Impairment of Glucose Uptake Induced by Elevated Intracellular Ca2+ in Hippocampal Neurons of Malignant Hyperthermia-Susceptible Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Model
2.2. Hippocampal Pyramidal Neuron Cultures
2.3. Glucose Determinations
2.4. Ca2+ Selective Microelectrodes
2.5. Exposure to Isoflurane In Vitro
2.6. Single-Neuron Fluorescent 2-NBDG Uptake
2.7. Measurements of Neuronal [Ca2+]i and Glucose Uptake in a Single Neuron
2.8. Protein Expressions
2.9. Solutions
2.10. Statistical Analysis
3. Results
3.1. Elevated [Ca2+]i and Diminished Insulin Glucose Uptake
3.2. Effects of Extracellular Ca2+ Removal on [Ca2+]i and Glucose Uptake
3.3. Effects of BAPTA on [Ca2+]i and Glucose Uptake
3.4. Blocking TRPC Channels Affected [Ca2+]i and Glucose Uptake
3.5. Effects of Dantrolene on [Ca2+]i and Glucose Uptake
3.6. Effects of Isoflurane on [Ca2+]i and Glucose Uptake
3.7. Effect of Dantrolene on Blood Glucose Levels
3.8. Hippocampal Protein Expression
4. Discussion
4.1. Abnormal Neuronal Intracellular [Ca2+]
4.2. Calcium Signaling in Insulin-Dependent Glucose Uptake
4.3. Modulation of Glucose Uptake by [Ca2+]i
4.4. Intracellular [Ca2+] and PI3K/Akt Signaling Pathway
4.5. Glucose Uptake, Insulin, and Hippocampal Memory
4.6. Study Limitations
4.7. Summary
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenberg, H.; Pollock, N.; Schiemann, A.; Bulger, T.; Stowell, K. Malignant hyperthermia: A review. Orphanet J. Rare Dis. 2015, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Eltit, J.M.; Ding, X.; Pessah, I.N.; Allen, P.D.; Lopez, J.R. Nonspecific sarcolemmal cation channels are critical for the pathogenesis of malignant hyperthermia. FASEB J. 2013, 27, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.R.; Allen, P.D.; Alamo, L.; Jones, D.; Sreter, F.A. Myoplasmic free [Ca2+] during a malignant hyperthermia episode in swine. Muscle Nerve 1988, 11, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.R.; Alamo, L.; Caputo, C.; Wikinski, J.; Ledezma, D. Intracellular ionized calcium concentration in muscles from humans with malignant hyperthermia. Muscle Nerve 1985, 8, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Perni, S.; Lavorato, M.; Beam, K.G. De novo reconstitution reveals the proteins required for skeletal muscle voltage-induced Ca2+ release. Proc. Natl. Acad. Sci. USA 2017, 114, 13822–13827. [Google Scholar] [CrossRef]
- Altamirano, F.; Riazi, S.; Moreno, C.I.; Kraeva, N.; Uryash, A.; Allen, P.D.; Adams, J.A.; Lopez, J.R. Is malignant hyperthermia also associated with hyperglycaemia? Br. J. Anaesth. 2019, 122, e5–e6. [Google Scholar] [CrossRef]
- Uryash, A.; Adams, J.A.; Lopez, J.R. Altered [Ca2+] Regulation in Cortical Neurons of Mice Susceptible to Malignant Hyperthermia: An In Vivo Study. Anesthesiology 2023, 139, 543–545. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Koepsell, H. Glucose transporters in brain in health and disease. Pflug. Arch. 2020, 472, 1299–1343. [Google Scholar] [CrossRef]
- Uryash, A.; Mijares, A.; Lopez, C.E.; Adams, J.A.; Lopez, J.R. Chronic Elevation of Skeletal Muscle [Ca2+]i Impairs Glucose Uptake. An in Vivo and in Vitro Study. Front. Physiol. 2022, 13, 872624. [Google Scholar] [CrossRef]
- Draznin, B.; Lewis, D.; Houlder, N.; Sherman, N.; Adamo, M.; Garvey, W.T.; LeRoith, D.; Sussman, K. Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Endocrinology 1989, 125, 2341–2349. [Google Scholar] [CrossRef] [PubMed]
- Draznin, B.; Sussman, K.; Kao, M.; Lewis, D.; Sherman, N. The existence of an optimal range of cytosolic free calcium for insulin-stimulated glucose transport in rat adipocytes. J. Biol. Chem. 1987, 262, 14385–14388. [Google Scholar] [CrossRef]
- Lopez, J.R.; Lyckman, A.; Oddo, S.; Laferla, F.M.; Querfurth, H.W.; Shtifman, A. Increased intraneuronal resting [Ca2+] in adult Alzheimer’s disease mice. J. Neurochem. 2008, 105, 262–271. [Google Scholar] [CrossRef]
- Uryash, A.; Flores, V.; Adams, J.A.; Allen, P.D.; Lopez, J.R. Memory and Learning Deficits Are Associated with Ca2+ Dyshomeostasis in Normal Aging. Front. Aging Neurosci. 2020, 12, 224. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, C.; Paula-Lima, A. RyR-mediated calcium release in hippocampal health and disease. Trends Mol. Med. 2024, 30, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Hidalgo, C. Subcellular localization and transcriptional regulation of brain ryanodine receptors. Functional implications. Cell Calcium. 2023, 116, 102821. [Google Scholar] [CrossRef]
- Abu-Omar, N.; Das, J.; Szeto, V.; Feng, Z.P. Neuronal Ryanodine Receptors in Development and Aging. Mol. Neurobiol. 2018, 55, 1183–1192. [Google Scholar] [CrossRef]
- Leon, J.; Sakumi, K.; Castillo, E.; Sheng, Z.; Oka, S.; Nakabeppu, Y. 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions. Sci. Rep. 2016, 6, 22086. [Google Scholar] [CrossRef]
- Uryash, A.; Mijares, A.; Lopez, C.E.; Adams, J.A.; Allen, P.D.; Lopez, J.R. Post-Anesthesia Cognitive Dysfunction in Mice Is Associated with an Age-Related Increase in Neuronal Intracellular [Ca2+]—Neuroprotective Effect of Reducing Intracellular [Ca2+]: In Vivo and In Vitro Studies. Cells 2024, 13, 264. [Google Scholar] [CrossRef]
- Lopez, J.R.; Alamo, L.; Caputo, C.; DiPolo, R.; Vergara, S. Determination of ionic calcium in frog skeletal muscle fibers. Biophys. J. 1983, 43, 1–4. [Google Scholar] [CrossRef]
- Yang, T.; Riehl, J.; Esteve, E.; Matthaei, K.I.; Goth, S.; Allen, P.D.; Pessah, I.N.; Lopez, J.R. Pharmacologic and functional characterization of malignant hyperthermia in the R163C RyR1 knock-in mouse. Anesthesiology 2006, 105, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.R.; Linares, N.; Pessah, I.N.; Allen, P.D. Enhanced response to caffeine and 4-chloro-m-cresol in malignant hyperthermia-susceptible muscle is related in part to chronically elevated resting [Ca2+]i. Am. J. Physiol. Cell Physiol. 2005, 288, C606–C612. [Google Scholar] [CrossRef] [PubMed]
- Robin, G.; Lopez, J.R.; Espinal, G.M.; Hulsizer, S.; Hagerman, P.J.; Pessah, I.N. Calcium dysregulation and Cdk5-ATM pathway involved in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum. Mol. Genet. 2017, 26, 2649–2666. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Follmann, M.; Hessler, G.; Kleemann, H.W.; Hachtel, S.; Fuchs, B.; Weissmann, N.; Linz, W.; Schmidt, T.; Lohn, M.; et al. Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. Br. J. Pharmacol. 2015, 172, 3650–3660. [Google Scholar] [CrossRef]
- Lopez, J.R.; Uryash, A.; Adams, J.; Hopkins, P.M.; Allen, P.D. Molecular Modification of Transient Receptor Potential Canonical 6 Channels Modulates Calcium Dyshomeostasis in a Mouse Model Relevant to Malignant Hyperthermia. Anesthesiology 2021, 134, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Harrison, G.G.; Chapman, D.C. Dantrolene sodium in the treatment of malignant hypertension. S. Afr. Med. J. 1982, 62, 503–504. [Google Scholar]
- Lopez, J.R.; Allen, P.; Alamo, L.; Ryan, J.F.; Jones, D.E.; Sreter, F. Dantrolene prevents the malignant hyperthermic syndrome by reducing free intracellular calcium concentration in skeletal muscle of susceptible swine. Cell Calcium. 1987, 8, 385–396. [Google Scholar] [CrossRef]
- Lopez, J.R.; Medina, P.; Alamo, L. Dantrolene sodium is able to reduce the resting ionic [Ca2+]i in muscle from humans with malignant hyperthermia. Muscle Nerve 1987, 10, 77–79. [Google Scholar] [CrossRef]
- Yang, T.; Esteve, E.; Pessah, I.N.; Molinski, T.F.; Allen, P.D.; Lopez, J.R. Elevated resting [Ca2+]i in myotubes expressing malignant hyperthermia RyR1 cDNAs is partially restored by modulation of passive calcium leak from the SR. Am. J. Physiol. Cell Physiol. 2007, 292, C1591–C1598. [Google Scholar] [CrossRef]
- Cherednichenko, G.; Ward, C.W.; Feng, W.; Cabrales, E.; Michaelson, L.; Samso, M.; Lopez, J.R.; Allen, P.D.; Pessah, I.N. Enhanced excitation-coupled calcium entry in myotubes expressing malignant hyperthermia mutation R163C is attenuated by dantrolene. Mol. Pharmacol. 2008, 73, 1203–1212. [Google Scholar] [CrossRef]
- Lopez, J.R.; Kolster, J.; Uryash, A.; Esteve, E.; Altamirano, F.; Adams, J.A. Dysregulation of Intracellular Ca2+ in Dystrophic Cortical and Hippocampal Neurons. Mol. Neurobiol. 2018, 55, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Brini, M.; Carafoli, E.; Cali, T. The plasma membrane calcium pumps: Focus on the role in (neuro)pathology. Biochem. Biophys. Res. Commun. 2017, 483, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Cali, T.; Brini, M.; Carafoli, E. Regulation of Cell Calcium and Role of Plasma Membrane Calcium ATPases. Int. Rev. Cell Mol. Biol. 2017, 332, 259–296. [Google Scholar] [CrossRef] [PubMed]
- Kurebayashi, N.; Ogawa, Y. Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J. Physiol. 2001, 533, 185–199. [Google Scholar] [CrossRef]
- Sergi, D.; Naumovski, N.; Heilbronn, L.K.; Abeywardena, M.; O’Callaghan, N.; Lionetti, L.; Luscombe-Marsh, N. Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet. Front. Physiol. 2019, 10, 532. [Google Scholar] [CrossRef]
- Santo-Domingo, J.; Demaurex, N. Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta 2010, 1797, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Jouaville, L.S.; Pinton, P.; Bastianutto, C.; Rutter, G.A.; Rizzuto, R. Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming. Proc. Natl. Acad. Sci. USA 1999, 96, 13807–13812. [Google Scholar] [CrossRef]
- Griffiths, E.J.; Rutter, G.A. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim. Biophys. Acta 2009, 1787, 1324–1333. [Google Scholar] [CrossRef]
- Tajeddine, N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochim. Biophys. Acta 2016, 1860, 1079–1088. [Google Scholar] [CrossRef]
- Duchen, M.R. Mitochondria and calcium: From cell signalling to cell death. J. Physiol. 2000, 529 Pt 1, 57–68. [Google Scholar] [CrossRef]
- Denborough, M. Malignant hyperthermia. Lancet 1998, 352, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.R.; Alamo, L.A.; Jones, D.E.; Papp, L.; Allen, P.D.; Gergely, J.; Sreter, F.A. [Ca2+]i in muscles of malignant hyperthermia susceptible pigs determined in vivo with Ca2+ selective microelectrodes. Muscle Nerve 1986, 9, 85–86. [Google Scholar]
- Yang, T.; Ta, T.A.; Pessah, I.N.; Allen, P.D. Functional defects in six ryanodine receptor isoform-1 (RyR1) mutations associated with malignant hyperthermia and their impact on skeletal excitation-contraction coupling. J. Biol. Chem. 2003, 278, 25722–25730. [Google Scholar] [CrossRef] [PubMed]
- Disterhoft, J.F.; Moyer, J.R., Jr.; Thompson, L.T. The calcium rationale in aging and Alzheimer’s disease. Evidence from an animal model of normal aging. Ann. N. Y. Acad. Sci. 1994, 747, 382–406. [Google Scholar] [CrossRef]
- Kirischuk, S.; Verkhratsky, A. Calcium homeostasis in aged neurones. Life Sci. 1996, 59, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Mueckler, M.; Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 2013, 34, 121–138. [Google Scholar] [CrossRef]
- Contreras-Ferrat, A.; Lavandero, S.; Jaimovich, E.; Klip, A. Calcium signaling in insulin action on striated muscle. Cell Calcium. 2014, 56, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Bruton, J.D.; Katz, A.; Westerblad, H. Insulin increases near-membrane but not global Ca2+ in isolated skeletal muscle. Proc. Natl. Acad. Sci. USA 1999, 96, 3281–3286. [Google Scholar] [CrossRef]
- Contreras-Ferrat, A.E.; Toro, B.; Bravo, R.; Parra, V.; Vasquez, C.; Ibarra, C.; Mears, D.; Chiong, M.; Jaimovich, E.; Klip, A.; et al. An inositol 1,4,5-triphosphate (IP3)-IP3 receptor pathway is required for insulin-stimulated glucose transporter 4 translocation and glucose uptake in cardiomyocytes. Endocrinology 2010, 151, 4665–4677. [Google Scholar] [CrossRef]
- Espinosa, A.; Estrada, M.; Jaimovich, E. IGF-I and insulin induce different intracellular calcium signals in skeletal muscle cells. J. Endocrinol. 2004, 182, 339–352. [Google Scholar] [CrossRef]
- Maier, S.; Aulbach, F.; Simm, A.; Lange, V.; Langenfeld, H.; Behre, H.; Kersting, U.; Walter, U.; Kirstein, M. Stimulation of L-type Ca2+ current in human atrial myocytes by insulin. Cardiovasc. Res. 1999, 44, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Ballard, C.; Mozaffari, M.; Schaffer, S. Signal transduction mechanism for the stimulation of the sarcolemmal Na+-Ca2+ exchanger by insulin. Mol. Cell Biochem. 1994, 135, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Ferrat, A.; Llanos, P.; Vasquez, C.; Espinosa, A.; Osorio-Fuentealba, C.; Arias-Calderon, M.; Lavandero, S.; Klip, A.; Hidalgo, C.; Jaimovich, E. Insulin elicits a ROS-activated and an IP(3)-dependent Ca2+ release, which both impinge on GLUT4 translocation. J. Cell Sci. 2014, 127, 1911–1923. [Google Scholar] [CrossRef]
- Youn, J.H.; Gulve, E.A.; Holloszy, J.O. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am. J. Physiol. 1991, 260, C555–C561. [Google Scholar] [CrossRef]
- Reusch, J.E.; Begum, N.; Sussman, K.E.; Draznin, B. Regulation of GLUT-4 phosphorylation by intracellular calcium in adipocytes. Endocrinology 1991, 129, 3269–3273. [Google Scholar] [CrossRef]
- Lee, A.D.; Gulve, E.A.; Chen, M.; Schluter, J.; Holloszy, J.O. Effects of Ca2+ ionophore ionomycin on insulin-stimulated and basal glucose transport in muscle. Am. J. Physiol. 1995, 268, R997–R1002. [Google Scholar] [CrossRef]
- Lanner, J.T.; Katz, A.; Tavi, P.; Sandstrom, M.E.; Zhang, S.J.; Wretman, C.; James, S.; Fauconnier, J.; Lannergren, J.; Bruton, J.D.; et al. The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle. Diabetes 2006, 55, 2077–2083. [Google Scholar] [CrossRef]
- Lanner, J.T.; Bruton, J.D.; Katz, A.; Westerblad, H. Ca2+ and insulin-mediated glucose uptake. Curr. Opin. Pharmacol. 2008, 8, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.R.; Kaura, V.; Diggle, C.P.; Hopkins, P.M.; Allen, P.D. Malignant hyperthermia, environmental heat stress, and intracellular calcium dysregulation in a mouse model expressing the p.G2435R variant of RYR1. Br. J. Anaesth. 2018, 121, 953–961. [Google Scholar] [CrossRef]
- Li, H.; Guglielmetti, C.; Sei, Y.J.; Zilberter, M.; Le Page, L.M.; Shields, L.; Yang, J.; Nguyen, K.; Tiret, B.; Gao, X.; et al. Neurons require glucose uptake and glycolysis in vivo. Cell Rep. 2023, 42, 112335. [Google Scholar] [CrossRef]
- Riazi, S.; Kraeva, N.; Hopkins, P.M. Updated guide for the management of malignant hyperthermia. Can. J. Anaesth. 2018, 65, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.R.; Gerardi, A.; Lopez, M.J.; Allen, P.D. Effects of dantrolene on myoplasmic free [Ca2+] measured in vivo in patients susceptible to malignant hyperthermia. Anesthesiology 1992, 76, 711–719. [Google Scholar] [CrossRef]
- Milstein, J.L.; Ferris, H.A. The brain as an insulin-sensitive metabolic organ. Mol. Metab. 2021, 52, 101234. [Google Scholar] [CrossRef] [PubMed]
- Pearson-Leary, J.; McNay, E.C. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J. Neurosci. 2016, 36, 11851–11864. [Google Scholar] [CrossRef]
- Kim, B.; Feldman, E.L. Insulin resistance in the nervous system. Trends Endocrinol. Metab. 2012, 23, 133–141. [Google Scholar] [CrossRef] [PubMed]
- James, D.E.; Stockli, J.; Birnbaum, M.J. The aetiology and molecular landscape of insulin resistance. Nat. Rev. Mol. Cell Biol. 2021, 22, 751–771. [Google Scholar] [CrossRef]
- Pignalosa, F.C.; Desiderio, A.; Mirra, P.; Nigro, C.; Perruolo, G.; Ulianich, L.; Formisano, P.; Beguinot, F.; Miele, C.; Napoli, R.; et al. Diabetes and Cognitive Impairment: A Role for Glucotoxicity and Dopaminergic Dysfunction. Int. J. Mol. Sci. 2021, 22, 12366. [Google Scholar] [CrossRef]
- Bellia, C.; Lombardo, M.; Meloni, M.; Della-Morte, D.; Bellia, A.; Lauro, D. Diabetes and cognitive decline. Adv. Clin. Chem. 2022, 108, 37–71. [Google Scholar] [CrossRef]
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol. 2018, 14, 168–181. [Google Scholar] [CrossRef]
- Park, S.; Scheffler, T.L.; Gunawan, A.M.; Shi, H.; Zeng, C.; Hannon, K.M.; Grant, A.L.; Gerrard, D.E. Chronic elevated calcium blocks AMPK-induced GLUT-4 expression in skeletal muscle. Am. J. Physiol. Cell Physiol. 2009, 296, C106–C115. [Google Scholar] [CrossRef]
- Manning, C.A.; Parsons, M.W.; Gold, P.E. Anterograde and retrograde enhancement of 24-h memory by glucose in elderly humans. Behav. Neural. Biol. 1992, 58, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Manning, C.A.; Ragozzino, M.E.; Gold, P.E. Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer’s type. Neurobiol. Aging 1993, 14, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Tang, T.Y.; Lu, C.Q.; Ju, S. Insulin Resistance and Cognitive Impairment: Evidence from Neuroimaging. J. Magn. Reson. Imaging 2022, 56, 1621–1649. [Google Scholar] [CrossRef] [PubMed]
- McNay, E.C.; Pearson-Leary, J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp. Neurol. 2020, 323, 113076. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uryash, A.; Mijares, A.; Adams, J.A.; Lopez, J.R. Impairment of Glucose Uptake Induced by Elevated Intracellular Ca2+ in Hippocampal Neurons of Malignant Hyperthermia-Susceptible Mice. Cells 2024, 13, 1888. https://doi.org/10.3390/cells13221888
Uryash A, Mijares A, Adams JA, Lopez JR. Impairment of Glucose Uptake Induced by Elevated Intracellular Ca2+ in Hippocampal Neurons of Malignant Hyperthermia-Susceptible Mice. Cells. 2024; 13(22):1888. https://doi.org/10.3390/cells13221888
Chicago/Turabian StyleUryash, Arkady, Alfredo Mijares, Jose A. Adams, and Jose R. Lopez. 2024. "Impairment of Glucose Uptake Induced by Elevated Intracellular Ca2+ in Hippocampal Neurons of Malignant Hyperthermia-Susceptible Mice" Cells 13, no. 22: 1888. https://doi.org/10.3390/cells13221888
APA StyleUryash, A., Mijares, A., Adams, J. A., & Lopez, J. R. (2024). Impairment of Glucose Uptake Induced by Elevated Intracellular Ca2+ in Hippocampal Neurons of Malignant Hyperthermia-Susceptible Mice. Cells, 13(22), 1888. https://doi.org/10.3390/cells13221888