45] |
PS | 800 nm | 10, 100, and 500 μg/mL; 96 h | A549 | Upregulation of Sa-β-gal, p21 | Human | [114] |
PS | 100 nm | 10, 50, and 100 μg/mL; 6, 12, and 24 h | HaCaT | Upregulation of Sa-β-gal, p16, p21, p53; downregulation of 53BP1 and Cyclin D1 | Human | [90] |
PE, PP, PS, PVC |
PE: 6.5 µm–1 mm;
PP: 6.5–100 µm; PS: 3–100 µm; PVC: 6–25 µm | 0.5, 5 μg/mL; 24 h | A549, BEAS-2B | Upregulation of SA-β-gal, p16INK4a, and p21. | Human | [84] |
PS | 1 μm | 1 and 5 mg/kg of ddH2O; minimum daily intake was 6 mL | 8 week old C57 mice testis tissue | Upregulation of p21, p16, and p53 | Mouse | [46] |
PS, PS-NH2, PS-SO3H | 5 μm | 10 μg/mL; 48 h | MC3T3-E1 | MC3T3-E1: Upregulation of p21 and p16 | Mouse | [75] |
PS | 100 nm | 0, 100, 200, and 400 μg/mL; 48 h | MLE12 | Upregulation of Sa-β-gal, p16, p21, p53, and y-H2Ax Downregulation of 53BP1 and Cyclin D1 | Mouse | [85] |
NPs | 1–1000 nm | 3, 6, 10 mg/kg 2 d/week for 8 weeks | Mice heart tissue | Upregulation of p16, p21, p53 | Mouse | [45] |
PS | 100 nm | 10, 25, 50, 100 μg/mL; 24–72 h | JB6-C30 | Upregulation of Sa-β-gal, p16, p21, p53; downregulation of 53BP1 and Cyclin D1 | Mouse | [90] |
PE, PP, PS, PVC |
PE: 6.5 µm–1 mm;
PP: 6.5–100 µm; PS: 3–100 µm; PVC: 6–25 µm | 25 and 100 mg/kg of PVC/d for 8 days | BALB/c mice lung tissue | Upregulation of p21 by PVC | Mouse | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, F.; Sarker, D.B.; Jocelyn, J.A.; Sang, Q.-X.A. Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence. Cells 2024, 13, 1788. https://doi.org/10.3390/cells13211788
Mahmud F, Sarker DB, Jocelyn JA, Sang Q-XA. Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence. Cells. 2024; 13(21):1788. https://doi.org/10.3390/cells13211788
Chicago/Turabian StyleMahmud, Faiza, Drishty B. Sarker, Jonathan A. Jocelyn, and Qing-Xiang Amy Sang. 2024. "Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence" Cells 13, no. 21: 1788. https://doi.org/10.3390/cells13211788
APA StyleMahmud, F., Sarker, D. B., Jocelyn, J. A., & Sang, Q. -X. A. (2024). Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence. Cells, 13(21), 1788. https://doi.org/10.3390/cells13211788