Loop Extrusion Machinery Impairments in Models and Disease
Abstract
:1. Experimental Models of the Loop Extrusion Machinery
2. Structure and Function of the Loop Extrusion Machinery
3. Dynamics of the Loop Extrusion Machinery in Cell Cycle
4. Mutations of the Loop Extrusion Machinery
5. Germline Mutations
6. Somatic Mutations
6.1. Cohesin
6.2. Cohesin Mutations and Aneuploidy
6.3. STAG2 Mutations Induce Chromatin Rewiring in Cancer Cells
6.4. Cohesin Mutations Affect Alternative Splicing
6.5. The Role of Cohesin in DNA Replication
6.6. PDS5 Mutations in Cancer
6.7. The Role of Mutations in Condensin I and II in Generating CIN
6.8. MCPH1 Mutations in Cancer
6.9. SMC5/6 Mutations in Cancer
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michaelis, C.; Ciosk, R.; Nasmyth, K. Cohesins: Chromosomal Proteins That Prevent Premature Separation of Sister Chromatids. Cell 1997, 91, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Kobayashi, R.; Hirano, M. Condensins, Chromosome Condensation Protein Complexes Containing XCAP-C, XCAP-E and a Xenopus Homolog of the Drosophila Barren Protein. Cell 1997, 89, 511–521. [Google Scholar] [CrossRef] [PubMed]
- White, J.K.; Gerdin, A.-K.; Karp, N.A.; Ryder, E.; Buljan, M.; Bussell, J.N.; Salisbury, J.; Clare, S.; Ingham, N.J.; Podrini, C.; et al. Genome-Wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes. Cell 2013, 154, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Kawauchi, S.; Calof, A.L.; Santos, R.; Lopez-Burks, M.E.; Young, C.M.; Hoang, M.P.; Chua, A.; Lao, T.; Lechner, M.S.; Daniel, J.A.; et al. Multiple Organ System Defects and Transcriptional Dysregulation in the Nipbl+/− Mouse, a Model of Cornelia de Lange Syndrome. PLoS Genet. 2009, 5, e1000650. [Google Scholar] [CrossRef]
- Smith, T.G.; Laval, S.; Chen, F.; Rock, M.J.; Strachan, T.; Peters, H. Neural Crest Cell-specific Inactivation of Nipbl or Mau2 during Mouse Development Results in a Late Onset of Craniofacial Defects. Genesis 2014, 52, 687–694. [Google Scholar] [CrossRef]
- Xu, H.; Balakrishnan, K.; Malaterre, J.; Beasley, M.; Yan, Y.; Essers, J.; Appeldoorn, E.; Thomaszewski, J.M.; Vazquez, M.; Verschoor, S.; et al. Rad21-Cohesin Haploinsufficiency Impedes DNA Repair and Enhances Gastrointestinal Radiosensitivity in Mice. PLoS ONE 2010, 5, e12112. [Google Scholar] [CrossRef]
- Revenkova, E.; Eijpe, M.; Heyting, C.; Hodges, C.A.; Hunt, P.A.; Liebe, B.; Scherthan, H.; Jessberger, R. Cohesin SMC1β Is Required for Meiotic Chromosome Dynamics, Sister Chromatid Cohesion and DNA Recombination. Nat. Cell Biol. 2004, 6, 555–562. [Google Scholar] [CrossRef]
- Xu, H.; Beasley, M.D.; Warren, W.D.; van der Horst, G.T.J.; McKay, M.J. Absence of Mouse REC8 Cohesin Promotes Synapsis of Sister Chromatids in Meiosis. Dev. Cell 2005, 8, 949–961. [Google Scholar] [CrossRef]
- Hodges, C.A.; Revenkova, E.; Jessberger, R.; Hassold, T.J.; Hunt, P.A. SMC1β-Deficient Female Mice Provide Evidence That Cohesins Are a Missing Link in Age-Related Nondisjunction. Nat. Genet. 2005, 37, 1351–1355. [Google Scholar] [CrossRef]
- Herrán, Y.; Gutiérrez-Caballero, C.; Sánchez-Martín, M.; Hernández, T.; Viera, A.; Barbero, J.L.; de Álava, E.; de Rooij, D.G.; Suja, J.Á.; Llano, E.; et al. The Cohesin Subunit RAD21L Functions in Meiotic Synapsis and Exhibits Sexual Dimorphism in Fertility. EMBO J. 2011, 30, 3091–3105. [Google Scholar] [CrossRef]
- El Yakoubi, W.; Akera, T. Condensin Dysfunction Is a Reproductive Isolating Barrier in Mice. Nature 2023, 623, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.R.; Selvaraj, S.; Yue, F.; Kim, A.; Li, Y.; Shen, Y.; Hu, M.; Liu, J.S.; Ren, B. Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions. Nature 2012, 485, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Nora, E.P.; Lajoie, B.R.; Schulz, E.G.; Giorgetti, L.; Okamoto, I.; Servant, N.; Piolot, T.; van Berkum, N.L.; Meisig, J.; Sedat, J.; et al. Spatial Partitioning of the Regulatory Landscape of the X-Inactivation Centre. Nature 2012, 485, 381–385. [Google Scholar] [CrossRef]
- Schwarzer, W.; Abdennur, N.; Goloborodko, A.; Pekowska, A.; Fudenberg, G.; Loe-Mie, Y.; Fonseca, N.A.; Huber, W.; Haering, C.H.; Mirny, L.; et al. Two Independent Modes of Chromatin Organization Revealed by Cohesin Removal. Nature 2017, 551, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Abdennur, N.; Schwarzer, W.; Pekowska, A.; Shaltiel, I.A.; Huber, W.; Haering, C.H.; Mirny, L.; Spitz, F. Condensin II Inactivation in Interphase Does Not Affect Chromatin Folding or Gene Expression. BioRxiv 2018. [Google Scholar] [CrossRef]
- Gassler, J.; Brandão, H.B.; Imakaev, M.; Flyamer, I.M.; Ladstätter, S.; Bickmore, W.A.; Peters, J.; Mirny, L.A.; Tachibana, K. A Mechanism of Cohesin-dependent Loop Extrusion Organizes Zygotic Genome Architecture. EMBO J. 2017, 36, 3600–3618. [Google Scholar] [CrossRef]
- Tedeschi, A.; Wutz, G.; Huet, S.; Jaritz, M.; Wuensche, A.; Schirghuber, E.; Davidson, I.F.; Tang, W.; Cisneros, D.A.; Bhaskara, V.; et al. Wapl Is an Essential Regulator of Chromatin Structure and Chromosome Segregation. Nature 2013, 501, 564–568. [Google Scholar] [CrossRef]
- Haarhuis, J.H.I.; Elbatsh, A.M.O.; van den Broek, B.; Camps, D.; Erkan, H.; Jalink, K.; Medema, R.H.; Rowland, B.D. WAPL-Mediated Removal of Cohesin Protects against Segregation Errors and Aneuploidy. Curr. Biol. 2013, 23, 2071–2077. [Google Scholar] [CrossRef]
- Liu, N.Q.; Maresca, M.; van den Brand, T.; Braccioli, L.; Schijns, M.M.G.A.; Teunissen, H.; Bruneau, B.G.; Nora, E.P.; de Wit, E. WAPL Maintains a Cohesin Loading Cycle to Preserve Cell-Type-Specific Distal Gene Regulation. Nat. Genet. 2020, 53, 100–109. [Google Scholar] [CrossRef]
- Haarhuis, J.H.I.; van der Weide, R.H.; Blomen, V.A.; Yáñez-Cuna, J.O.; Amendola, M.; van Ruiten, M.S.; Krijger, P.H.L.; Teunissen, H.; Medema, R.H.; van Steensel, B.; et al. The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension. Cell 2017, 169, 693–707.e14. [Google Scholar] [CrossRef]
- Nishimura, K.; Fukagawa, T.; Takisawa, H.; Kakimoto, T.; Kanemaki, M. An Auxin-Based Degron System for the Rapid Depletion of Proteins in Nonplant Cells. Nat. Methods 2009, 6, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Yesbolatova, A.; Saito, Y.; Kitamoto, N.; Makino-Itou, H.; Ajima, R.; Nakano, R.; Nakaoka, H.; Fukui, K.; Gamo, K.; Tominari, Y.; et al. The Auxin-Inducible Degron 2 Technology Provides Sharp Degradation Control in Yeast, Mammalian Cells, and Mice. Nat. Commun. 2020, 11, 5701. [Google Scholar] [CrossRef] [PubMed]
- Nabet, B.; Roberts, J.M.; Buckley, D.L.; Paulk, J.; Dastjerdi, S.; Yang, A.; Leggett, A.L.; Erb, M.A.; Lawlor, M.A.; Souza, A.; et al. The dTAG System for Immediate and Target-Specific Protein Degradation. Nat. Chem. Biol. 2018, 14, 431–441. [Google Scholar] [CrossRef]
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric Molecules That Target Proteins to the Skp1–Cullin–F Box Complex for Ubiquitination and Degradation. Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559. [Google Scholar] [CrossRef]
- Corsi, F.; Rusch, E.; Goloborodko, A. Loop Extrusion Rules: The next Generation. Curr. Opin. Genet. Dev. 2023, 81, 102061. [Google Scholar] [CrossRef]
- Fudenberg, G.; Imakaev, M.; Lu, C.; Goloborodko, A.; Abdennur, N.; Mirny, L.A. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016, 15, 2038–2049. [Google Scholar] [CrossRef]
- Kabirova, E.; Nurislamov, A.; Shadskiy, A.; Smirnov, A.; Popov, A.; Salnikov, P.; Battulin, N.; Fishman, V. Function and Evolution of the Loop Extrusion Machinery in Animals. Int. J. Mol. Sci. 2023, 24, 5017. [Google Scholar] [CrossRef] [PubMed]
- Dekker, C.; Haering, C.H.; Peters, J.-M.; Rowland, B.D. How Do Molecular Motors Fold the Genome? Science 2023, 382, 646–648. [Google Scholar] [CrossRef]
- van Ruiten, M.S.; van Gent, D.; Sedeño Cacciatore, Á.; Fauster, A.; Willems, L.; Hekkelman, M.L.; Hoekman, L.; Altelaar, M.; Haarhuis, J.H.I.; Brummelkamp, T.R.; et al. The Cohesin Acetylation Cycle Controls Chromatin Loop Length through a PDS5A Brake Mechanism. Nat. Struct. Mol. Biol. 2022, 29, 586–591. [Google Scholar] [CrossRef]
- Li, Y.; Haarhuis, J.H.I.; Sedeño Cacciatore, Á.; Oldenkamp, R.; van Ruiten, M.S.; Willems, L.; Teunissen, H.; Muir, K.W.; de Wit, E.; Rowland, B.D.; et al. The Structural Basis for Cohesin–CTCF-Anchored Loops. Nature 2020, 578, 472–476. [Google Scholar] [CrossRef]
- Stevens, T.J.; Lando, D.; Basu, S.; Atkinson, L.P.; Cao, Y.; Lee, S.F.; Leeb, M.; Wohlfahrt, K.J.; Boucher, W.; O’Shaughnessy-Kirwan, A.; et al. 3D Structures of Individual Mammalian Genomes Studied by Single-Cell Hi-C. Nature 2017, 544, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Nagano, T.; Lubling, Y.; Várnai, C.; Dudley, C.; Leung, W.; Baran, Y.; Mendelson Cohen, N.; Wingett, S.; Fraser, P.; Tanay, A. Cell-Cycle Dynamics of Chromosomal Organization at Single-Cell Resolution. Nature 2017, 547, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Bintu, B.; Mateo, L.J.; Su, J.-H.; Sinnott-Armstrong, N.A.; Parker, M.; Kinrot, S.; Yamaya, K.; Boettiger, A.N.; Zhuang, X. Super-Resolution Chromatin Tracing Reveals Domains and Cooperative Interactions in Single Cells. Science 2018, 362, eaau1783. [Google Scholar] [CrossRef] [PubMed]
- Pletenev, I.A.; Bazarevich, M.; Zagirova, D.R.; Kononkova, A.D.; Cherkasov, A.V.; Efimova, O.I.; Tiukacheva, E.A.; Morozov, K.V.; Ulianov, K.A.; Komkov, D.; et al. Extensive Long-Range Polycomb Interactions and Weak Compartmentalization Are Hallmarks of Human Neuronal 3D Genome. Nucleic Acids Res. 2024, 52, 6234–6252. [Google Scholar] [CrossRef] [PubMed]
- Kabirova, E.; Ryzhkova, A.; Lukyanchikova, V.; Khabarova, A.; Korablev, A.; Shnaider, T.; Nuriddinov, M.; Belokopytova, P.; Smirnov, A.; Khotskin, N.V.; et al. TAD Border Deletion at the Kit Locus Causes Tissue-Specific Ectopic Activation of a Neighboring Gene. Nat. Commun. 2024, 15, 4521. [Google Scholar] [CrossRef]
- Ryzhkova, A.; Taskina, A.; Khabarova, A.; Fishman, V.; Battulin, N. Erythrocytes 3D Genome Organization in Vertebrates. Sci. Rep. 2021, 11, 4414. [Google Scholar] [CrossRef]
- Lupiáñez, D.G.; Kraft, K.; Heinrich, V.; Krawitz, P.; Brancati, F.; Klopocki, E.; Horn, D.; Kayserili, H.; Opitz, J.M.; Laxova, R.; et al. Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions. Cell 2015, 161, 1012–1025. [Google Scholar] [CrossRef]
- Hnisz, D.; Weintraub, A.S.; Day, D.S.; Valton, A.-L.; Bak, R.O.; Li, C.H.; Goldmann, J.; Lajoie, B.R.; Fan, Z.P.; Sigova, A.A.; et al. Activation of Proto-Oncogenes by Disruption of Chromosome Neighborhoods. Science 2016, 351, 1454–1458. [Google Scholar] [CrossRef]
- Kraft, K.; Magg, A.; Heinrich, V.; Riemenschneider, C.; Schöpflin, R.; Markowski, J.; Ibrahim, D.M.; Acuna-Hidalgo, R.; Despang, A.; Andrey, G.; et al. Serial Genomic Inversions Induce Tissue-Specific Architectural Stripes, Gene Misexpression and Congenital Malformations. Nat. Cell Biol. 2019, 21, 305–310. [Google Scholar] [CrossRef]
- Cova, G.; Glaser, J.; Schöpflin, R.; Ali, S.; Prada-Medina, C.A.; Franke, M.; Falcone, R.; Federer, M.; Ponzi, E.; Ficarella, R.; et al. Combinatorial Effects on Gene Expression at the Lbx1/Fgf8 Locus Resolve Split-Hand/Foot Malformation Type 3. Nat. Commun. 2023, 14, 1475. [Google Scholar] [CrossRef]
- Salnikov, P.; Korablev, A.; Serova, I.; Belokopytova, P.; Yan, A.; Stepanchuk, Y.; Tikhomirov, S.; Fishman, V. Structural Variants in the Epb41l4a Locus: TAD Disruption and Nrep Gene Misregulation as Hypothetical Drivers of Neurodevelopmental Outcomes. Sci. Rep. 2024, 14, 5288. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Wenzlitschke, N.; Anderson, M.J.; Eraso, A.; Baudic, M.; Thompson, J.J.; Evans, A.A.; Shatford-Adams, L.M.; Chari, R.; Awasthi, P.; et al. Structural Perturbation of Chromatin Domains with Multiple Developmental Regulators Can Severely Impact Gene Regulation and Development. bioRxiv 2024. [Google Scholar] [CrossRef]
- Flavahan, W.A.; Drier, Y.; Liau, B.B.; Gillespie, S.M.; Venteicher, A.S.; Stemmer-Rachamimov, A.O.; Suvà, M.L.; Bernstein, B.E. Insulator Dysfunction and Oncogene Activation in IDH Mutant Gliomas. Nat. Cell Biol. 2015, 529, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Song, F.; Lyu, H.; Kobayashi, M.; Zhang, B.; Zhao, Z.; Hou, Y.; Wang, X.; Luan, Y.; Jia, B.; et al. Subtype-Specific 3D Genome Alteration in Acute Myeloid Leukaemia. Nature 2022, 611, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Melo, U.S.; Jatzlau, J.; Prada-Medina, C.A.; Flex, E.; Hartmann, S.; Ali, S.; Schöpflin, R.; Bernardini, L.; Ciolfi, A.; Moeinzadeh, M.-H.; et al. Enhancer Hijacking at the ARHGAP36 Locus Is Associated with Connective Tissue to Bone Transformation. Nat. Commun. 2023, 14, 2034. [Google Scholar] [CrossRef]
- Real, F.M.; Haas, S.A.; Franchini, P.; Xiong, P.; Simakov, O.; Kuhl, H.; Schöpflin, R.; Heller, D.; Moeinzadeh, M.-H.; Heinrich, V.; et al. The Mole Genome Reveals Regulatory Rearrangements Associated with Adaptive Intersexuality. Science 2020, 370, 208–214. [Google Scholar] [CrossRef]
- Ringel, A.R.; Szabo, Q.; Chiariello, A.M.; Chudzik, K.; Schöpflin, R.; Rothe, P.; Mattei, A.L.; Zehnder, T.; Harnett, D.; Laupert, V.; et al. Repression and 3D-Restructuring Resolves Regulatory Conflicts in Evolutionarily Rearranged Genomes. Cell 2022, 185, 3689–3704.e21. [Google Scholar] [CrossRef]
- Borsellini, A.; Conti, D.; Cutts, E.; Harris, R.J.; Walstein, K.; Graziadei, A.; Cecatiello, V.; Aarts, T.F.; Xie, R.; Mazouzi, A.; et al. Condensin II Activation by M18BP1. bioRxiv 2024. [Google Scholar] [CrossRef]
- Tane, S.; Shintomi, K.; Kinoshita, K.; Tsubota, Y.; Yoshida, M.M.; Nishiyama, T.; Hirano, T. Cell Cycle-Specific Loading of Condensin I Is Regulated by the N-Terminal Tail of Its Kleisin Subunit. eLife 2022, 11, e84694. [Google Scholar] [CrossRef]
- Houlard, M.; Cutts, E.E.; Shamim, M.S.; Godwin, J.; Weisz, D.; Presser Aiden, A.; Lieberman Aiden, E.; Schermelleh, L.; Vannini, A.; Nasmyth, K. MCPH1 Inhibits Condensin II during Interphase by Regulating Its SMC2-Kleisin Interface. eLife 2021, 10, e73348. [Google Scholar] [CrossRef]
- Peng, X.P.; Zhao, X. The Multi-Functional Smc5/6 Complex in Genome Protection and Disease. Nat. Struct. Mol. Biol. 2023, 30, 724–734. [Google Scholar] [CrossRef]
- Wutz, G.; Várnai, C.; Nagasaka, K.; Cisneros, D.A.; Stocsits, R.R.; Tang, W.; Schoenfelder, S.; Jessberger, G.; Muhar, M.; Hossain, M.J.; et al. Topologically Associating Domains and Chromatin Loops Depend on Cohesin and Are Regulated by CTCF, WAPL, and PDS5 Proteins. EMBO J. 2017, 36, 3573–3599. [Google Scholar] [CrossRef] [PubMed]
- Golfier, S.; Quail, T.; Kimura, H.; Brugués, J. Cohesin and Condensin Extrude DNA Loops in a Cell Cycle-Dependent Manner. eLife 2020, 9, e53885. [Google Scholar] [CrossRef] [PubMed]
- Abramo, K.; Valton, A.-L.; Venev, S.V.; Ozadam, H.; Fox, A.N.; Dekker, J. A Chromosome Folding Intermediate at the Condensin-to-Cohesin Transition during Telophase. Nat. Cell Biol. 2019, 21, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Emerson, D.J.; Gilgenast, T.G.; Titus, K.R.; Lan, Y.; Huang, P.; Zhang, D.; Wang, H.; Keller, C.A.; Giardine, B.; et al. Chromatin Structure Dynamics during the Mitosis-to-G1 Phase Transition. Nature 2019, 576, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Holzmann, J.; Politi, A.Z.; Nagasaka, K.; Hantsche-Grininger, M.; Walther, N.; Koch, B.; Fuchs, J.; Dürnberger, G.; Tang, W.; Ladurner, R.; et al. Absolute Quantification of Cohesin, CTCF and Their Regulators in Human Cells. eLife 2019, 8, e46269. [Google Scholar] [CrossRef]
- Kojic, A.; Cuadrado, A.; De Koninck, M.; Giménez-Llorente, D.; Rodríguez-Corsino, M.; Gómez-López, G.; Le Dily, F.; Marti-Renom, M.A.; Losada, A. Distinct Roles of Cohesin-SA1 and Cohesin-SA2 in 3D Chromosome Organization. Nat. Struct. Mol. Biol. 2018, 25, 496–504. [Google Scholar] [CrossRef]
- Brunner, A.; Morero, N.R.; Zhang, W.; Hossain, M.J.; Lampe, M.; Pflaumer, H.; Halavatyi, A.; Peters, J.-M.; Beckwith, K.S.; Ellenberg, J. Quantitative Imaging of Loop Extruders Rebuilding Interphase Genome Architecture after Mitosis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Perea-Resa, C.; Wattendorf, L.; Marzouk, S.; Blower, M.D. Cohesin: Behind Dynamic Genome Topology and Gene Expression Reprogramming. Trends Cell Biol. 2021, 31, 760–773. [Google Scholar] [CrossRef]
- Alomer, R.M.; da Silva, E.M.L.; Chen, J.; Piekarz, K.M.; McDonald, K.; Sansam, C.G.; Sansam, C.L.; Rankin, S. Esco1 and Esco2 Regulate Distinct Cohesin Functions during Cell Cycle Progression. Proc. Natl. Acad. Sci. USA 2017, 114, 9906–9911. [Google Scholar] [CrossRef]
- Wutz, G.; Ladurner, R.; Hilaire, B.G.S.; Stocsits, R.R.; Nagasaka, K.; Pignard, B.; Sanborn, A.; Tang, W.; Várnai, C.; Ivanov, M.P.; et al. ESCO1 and CTCF Enable Formation of Long Chromatin Loops by Protecting cohesinSTAG1 from WAPL. eLife 2020, 9, e52091. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Fumasoni, M.; Petela, N.J.; Murray, A.; Nasmyth, K.A. Cohesion Is Established during DNA Replication Utilising Chromosome Associated Cohesin Rings as Well as Those Loaded de Novo onto Nascent DNAs. eLife 2020, 9, e56611. [Google Scholar] [CrossRef]
- Cameron, G.; Gruszka, D.T.; Gruar, R.; Xie, S.; Kaya, Ç.; Nasmyth, K.A.; Baxter, J.; Srinivasan, M.; Yardimci, H. Sister Chromatid Cohesion Establishment during DNA Replication Termination. Science 2024, 384, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T.; Ladurner, R.; Schmitz, J.; Kreidl, E.; Schleiffer, A.; Bhaskara, V.; Bando, M.; Shirahige, K.; Hyman, A.A.; Mechtler, K.; et al. Sororin Mediates Sister Chromatid Cohesion by Antagonizing Wapl. Cell 2010, 143, 737–749. [Google Scholar] [CrossRef]
- Gibcus, J.H.; Samejima, K.; Goloborodko, A.; Samejima, I.; Naumova, N.; Nuebler, J.; Kanemaki, M.T.; Xie, L.; Paulson, J.R.; Earnshaw, W.C.; et al. A Pathway for Mitotic Chromosome Formation. Science 2018, 359, eaao6135. [Google Scholar] [CrossRef]
- Waizenegger, I.C.; Hauf, S.; Meinke, A.; Peters, J.-M. Two Distinct Pathways Remove Mammalian Cohesin from Chromosome Arms in Prophase and from Centromeres in Anaphase. Cell 2000, 103, 399–410. [Google Scholar] [CrossRef]
- Morales, C.; Losada, A. Establishing and Dissolving Cohesion during the Vertebrate Cell Cycle. Curr. Opin. Cell Biol. 2018, 52, 51–57. [Google Scholar] [CrossRef]
- Ono, T.; Fang, Y.; Spector, D.L.; Hirano, T. Spatial and Temporal Regulation of Condensins I and II in Mitotic Chromosome Assembly in Human Cells. Mol. Biol. Cell 2004, 15, 3296–3308. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.M.; Kinoshita, K.; Shintomi, K.; Aizawa, Y.; Hirano, T. Regulation of Condensin II by Self-Suppression and Release Mechanisms. Mol. Biol. Cell 2024, 35, ar21. [Google Scholar] [CrossRef]
- Cutts, E.E.; Tetiker, D.; Kim, E.; Aragon, L. Molecular Mechanism of Condensin I Activation by KIF4A. bioRxiv 2024. [Google Scholar] [CrossRef]
- Das, M.; Semple, J.I.; Haemmerli, A.; Volodkina, V.; Scotton, J.; Gitchev, T.; Annan, A.; Campos, J.; Statzer, C.; Dakhovnik, A.; et al. Condensin I Folds the C. elegansGenome. bioRxiv 2023. [Google Scholar] [CrossRef]
- Shintomi, K.; Hirano, T. The Relative Ratio of Condensin I to II Determines Chromosome Shapes. Genes Dev. 2011, 25, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Ono, T.; Losada, A.; Hirano, M.; Myers, M.P.; Neuwald, A.F.; Hirano, T. Differential Contributions of Condensin I and Condensin II to Mitotic Chromosome Architecture in Vertebrate Cells. Cell 2003, 115, 109–121. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Coelho, P.A.; Sunkel, C.E. The Condensin I Subunit Barren/CAP-H Is Essential for the Structural Integrity of Centromeric Heterochromatin during Mitosis. Mol. Cell. Biol. 2005, 25, 8971–8984. [Google Scholar] [CrossRef]
- Hoencamp, C.; Rowland, B.D. Genome Control by SMC Complexes. Nat. Rev. Mol. Cell Biol. 2023, 24, 633–650. [Google Scholar] [CrossRef] [PubMed]
- Aragón, L. The Smc5/6 Complex: New and Old Functions of the Enigmatic Long-Distance Relative. Annu. Rev. Genet. 2018, 52, 89–107. [Google Scholar] [CrossRef]
- Venegas, A.B.; Natsume, T.; Kanemaki, M.; Hickson, I.D. Inducible Degradation of the Human SMC5/6 Complex Reveals an Essential Role Only during Interphase. Cell Rep. 2020, 31, 107533. [Google Scholar] [CrossRef]
- Menolfi, D.; Delamarre, A.; Lengronne, A.; Pasero, P.; Branzei, D. Essential Roles of the Smc5/6 Complex in Replication through Natural Pausing Sites and Endogenous DNA Damage Tolerance. Mol. Cell 2015, 60, 835–846. [Google Scholar] [CrossRef]
- Bermúdez-López, M.; Villoria, M.T.; Esteras, M.; Jarmuz, A.; Torres-Rosell, J.; Clemente-Blanco, A.; Aragon, L. Sgs1′s Roles in DNA End Resection, HJ Dissolution, and Crossover Suppression Require a Two-Step SUMO Regulation Dependent on Smc5/6. Genes. Dev. 2016, 30, 1339–1356. [Google Scholar] [CrossRef]
- Chang, J.T.-H.; Li, S.; Beckwitt, E.C.; Than, T.; Haluska, C.; Chandanani, J.; O’Donnell, M.E.; Zhao, X.; Liu, S. Smc5/6′s Multifaceted DNA Binding Capacities Stabilize Branched DNA Structures. Nat. Commun. 2022, 13, 7179. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Kline, A.D.; Moss, J.F.; Selicorni, A.; Bisgaard, A.-M.; Deardorff, M.A.; Gillett, P.M.; Ishman, S.L.; Kerr, L.M.; Levin, A.V.; Mulder, P.A.; et al. Diagnosis and Management of Cornelia de Lange Syndrome: First International Consensus Statement. Nat. Rev. Genet. 2018, 19, 649–666. [Google Scholar] [CrossRef] [PubMed]
- Avagliano, L.; Parenti, I.; Grazioli, P.; Fede, E.D.; Parodi, C.; Mariani, M.; Kaiser, F.J.; Selicorni, A.; Gervasini, C.; Massa, V. Chromatinopathies: A Focus on Cornelia de Lange Syndrome. Clin. Genet. 2020, 97, 3–11. [Google Scholar] [CrossRef]
- Boyle, M.I.; Jespersgaard, C.; Brøndum-Nielsen, K.; Bisgaard, A.-M.; Tümer, Z. Cornelia de Lange Syndrome. Clin. Genet. 2014, 88, 1–12. [Google Scholar] [CrossRef]
- Kaur, M.; Blair, J.; Devkota, B.; Fortunato, S.; Clark, D.; Lawrence, A.; Kim, J.; Do, W.; Semeo, B.; Katz, O.; et al. Genomic Analyses in Cornelia de Lange Syndrome and Related Diagnoses: Novel Candidate Genes, Genotype–Phenotype Correlations and Common Mechanisms. Am. J. Med Genet. Part A 2023, 191, 2113–2131. [Google Scholar] [CrossRef]
- Parenti, I.; Diab, F.; Gil, S.R.; Mulugeta, E.; Casa, V.; Berutti, R.; Brouwer, R.W.W.; Dupé, V.; Eckhold, J.; Graf, E.; et al. MAU2 and NIPBL Variants Impair the Heterodimerization of the Cohesin Loader Subunits and Cause Cornelia de Lange Syndrome. Cell Rep. 2020, 31, 107647. [Google Scholar] [CrossRef] [PubMed]
- Weiss, F.D.; Calderon, L.; Wang, Y.-F.; Georgieva, R.; Guo, Y.; Cvetesic, N.; Kaur, M.; Dharmalingam, G.; Krantz, I.D.; Lenhard, B.; et al. Neuronal Genes Deregulated in Cornelia de Lange Syndrome Respond to Removal and Re-Expression of Cohesin. Nat. Commun. 2021, 12, 2919. [Google Scholar] [CrossRef]
- Garcia, P.; Fernandez-Hernandez, R.; Cuadrado, A.; Coca, I.; Gomez, A.; Maqueda, M.; Latorre-Pellicer, A.; Puisac, B.; Ramos, F.J.; Sandoval, J.; et al. Disruption of NIPBL/Scc2 in Cornelia de Lange Syndrome Provokes Cohesin Genome-Wide Redistribution with an Impact in the Transcriptome. Nat. Commun. 2021, 12, 4551. [Google Scholar] [CrossRef]
- Davidson, I.F.; Bauer, B.; Goetz, D.; Tang, W.; Wutz, G.; Peters, J.-M. DNA Loop Extrusion by Human Cohesin. Science 2019, 366, 1338–1345. [Google Scholar] [CrossRef]
- García-Gutiérrez, P.; García-Domínguez, M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front. Mol. Biosci. 2021, 8, 709232. [Google Scholar] [CrossRef]
- Shull, L.C.; Artinger, K.B. Epigenetic Regulation of Craniofacial Development and Disease. Birth Defects Res. 2023, 116, e2271. [Google Scholar] [CrossRef] [PubMed]
- Waldman, T. Emerging Themes in Cohesin Cancer Biology. Nat. Rev. Cancer 2020, 20, 504–515. [Google Scholar] [CrossRef]
- Solomon, D.A.; Kim, J.-S.; Bondaruk, J.; Shariat, S.F.; Wang, Z.-F.; Elkahloun, A.G.; Ozawa, T.; Gerard, J.; Zhuang, D.; Zhang, S.; et al. Frequent Truncating Mutations of STAG2 in Bladder Cancer. Nat. Genet. 2013, 45, 1428–1430. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Sun, X.; Chen, C.; Wu, S.; Huang, P.; Li, Z.; Dean, M.; Huang, Y.; Jia, W.; Zhou, Q.; et al. Whole-Genome and Whole-Exome Sequencing of Bladder Cancer Identifies Frequent Alterations in Genes Involved in Sister Chromatid Cohesion and Segregation. Nat. Genet. 2013, 45, 1459–1463. [Google Scholar] [CrossRef]
- Cucco, F.; Servadio, A.; Gatti, V.; Bianchi, P.; Mannini, L.; Prodosmo, A.; De Vitis, E.; Basso, G.; Friuli, A.; Laghi, L.; et al. Mutant Cohesin Drives Chromosomal Instability in Early Colorectal Adenomas. Hum. Mol. Genet. 2014, 23, 6773–6778. [Google Scholar] [CrossRef]
- Barber, T.D.; McManus, K.; Yuen, K.W.Y.; Reis, M.; Parmigiani, G.; Shen, D.; Barrett, I.; Nouhi, Y.; Spencer, F.; Markowitz, S.; et al. Chromatid Cohesion Defects May Underlie Chromosome Instability in Human Colorectal Cancers. Proc. Natl. Acad. Sci. USA 2008, 105, 3443–3448. [Google Scholar] [CrossRef]
- Sarogni, P.; Palumbo, O.; Servadio, A.; Astigiano, S.; D’Alessio, B.; Gatti, V.; Cukrov, D.; Baldari, S.; Pallotta, M.M.; Aretini, P.; et al. Overexpression of the Cohesin-Core Subunit SMC1A Contributes to Colorectal Cancer Development. J. Exp. Clin. Cancer Res. 2019, 38, 108. [Google Scholar] [CrossRef] [PubMed]
- Brohl, A.S.; Solomon, D.A.; Chang, W.; Wang, J.; Song, Y.; Sindiri, S.; Patidar, R.; Hurd, L.; Chen, L.; Shern, J.F.; et al. The Genomic Landscape of the Ewing Sarcoma Family of Tumors Reveals Recurrent STAG2 Mutation. PLoS Genet. 2014, 10, e1004475. [Google Scholar] [CrossRef]
- Rocquain, J.; Gelsi-Boyer, V.; Adélaïde, J.; Murati, A.; Carbuccia, N.; Vey, N.; Birnbaum, D.; Mozziconacci, M.-J.; Chaffanet, M. Alteration of Cohesin Genes in Myeloid Diseases. Am. J. Hematol. 2010, 85, 717–719. [Google Scholar] [CrossRef]
- Kon, A.; Shih, L.-Y.; Minamino, M.; Sanada, M.; Shiraishi, Y.; Nagata, Y.; Yoshida, K.; Okuno, Y.; Bando, M.; Nakato, R.; et al. Recurrent Mutations in Multiple Components of the Cohesin Complex in Myeloid Neoplasms. Nat. Genet. 2013, 45, 1232–1237. [Google Scholar] [CrossRef]
- Levine, D.A.; The Cancer Genome Atlas Research Network. A. Integrated Genomic Characterization of Endometrial Carcinoma. Nature 2013, 497, 67–73, Erratum in Nature 2013, 500, 242. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.W.; Verhaak, R.G.W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The Somatic Genomic Landscape of Glioblastoma. Cell 2014, 155, 462–477, Erratum in Cell 2014, 157, 753. [Google Scholar] [CrossRef]
- Koninck, M.D.; Losada, A. Cohesin Mutations in Cancer. Cold Spring Harb. Perspect. Med. 2016, 6, a026476. [Google Scholar] [CrossRef]
- Losada, A.; Yokochi, T.; Kobayashi, R.; Hirano, T. Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin Complexes. J. Cell Biol. 2000, 150, 405–416. [Google Scholar] [CrossRef]
- Canudas, S.; Smith, S. Differential Regulation of Telomere and Centromere Cohesion by the Scc3 Homologues SA1 and SA2, Respectively, in Human Cells. J. Cell Biol. 2009, 187, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Bisht, K.K.; Daniloski, Z.; Smith, S. SA1 Binds Directly to DNA through Its Unique AT-Hook to Promote Sister Chromatid Cohesion at Telomeres. J. Cell Sci. 2013, 126, 3493–3503. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Ball, A.R., Jr.; Pham, H.X.; Zeng, W.; Chen, H.-Y.; Schmiesing, J.A.; Kim, J.-S.; Berns, M.; Yokomori, K. Distinct Functions of Human Cohesin-SA1 and Cohesin-SA2 in Double-Strand Break Repair. Mol. Cell. Biol. 2014, 34, 685–698. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.W.; Tang, J.L.; Fa, P.P.; Lu, J.X.; Qi, F.M.; Cai, Z.M.; Liu, C.X.; Sun, X.J. Loss of STAG2 Causes Aneuploidy in Normal Human Bladder Cells. Evolution 2015, 14, 2638–2646. [Google Scholar] [CrossRef]
- Kleyman, M.; Kabeche, L.; Compton, D.A. STAG2 Promotes Error Correction in Mitosis by Regulating Kinetochore–Microtubule Attachments. J. Cell Sci. 2014, 127, 4225–4233. [Google Scholar] [CrossRef]
- Zhang, N.; Ge, G.; Meyer, R.; Sethi, S.; Basu, D.; Pradhan, S.; Zhao, Y.-J.; Li, X.-N.; Cai, W.-W.; El-Naggar, A.K.; et al. Overexpression of Separase Induces Aneuploidy and Mammary Tumorigenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 13033–13038. [Google Scholar] [CrossRef]
- Remeseiro, S.; Cuadrado, A.; Carretero, M.; Martínez, P.; Drosopoulos, W.C.; Cañamero, M.; Schildkraut, C.L.; Blasco, M.A.; Losada, A. Cohesin-SA1 Deficiency Drives Aneuploidy and Tumourigenesis in Mice Due to Impaired Replication of Telomeres. EMBO J. 2012, 31, 2076–2089. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D.A.; Kim, T.; Diaz-Martinez, L.A.; Fair, J.; Elkahloun, A.G.; Harris, B.T.; Toretsky, J.A.; Rosenberg, S.A.; Shukla, N.; Ladanyi, M.; et al. Mutational Inactivation of STAG2 Causes Aneuploidy in Human Cancer. Science 2011, 333, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Agustinus, A.S.; Li, J.; DiBona, M.; Bakhoum, S.F. Chromosomal Instability as a Driver of Cancer Progression. Nat. Rev. Genet. 2024, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Crompton, B.D.; Stewart, C.; Taylor-Weiner, A.; Alexe, G.; Kurek, K.C.; Calicchio, M.L.; Kiezun, A.; Carter, S.L.; Shukla, S.A.; Mehta, S.S.; et al. The Genomic Landscape of Pediatric Ewing Sarcoma. Cancer Discov. 2014, 4, 1326–1341. [Google Scholar] [CrossRef]
- Tirode, F.; Surdez, D.; Ma, X.; Parker, M.; Le Deley, M.C.; Bahrami, A.; Zhang, Z.; Lapouble, E.; Grossetête-Lalami, S.; Rusch, M.; et al. Genomic Landscape of Ewing Sarcoma Defines an Aggressive Subtype with Co-Association of STAG2 and TP53 Mutations. Cancer Discov. 2014, 4, 1342–1353. [Google Scholar] [CrossRef]
- Kim, J.-S.; He, X.; Orr, B.; Wutz, G.; Hill, V.; Peters, J.-M.; Compton, D.A.; Waldman, T. Intact Cohesion, Anaphase, and Chromosome Segregation in Human Cells Harboring Tumor-Derived Mutations in STAG2. PLoS Genet. 2016, 12, e1005865. [Google Scholar] [CrossRef]
- Hsieh, T.-H.S.; Cattoglio, C.; Slobodyanyuk, E.; Hansen, A.S.; Darzacq, X.; Tjian, R. Enhancer–Promoter Interactions and Transcription Are Largely Maintained upon Acute Loss of CTCF, Cohesin, WAPL or YY1. Nat. Genet. 2022, 54, 1919–1932. [Google Scholar] [CrossRef]
- Casa, V.; Gines, M.M.; Gusmao, E.G.; Slotman, J.A.; Zirkel, A.; Josipovic, N.; Oole, E.; van Ijcken, W.F.J.; Houtsmuller, A.B.; Papantonis, A.; et al. Redundant and Specific Roles of Cohesin STAG Subunits in Chromatin Looping and Transcriptional Control. Genome Res. 2020, 30, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Arruda, N.L.; Carico, Z.M.; Justice, M.; Liu, Y.F.; Zhou, J.; Stefan, H.C.; Dowen, J.M. Distinct and Overlapping Roles of STAG1 and STAG2 in Cohesin Localization and Gene Expression in Embryonic Stem Cells. Epigenetics Chromatin 2020, 13, 32. [Google Scholar] [CrossRef]
- Adane, B.; Alexe, G.; Seong, B.K.A.; Lu, D.; Hwang, E.E.; Hnisz, D.; Lareau, C.A.; Ross, L.; Lin, S.; Dela Cruz, F.S.; et al. STAG2 Loss Rewires Oncogenic and Developmental Programs to Promote Metastasis in Ewing Sarcoma. Cancer Cell 2021, 39, 827–844.e10. [Google Scholar] [CrossRef]
- Surdez, D.; Zaidi, S.; Grossetête, S.; Laud-Duval, K.; Ferre, A.S.; Mous, L.; Vourc’h, T.; Tirode, F.; Pierron, G.; Raynal, V.; et al. STAG2 Mutations Alter CTCF-Anchored Loop Extrusion, Reduce Cis-Regulatory Interactions and EWSR1-FLI1 Activity in Ewing Sarcoma. Cancer Cell 2021, 39, 810–826.e9. [Google Scholar] [CrossRef] [PubMed]
- Riggi, N.; Suvà, M.-L.; Suvà, D.; Cironi, L.; Provero, P.; Tercier, S.; Joseph, J.-M.; Stehle, J.-C.; Baumer, K.; Kindler, V.; et al. EWS-FLI-1 Expression Triggers a Ewing’s Sarcoma Initiation Program in Primary Human Mesenchymal Stem Cells. Cancer Res. 2008, 68, 2176–2185. [Google Scholar] [CrossRef] [PubMed]
- Delattre, O.; Zucman, J.; Plougastel, B.; Desmaze, C.; Melot, T.; Peter, M.; Kovar, H.; Joubert, I.; de Jong, P.; Rouleau, G.; et al. Gene Fusion with an ETS DNA-Binding Domain Caused by Chromosome Translocation in Human Tumours. Nature 1992, 359, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Lessnick, S.L.; Ladanyi, M. Molecular Pathogenesis of Ewing Sarcoma: New Therapeutic and Transcriptional Targets. Annu. Rev. Pathol. Mech. Dis. 2012, 7, 145–159. [Google Scholar] [CrossRef]
- Franzetti, G.-A.; Laud-Duval, K.; van der Ent, W.; Brisac, A.; Irondelle, M.; Aubert, S.; Dirksen, U.; Bouvier, C.; de Pinieux, G.; Snaar-Jagalska, E.; et al. Cell-to-Cell Heterogeneity of EWSR1-FLI1 Activity Determines Proliferation/Migration Choices in Ewing Sarcoma Cells. Oncogene 2017, 36, 3505–3514. [Google Scholar] [CrossRef]
- Aynaud, M.-M.; Mirabeau, O.; Gruel, N.; Grossetête, S.; Boeva, V.; Durand, S.; Surdez, D.; Saulnier, O.; Zaïdi, S.; Gribkova, S.; et al. Transcriptional Programs Define Intratumoral Heterogeneity of Ewing Sarcoma at Single-Cell Resolution. Cell Rep. 2020, 30, 1767–1779. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Kim, J.-S.; Yang, T.; Ya, A.; Sadzewicz, L.; Tallon, L.; Harris, B.T.; Sarkaria, J.; Jin, F.; Waldman, T. STAG2 Mutations Regulate 3D Genome Organization, Chromatin Loops, and Polycomb Signaling in Glioblastoma Multiforme. J. Biol. Chem. 2024, 300, 107341. [Google Scholar] [CrossRef]
- Du, Z.; Zheng, H.; Kawamura, Y.K.; Zhang, K.; Gassler, J.; Powell, S.; Xu, Q.; Lin, Z.; Xu, K.; Zhou, Q.; et al. Polycomb Group Proteins Regulate Chromatin Architecture in Mouse Oocytes and Early Embryos. Mol. Cell 2020, 77, 825–839.e7. [Google Scholar] [CrossRef]
- Rhodes, J.D.P.; Feldmann, A.; Hernández-Rodríguez, B.; Díaz, N.; Brown, J.M.; Fursova, N.A.; Blackledge, N.P.; Prathapan, P.; Dobrinic, P.; Huseyin, M.K.; et al. Cohesin Disrupts Polycomb-Dependent Chromosome Interactions in Embryonic Stem Cells. Cell Rep. 2020, 30, 820–835.e10. [Google Scholar] [CrossRef]
- Smith, J.S.; Lappin, K.M.; Craig, S.G.; Liberante, F.G.; Crean, C.M.; McDade, S.S.; Thompson, A.; Mills, K.I.; Savage, K.I. Chronic Loss of STAG2 Leads to Altered Chromatin Structure Contributing to De-Regulated Transcription in AML. J. Transl. Med. 2020, 18, 339. [Google Scholar] [CrossRef]
- Andrey, G.; Montavon, T.; Mascrez, B.; Gonzalez, F.; Noordermeer, D.; Leleu, M.; Trono, D.; Spitz, F.; Duboule, D. A Switch Between Topological Domains Underlies HoxD Genes Collinearity in Mouse Limbs. Science 2013, 340, 1234167. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, M.; Crutchley, J.L.; Miura, H.; Suderman, M.; Blanchette, M.; Dostie, J. Hox in Motion: Tracking HoxA Cluster Conformation during Differentiation. Nucleic Acids Res. 2014, 42, 1524–1540. [Google Scholar] [CrossRef]
- Wang, X.Q.D.; Gore, H.; Himadewi, P.; Feng, F.; Yang, L.; Zhou, W.; Liu, Y.; Wang, X.; Chen, C.; Su, J.; et al. Three-Dimensional Regulation of HOXA Cluster Genes by a Cis-Element in Hematopoietic Stem Cell and Leukemia. BioRxiv 2020. [Google Scholar] [CrossRef]
- Grubach, L.; Juhl-Christensen, C.; Rethmeier, A.; Olesen, L.H.; Aggerholm, A.; Hokland, P.; Østergaard, M. Gene Expression Profiling of Polycomb, Hox and Meis Genes in Patients with Acute Myeloid Leukaemia. Eur. J. Haematol. 2008, 81, 112–122. [Google Scholar] [CrossRef]
- Dickson, G.J.; Liberante, F.G.; Kettyle, L.M.; O’Hagan, K.A.; Finnegan, D.P.J.; Bullinger, L.; Geerts, D.; McMullin, M.F.; Lappin, T.R.J.; Mills, K.I.; et al. HOXA/PBX3 Knockdown Impairs Growth and Sensitizes Cytogenetically Normal Acute Myeloid Leukemia Cells to Chemotherapy. Haematologica 2013, 98, 1216–1225. [Google Scholar] [CrossRef]
- Fischer, A.; Hernández-Rodríguez, B.; Mulet-Lazaro, R.; Nuetzel, M.; Hölzl, F.; van Herk, S.; Kavelaars, F.G.; Stanewsky, H.; Ackermann, U.; Niang, A.H.; et al. STAG2 Mutations Reshape the Cohesin-Structured Spatial Chromatin Architecture to Drive Gene Regulation in Acute Myeloid Leukemia. Cell Rep. 2024, 43, 114498. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, J.-N.; Stasik, S.; Röllig, C.; Sauer, T.; Scholl, S.; Hochhaus, A.; Crysandt, M.; Brümmendorf, T.H.; Naumann, R.; Steffen, B.; et al. Alterations of Cohesin Complex Genes in Acute Myeloid Leukemia: Differential Co-Mutations, Clinical Presentation and Impact on Outcome. Blood Cancer J. 2023, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Tothova, Z.; Valton, A.-L.; Gorelov, R.A.; Vallurupalli, M.; Krill-Burger, J.M.; Holmes, A.; Landers, C.C.; Haydu, J.E.; Malolepsza, E.; Hartigan, C.; et al. Cohesin Mutations Alter DNA Damage Repair and Chromatin Structure and Create Therapeutic Vulnerabilities in MDS/AML. JCI Insight 2021, 6, e142149. [Google Scholar] [CrossRef]
- Richart, L.; Lapi, E.; Pancaldi, V.; Cuenca-Ardura, M.; Pau, E.C.-S.; Madrid-Mencía, M.; Neyret-Kahn, H.; Radvanyi, F.; Rodríguez, J.A.; Cuartero, Y.; et al. STAG2 Loss-of-Function Affects Short-Range Genomic Contacts and Modulates the Basal-Luminal Transcriptional Program of Bladder Cancer Cells. Nucleic Acids Res. 2021, 49, 11005–11021. [Google Scholar] [CrossRef]
- Chu, Z.; Gu, L.; Hu, Y.; Zhang, X.; Li, M.; Chen, J.; Teng, D.; Huang, M.; Shen, C.-H.; Cai, L.; et al. STAG2 Regulates Interferon Signaling in Melanoma via Enhancer Loop Reprogramming. Nat. Commun. 2022, 13, 1859. [Google Scholar] [CrossRef]
- Rittenhouse, N.L.; Carico, Z.M.; Liu, Y.F.; Stefan, H.C.; Arruda, N.L.; Zhou, J.; Dowen, J.M. Functional Impact of Cancer-Associated Cohesin Variants on Gene Expression and Cellular Identity. Genetics 2021, 217, iyab025. [Google Scholar] [CrossRef] [PubMed]
- Carico, Z.M.; Stefan, H.C.; Justice, M.; Yimit, A.; Dowen, J.M. A Cohesin Cancer Mutation Reveals a Role for the Hinge Domain in Genome Organization and Gene Expression. PLoS Genet. 2021, 17, e1009435. [Google Scholar] [CrossRef] [PubMed]
- Bradley, R.K.; Anczuków, O. RNA Splicing Dysregulation and the Hallmarks of Cancer. Nat. Rev. Cancer 2023, 23, 135–155. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, J.; Gu, C.; Yang, Y. Alternative Splicing and Cancer: A Systematic Review. Sig. Transduct. Target. Ther. 2021, 6, 78. [Google Scholar] [CrossRef]
- Grubert, F.; Srivas, R.; Spacek, D.V.; Kasowski, M.; Ruiz-Velasco, M.; Sinnott-Armstrong, N.; Greenside, P.; Narasimha, A.; Liu, Q.; Geller, B.; et al. Landscape of Cohesin-Mediated Chromatin Loops in the Human Genome. Nature 2020, 583, 737–743. [Google Scholar] [CrossRef]
- Ruiz-Velasco, M.; Kumar, M.; Lai, M.C.; Bhat, P.; Solis-Pinson, A.B.; Reyes, A.; Kleinsorg, S.; Noh, K.-M.; Gibson, T.J.; Zaugg, J.B. CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals. Cell Syst. 2017, 5, 628–637.e6. [Google Scholar] [CrossRef]
- Singh, A.K.; Chen, Q.; Nguyen, C.; Meerzaman, D.; Singer, D.S. Cohesin Regulates Alternative Splicing. Sci. Adv. 2023, 9, eade3876. [Google Scholar] [CrossRef] [PubMed]
- McCracken, S.; Longman, D.; Marcon, E.; Moens, P.; Downey, M.; Nickerson, J.A.; Jessberger, R.; Wilde, A.; Caceres, J.F.; Emili, A.; et al. Proteomic Analysis of SRm160-Containing Complexes Reveals a Conserved Association with Cohesin. J. Biol. Chem. 2005, 280, 42227–42236. [Google Scholar] [CrossRef]
- Kim, J.-S.; He, X.; Liu, J.; Duan, Z.; Kim, T.; Gerard, J.; Kim, B.; Pillai, M.M.; Lane, W.S.; Noble, W.S.; et al. Systematic Proteomics of Endogenous Human Cohesin Reveals an Interaction with Diverse Splicing Factors and RNA-Binding Proteins Required for Mitotic Progression. J. Biol. Chem. 2019, 294, 8760–8772. [Google Scholar] [CrossRef]
- Takahashi, T.S.; Yiu, P.; Chou, M.F.; Gygi, S.; Walter, J.C. Recruitment of Xenopus Scc2 and Cohesin to Chromatin Requires the Pre-Replication Complex. Nat. Cell Biol. 2004, 6, 991–996. [Google Scholar] [CrossRef]
- Zheng, G.; Kanchwala, M.; Xing, C.; Yu, H.; States, U. MCM2–7-Dependent Cohesin Loading during S Phase Promotes Sister-Chromatid Cohesion. eLife 2018, 7, e33920. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, M.P.; Ladurner, R.; Poser, I.; Beveridge, R.; Rampler, E.; Hudecz, O.; Novatchkova, M.; Hériché, J.-K.; Wutz, G.; van der Lelij, P.; et al. The Replicative Helicase MCM Recruits Cohesin Acetyltransferase ESCO2 to Mediate Centromeric Sister Chromatid Cohesion. EMBO J. 2018, 37, e97150. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Maldonado, D.; Byrum, A.K.; Jackson, J.; Wessel, S.; Lemaçon, D.; Guitton-Sert, L.; Quinet, A.; Tirman, S.; Graziano, S.; Masson, J.-Y.; et al. Perturbing Cohesin Dynamics Drives MRE11 Nuclease-Dependent Replication Fork Slowing. Nucleic Acids Res. 2019, 47, 1294–1310. [Google Scholar] [CrossRef]
- Frattini, C.; Villa-Hernández, S.; Pellicanò, G.; Jossen, R.; Katou, Y.; Shirahige, K.; Bermejo, R. Cohesin Ubiquitylation and Mobilization Facilitate Stalled Replication Fork Dynamics. Mol. Cell 2017, 68, 758–772.e4. [Google Scholar] [CrossRef]
- Terret, M.-E.; Sherwood, R.; Rahman, S.; Qin, J.; Jallepalli, P.V. Cohesin Acetylation Speeds the Replication Fork. Nature 2009, 462, 231–234. [Google Scholar] [CrossRef]
- Guillou, E.; Ibarra, A.; Coulon, V.; Casado-Vela, J.; Rico, D.; Casal, I.; Schwob, E.; Losada, A.; Méndez, J. Cohesin Organizes Chromatin Loops at DNA Replication Factories. Genes. Dev. 2010, 24, 2812–2822. [Google Scholar] [CrossRef] [PubMed]
- Mondal, G.; Stevers, M.; Goode, B.; Ashworth, A.; Solomon, D.A. A Requirement for STAG2 in Replication Fork Progression Creates a Targetable Synthetic Lethality in Cohesin-Mutant Cancers. Nat. Commun. 2019, 10, 1686. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Zhangding, Z.; Liu, X.; Ai, C.; Gan, T.; Liang, H.; Guo, Y.; Chen, M.; Liu, Y.; et al. Cohesin Maintains Replication Timing to Suppress DNA Damage on Cancer Genes. Nat. Genet. 2023, 55, 1347–1358. [Google Scholar] [CrossRef]
- Meisenberg, C.; Pinder, S.I.; Hopkins, S.R.; Wooller, S.K.; Benstead-Hume, G.; Pearl, F.M.G.; Jeggo, P.A.; Downs, J.A. Repression of Transcription at DNA Breaks Requires Cohesin throughout Interphase and Prevents Genome Instability. Mol. Cell 2019, 73, 212–223.e7. [Google Scholar] [CrossRef]
- Phipps, J.; Toulouze, M.; Ducrot, C.; Costa, R.; Brocas, C.; Dubrana, K. Cohesin Complex Oligomerization Maintains End-Tethering at DNA Double-Strand Breaks. Nat. Cell Biol. 2024, 1–12. [Google Scholar] [CrossRef]
- Piazza, A.; Bordelet, H.; Dumont, A.; Thierry, A.; Savocco, J.; Girard, F.; Koszul, R. Cohesin Regulates Homology Search during Recombinational DNA Repair. Nat. Cell Biol. 2021, 23, 1176–1186. [Google Scholar] [CrossRef]
- Arnould, C.; Rocher, V.; Finoux, A.-L.; Clouaire, T.; Li, K.; Zhou, F.; Caron, P.; Mangeot, P.E.; Ricci, E.P.; Mourad, R.; et al. Loop Extrusion as a Mechanism for Formation of DNA Damage Repair Foci. Nature 2021, 590, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Xu, H.; Tuynman, J.; George, J.; Yan, Y.; Li, J.; Ward, R.L.; Mortensen, N.; Hawkins, N.J.; McKay, M.J.; et al. RAD21 Cohesin Overexpression Is a Prognostic and Predictive Marker Exacerbating Poor Prognosis in KRAS Mutant Colorectal Carcinomas. Br. J. Cancer 2014, 110, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, S.; Cui, L.; Wang, W.; Li, J.; Wang, K.; Lao, X. Role of SMC1A Overexpression as a Predictor of Poor Prognosis in Late Stage Colorectal Cancer. BMC Cancer 2015, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, M.; Astigiano, S.; Baldari, S.; Pallotta, M.M.; Porta, G.; Pigozzi, S.; Antonini, A.; Emionite, L.; Frattini, A.; Valli, R.; et al. The Synergism of SMC1A Cohesin Gene Silencing and Bevacizumab against Colorectal Cancer. J. Exp. Clin. Cancer Res. 2024, 43, 49. [Google Scholar] [CrossRef]
- Kim, M.S.; An, C.H.; Yoo, N.J.; Lee, S.H. Frameshift Mutations of Chromosome Cohesion–Related Genes SGOL1 and PDS5B in Gastric and Colorectal Cancers with High Microsatellite Instability. Hum. Pathol. 2013, 44, 2234–2240. [Google Scholar] [CrossRef]
- Brough, R.; Bajrami, I.; Vatcheva, R.; Natrajan, R.; Reis-Filho, J.S.; Lord, C.J.; Ashworth, A. APRIN Is a Cell Cycle Specific BRCA2-interacting Protein Required for Genome Integrity and a Predictor of Outcome after Chemotherapy in Breast Cancer. EMBO J. 2012, 31, 1160–1176. [Google Scholar] [CrossRef]
- Blighe, K.; Kenny, L.; Patel, N.; Guttery, D.S.; Page, K.; Gronau, J.H.; Golshani, C.; Stebbing, J.; Coombes, R.C.; Shaw, J.A. Whole Genome Sequence Analysis Suggests Intratumoral Heterogeneity in Dissemination of Breast Cancer to Lymph Nodes. PLoS ONE 2014, 9, e115346. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, W.; Zhang, F.; Wu, L.; Li, J.; Ma, T.; Cao, T.; Lian, C.; Xia, J.; Wang, P.; et al. PDS5B Inhibits Cell Proliferation, Migration, and Invasion via Upregulation of LATS1 in Lung Cancer Cells. Cell Death Discov. 2021, 7, 1–8. [Google Scholar] [CrossRef]
- Ma, J.; Cui, Y.; Cao, T.; Xu, H.; Shi, Y.; Xia, J.; Tao, Y.; Wang, Z.P. PDS5B Regulates Cell Proliferation and Motility via Upregulation of Ptch2 in Pancreatic Cancer Cells. Cancer Lett. 2019, 460, 65–74. [Google Scholar] [CrossRef]
- Sohn, M.-S.; Kang, M.; Kang, S.-M.; Bae, S. Downregulation of APRIN Expression Increases Cancer Cell Proliferation via an Interleukin-6/STAT3/Cyclin D Axis. Oncol. Lett. 2020, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Leiserson, M.D.; Vandin, F.; Wu, H.-T.; Dobson, J.R.; Eldridge, J.V.; Thomas, J.L.; Papoutsaki, A.; Kim, Y.; Niu, B.; McLellan, M.; et al. Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes. Nat. Genet. 2014, 47, 106. [Google Scholar] [CrossRef]
- Ham, M.F.; Takakuwa, T.; Rahadiani, N.; Tresnasari, K.; Nakajima, H.; Aozasa, K. Condensin Mutations and Abnormal Chromosomal Structures in Pyothorax-associated Lymphoma. Cancer Sci. 2007, 98, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Baergen, A.K.; Jeusset, L.M.; Lichtensztejn, Z.; McManus, K.J. Diminished Condensin Gene Expression Drives Chromosome Instability That May Contribute to Colorectal Cancer Pathogenesis. Cancers 2019, 11, 1066. [Google Scholar] [CrossRef]
- Weyburne, E.; Bosco, G. Cancer-associated Mutations in the Condensin II Subunit CAPH2 Cause Genomic Instability through Telomere Dysfunction and Anaphase Chromosome Bridges. J. Cell. Physiol. 2020, 236, 3579–3598. [Google Scholar] [CrossRef]
- Wallace, H.A.; Rana, V.; Nguyen, H.Q.; Bosco, G. Condensin II Subunit NCAPH2 Associates with Shelterin Protein TRF1 and Is Required for Telomere Stability. J. Cell. Physiol. 2019, 234, 20755–20768. [Google Scholar] [CrossRef] [PubMed]
- Murakami-Tonami, Y.; Kishida, S.; Takeuchi, I.; Katou, Y.; Maris, J.M.; Ichikawa, H.; Kondo, Y.; Sekido, Y.; Shirahige, K.; Murakami, H.; et al. Inactivation of SMC2 Shows a Synergistic Lethal Response in MYCN-Amplified Neuroblastoma Cells. Cell Cycle 2014, 13, 1115–1131. [Google Scholar] [CrossRef]
- Zhan, P.; Xi, G.; Zhang, B.; Wu, Y.; Liu, H.; Liu, Y.; Xu, W.; Zhu, Q.; Cai, F.; Zhou, Z.; et al. NCAPG2 Promotes Tumour Proliferation by Regulating G2/M Phase and Associates with Poor Prognosis in Lung Adenocarcinoma. J. Cell. Mol. Med. 2017, 21, 665–676. [Google Scholar] [CrossRef]
- Liu, W.; Liang, B.; Liu, H.; Huang, Y.; Yin, X.; Zhou, F.; Yu, X.; Feng, Q.; Li, E.; Zou, Z.; et al. Overexpression of non-SMC Condensin I Complex Subunit G Serves as a Promising Prognostic Marker and Therapeutic Target for Hepatocellular Carcinoma. Int. J. Mol. Med. 2017, 40, 731–738. [Google Scholar] [CrossRef]
- Zhang, C.; Kuang, M.; Li, M.; Feng, L.; Zhang, K.; Cheng, S. SMC4, Which Is Essentially Involved in Lung Development, Is Associated with Lung Adenocarcinoma Progression. Sci. Rep. 2016, 6, 34508. [Google Scholar] [CrossRef]
- Kim, J.H.; Youn, Y.; Kim, K.-T.; Jang, G.; Hwang, J.-H. Non-SMC Condensin I Complex Subunit H Mediates Mature Chromosome Condensation and DNA Damage in Pancreatic Cancer Cells. Sci. Rep. 2019, 9, 17889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Su, R.; Shan, C.; Gao, C.; Wu, P.; Zhang, Q.; Su, R.; Shan, C.; Gao, C.; Wu, P. Non-SMC Condensin I Complex, Subunit G (NCAPG) Is a Novel Mitotic Gene Required for Hepatocellular Cancer Cell Proliferation and Migration. Oncol. Res. 2018, 26, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, M.; Kuriyama, R.; Trimborn, M.; Keifenheim, D.; Cañuelo, A.; Sánchez, A.; Clarke, D.J.; Marchal, J.A. MCPH1, Mutated in Primary Microcephaly, Is Required for Efficient Chromosome Alignment during Mitosis. Sci. Rep. 2017, 7, 13019. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Dai, H.; Multani, A.S.; Li, K.; Chin, K.; Gray, J.; Lahad, J.P.; Liang, J.; Mills, G.B.; Meric-Bernstam, F.; et al. BRIT1 Regulates Early DNA Damage Response, Chromosomal Integrity, and Cancer. Cancer Cell 2006, 10, 145–157. [Google Scholar] [CrossRef]
- Cicconi, A.; Rai, R.; Xiong, X.; Broton, C.; Al-Hiyasat, A.; Hu, C.; Dong, S.; Sun, W.; Garbarino, J.; Bindra, R.S.; et al. Microcephalin 1/BRIT1-TRF2 Interaction Promotes Telomere Replication and Repair, Linking Telomere Dysfunction to Primary Microcephaly. Nat. Commun. 2020, 11, 5861. [Google Scholar] [CrossRef]
- Jo, Y.S.; Kim, S.S.; Kim, M.S.; Yoo, N.J.; Lee, S.H. Candidate Tumor Suppressor Gene MCPH1 Is Mutated in Colorectal and Gastric Cancers. Int. J. Color. Dis. 2017, 32, 161–162. [Google Scholar] [CrossRef]
- Brüning-Richardson, A.; Bond, J.; Alsiary, R.; Richardson, J.; Cairns, D.A.; McCormack, L.; Hutson, R.; Burns, P.; Wilkinson, N.; Hall, G.D.; et al. ASPM and Microcephalin Expression in Epithelial Ovarian Cancer Correlates with Tumour Grade and Survival. Br. J. Cancer 2011, 104, 1602–1610. [Google Scholar] [CrossRef]
- Cava, C.; Pisati, M.; Frasca, M.; Castiglioni, I. Identification of Breast Cancer Subtype-Specific Biomarkers by Integrating Copy Number Alterations and Gene Expression Profiles. Medicina 2021, 57, 261. [Google Scholar] [CrossRef]
- Wu, X.; Liu, W.; Liu, X.; Ai, Q.; Yu, J. Overexpression of MCPH1 Inhibits the Migration and Invasion of Lung Cancer Cells. Onco Targets Ther. 2018, 11, 3111–3117. [Google Scholar] [CrossRef]
- Alsolami, M.; Aboalola, D.; Malibari, D.; Alghamdi, T.; Alshekhi, W.; Jad, H.; Rumbold-Hall, R.; Altowairqi, A.S.; Bell, S.M.; Alsiary, R.A. The Emerging Role of MCPH1/BRIT1 in Carcinogenesis. Front. Oncol. 2023, 13, 1047588. [Google Scholar] [CrossRef]
- Liang, Y.; Gao, H.; Lin, S.-Y.; Goss, J.A.; Du, C.; Li, K. Mcph1/Brit1 Deficiency Promotes Genomic Instability and Tumor Formation in a Mouse Model. Oncogene 2015, 34, 4368–4378. [Google Scholar] [CrossRef] [PubMed]
- Bilbao, C.; Ramírez, R.; Rodríguez, G.; Falcón, O.; León, L.; Díaz-Chico, N.; Perucho, M.; Díaz-Chico, J.C. Double Strand Break Repair Components Are Frequent Targets of Microsatellite Instability in Endometrial Cancer. Eur. J. Cancer 2010, 46, 2821–2827. [Google Scholar] [CrossRef] [PubMed]
- Tervasmäki, A.; Mantere, T.; Eshraghi, L.; Laurila, N.; Tuppurainen, H.; Ronkainen, V.-P.; Koivuluoma, S.; Devarajan, R.; Peltoketo, H.; Pylkäs, K. Tumor Suppressor MCPH1 Regulates Gene Expression Profiles Related to Malignant Conversion and Chromosomal Assembly. Int. J. Cancer 2019, 145, 2070–2081. [Google Scholar] [CrossRef] [PubMed]
- Denu, R.A.; Burkard, M.E. Analysis of the “Centrosome-Ome” Identifies MCPH1 Deletion as a Cause of Centrosome Amplification in Human Cancer. Sci. Rep. 2020, 10, 11921. [Google Scholar] [CrossRef] [PubMed]
- Pryzhkova, M.V.; Jordan, P.W. Conditional Mutation of Smc5 in Mouse Embryonic Stem Cells Perturbs Condensin Localization and Mitotic Progression. J. Cell Sci. 2016, 129, 1619–1634. [Google Scholar] [CrossRef]
- Potts, P.R.; Porteus, M.H.; Yu, H. Human SMC5/6 Complex Promotes Sister Chromatid Homologous Recombination by Recruiting the SMC1/3 Cohesin Complex to Double-Strand Breaks. EMBO J. 2006, 25, 3377–3388. [Google Scholar] [CrossRef]
- Tanasie, N.-L.; Gutiérrez-Escribano, P.; Jaklin, S.; Aragon, L.; Stigler, J. Stabilization of DNA Fork Junctions by Smc5/6 Complexes Revealed by Single-Molecule Imaging. Cell Rep. 2022, 41, 111778. [Google Scholar] [CrossRef]
- Abdul, F.; Diman, A.; Baechler, B.; Ramakrishnan, D.; Kornyeyev, D.; Beran, R.K.; Fletcher, S.P.; Strubin, M. Smc5/6 Silences Episomal Transcription by a Three-Step Function. Nat. Struct. Mol. Biol. 2022, 29, 922–931. [Google Scholar] [CrossRef]
- Di Benedetto, C.; Oh, J.; Choudhery, Z.; Shi, W.; Valdes, G.; Betancur, P. NSMCE2, a Novel Super-Enhancer-Regulated Gene, Is Linked to Poor Prognosis and Therapy Resistance in Breast Cancer. BMC Cancer 2022, 22, 1056. [Google Scholar] [CrossRef]
- Roy, S.; Zaker, A.; Mer, A.; D’Amours, D. Large-Scale Phenogenomic Analysis of Human Cancers Uncovers Frequent Alterations Affecting SMC5/6 Complex Components in Breast Cancer. NAR Cancer 2023, 5, zcad047. [Google Scholar] [CrossRef]
- Nie, H.; Wang, Y.; Yang, X.; Liao, Z.; He, X.; Zhou, J.; Ou, C. Clinical Significance and Integrative Analysis of the SMC Family in Hepatocellular Carcinoma. Front. Med. 2021, 8, 727965. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, G.; Tong, Z.; Sun, J.; Su, J.; Cao, Z.; Luo, Y.; Wang, W. Prognostic Relevance of SMC Family Gene Expression in Human Sarcoma. Aging 2020, 13, 1473–1487. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.M.; Xu, Y.; Li, F.; Nio, K.; Reszka-Blanco, N.; Li, X.; Wu, Y.; Yu, Y.; Xiong, Y.; Su, L. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication. Cell Rep. 2016, 16, 2846–2854. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zhang, D.; Gui, C.; Huang, L.; Chang, S.; Dong, L.; Bai, L.; Wu, S.; Lan, K. KSHV RTA Antagonizes SMC5/6 Complex-Induced Viral Chromatin Compaction by Hijacking the Ubiquitin-Proteasome System. PLoS Pathog. 2022, 18, e1010744. [Google Scholar] [CrossRef]
- Yiu, S.P.T.; Guo, R.; Zerbe, C.; Weekes, M.P.; Gewurz, B.E. Epstein-Barr Virus BNRF1 Destabilizes SMC5/6 Cohesin Complexes to Evade Its Restriction of Replication Compartments. Cell Rep. 2022, 38, 110411. [Google Scholar] [CrossRef]
- Sekiba, K.; Otsuka, M.; Funato, K.; Miyakawa, Y.; Tanaka, E.; Seimiya, T.; Yamagami, M.; Tsutsumi, T.; Okushin, K.; Miyakawa, K.; et al. HBx-Induced Degradation of Smc5/6 Complex Impairs Homologous Recombination-Mediated Repair of Damaged DNA. J. Hepatol. 2022, 76, 53–62. [Google Scholar] [CrossRef]
- Van Hooff, J.J.E.; Raas, M.W.D.; Tromer, E.C.; Eme, L. Shaping up Genomes: Prokaryotic Roots and Eukaryotic Diversification of SMC Complexes. BioRxiv 2024. [Google Scholar] [CrossRef]
- Forni, D.; Mozzi, A.; Sironi, M.; Cagliani, R. Positive Selection Drives the Evolution of the Structural Maintenance of Chromosomes (SMC) Complexes. Genes 2024, 15, 1159. [Google Scholar] [CrossRef]
Gene | Function | Associated diseases |
---|---|---|
Cohesin | ||
SMC1A | Cohesin core subunit | CdLS (OMIM #300590), developmental and epileptic encephalopathy (OMIM #301044) |
SMC3 | Cohesin core subunit | CdLS (OMIM #610759) |
RAD21 | Cohesin core subunit | CdLS (OMIM #614701) |
STAG1 | Cohesin core subunit | Intellectual developmental disorder (OMIM #617635) |
STAG2 | Cohesin core subunit | Holoprosencephaly (OMIM #301043), Mullegama–Klein–Martinez syndrome (OMIM #301022) |
STAG3 | Meiotic cohesin core subunit | Premature ovarian failure (OMIM #615723), spermatogenic failure (OMIM #619672) |
NIPBL | Cohesin loading | CdLS (OMIM #122470) |
HDAC8 | Deacetylation of Smc3 | CdLS (OMIM #300882) |
Condensins | ||
NCAPG2 | Condensin II core subunit | Khan–Khan–Katsanis syndrome (OMIM #618460) |
NCAPD3 | Condensin II core subunit | Microcephaly (OMIM #617984) |
MCPH1 | Condensin II dissociation | Microcephaly (OMIM #251200) |
SMC5/6 | ||
SMC5 | SMC5/6 core subunit | Atelis syndrome (OMIM #620185) |
NSE2 | SMC5/6 core subunit | Seckel syndrome (OMIM #617253) |
NSE3 | SMC5/6 core subunit | Lung disease, immunodeficiency, and chromosome breakage syndrome (OMIM #617241) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryzhkova, A.; Maltseva, E.; Battulin, N.; Kabirova, E. Loop Extrusion Machinery Impairments in Models and Disease. Cells 2024, 13, 1896. https://doi.org/10.3390/cells13221896
Ryzhkova A, Maltseva E, Battulin N, Kabirova E. Loop Extrusion Machinery Impairments in Models and Disease. Cells. 2024; 13(22):1896. https://doi.org/10.3390/cells13221896
Chicago/Turabian StyleRyzhkova, Anastasiya, Ekaterina Maltseva, Nariman Battulin, and Evelyn Kabirova. 2024. "Loop Extrusion Machinery Impairments in Models and Disease" Cells 13, no. 22: 1896. https://doi.org/10.3390/cells13221896
APA StyleRyzhkova, A., Maltseva, E., Battulin, N., & Kabirova, E. (2024). Loop Extrusion Machinery Impairments in Models and Disease. Cells, 13(22), 1896. https://doi.org/10.3390/cells13221896