Disruptions of rpiAB Genes Encoding Ribose-5-Phosphate Isomerases in E. coli Increases Sensitivity of Bacteria to Antibiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Media and Growing Conditions
2.3. Generation of Growth Curves
2.4. Determination of Bacterial Sensitivity to Antibiotics and Oxidizing Agents
2.5. Measuring NADPH Levels
2.6. Measuring Intracellular Glutathione Levels
2.7. ATP Level Measurement
2.8. Determination of soxS Promoter Activity
2.9. Determination of Transketolase Activity
2.10. Statistical Analysis
3. Results
3.1. Inactivation of RpiAB Isomerase Genes Potentiates the Effect of Antibiotics
3.2. Characteristics of RpiAB and Rpe Mutants Associated with PPP Function
3.3. Unidirectional Ribose-5-Phasphate Synthesis Is Crucial Factor for Cell Growth and Antibiotic Lethality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Strain | Nalidixic Acid | Moxifloxacin | Gentamicin | Erythromycin | Rifampicin |
---|---|---|---|---|---|
MG1655 | 91 ± 10.6 | 98.3 ± 14.2 | 53.6 ± 4.8 | 92 ± 8 | 87.3 ± 8.4 |
ΔrpiAB | 14.3 ± 3.1 | 11 ± 2 | 2.3 ± 1.1 | 4 ± 2 | 18.6 ± 5.1 |
Δrpe | 85 ± 9.3 | 79.3 ± 8.2 | 73.6 ± 13.1 | 69.6 ± 9.5 | 57.3 ± 6.2 |
ΔrpiAB ΔdeoB | 34.6 ± 5.1 | - | - | 84 ± 10.6 | 65.3 ± 8.4 |
ΔrpiAB Ptet-gmhA | 77.6 ± 11.7 | - | - | 66.6 ± 7.7 | 58.6 ± 6.4 |
Strain | NADPH | GSH | GSSG | ATP |
---|---|---|---|---|
MG1655 | 100 ± 12.3 | 89.81 ± 10.6 | 10.1 ± 5.1 | 100 ± 9.3 |
ΔrpiAB | 65.7 ± 8.2 | 43.764 ± 8.4 | 28.71 ± 6.4 | 21.98 ± 6.2 |
Δrpe | 90.4 ± 9.3 | 76.84 ± 9.4 | 17.59 ± 4.3 | 90.07 ± 8 |
Strain | H2O2 | Paraquat (PQ) |
---|---|---|
MG1655 | 75 ± 8 | 80.6 ± 8.2 |
ΔrpiAB | 73 ± 7.3 | 77 ± 6 |
Δrpe | 65.33333 ± 8.4 | 79 ± 6.6 |
References
- Stokes, J.M.; Lopatkin, A.J.; Lobritz, M.A.; Collins, J.J. Bacterial Metabolism and Antibiotic Efficacy. Cell Metab. 2019, 30, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.J.; Kohanski, M.A.; Collins, J.J. Role of Reactive Oxygen Species in Antibiotic Action and Resistance. Curr. Opin. Microbiol. 2009, 12, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.J.; Belenky, P.A.; Yang, J.H.; MacDonald, I.C.; Martell, J.D.; Takahashi, N.; Chan, C.T.Y.; Lobritz, M.A.; Braff, D.; Schwarz, E.G.; et al. Antibiotics Induce Redox-Related Physiological Alterations as Part of Their Lethality. Proc. Natl. Acad. Sci. USA 2014, 111, E2100–E2109. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.J.; Collins, J.J.; Walker, G.C. Unraveling the Physiological Complexities of Antibiotic Lethality. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 313–332. [Google Scholar] [CrossRef]
- Lobritz, M.A.; Belenky, P.; Porter, C.B.M.; Gutierrez, A.; Yang, J.H.; Schwarz, E.G.; Dwyer, D.J.; Khalil, A.S.; Collins, J.J. Antibiotic Efficacy Is Linked to Bacterial Cellular Respiration. Proc. Natl. Acad. Sci. USA 2015, 112, 8173–8180. [Google Scholar] [CrossRef]
- Shatalin, K.; Shatalina, E.; Mironov, A.; Nudler, E. H2S: A Universal Defense Against Antibiotics in Bacteria. Science 2011, 334, 986–990. [Google Scholar] [CrossRef]
- Mironov, A.; Seregina, T.; Nagornykh, M.; Luhachack, L.G.; Korolkova, N.; Lopes, L.E.; Kotova, V.; Zavilgelsky, G.; Shakulov, R.; Shatalin, K.; et al. Mechanism of H2S-Mediated Protection against Oxidative Stress in Escherichia Coli. Proc. Natl. Acad. Sci. USA 2017, 114, 6022–6027. [Google Scholar] [CrossRef]
- Mironov, A.; Seregina, T.; Shatalin, K.; Nagornykh, M.; Shakulov, R.; Nudler, E. CydDC Functions as a Cytoplasmic Cystine Reductase to Sensitize Escherichia Coli to Oxidative Stress and Aminoglycosides. Proc. Natl. Acad. Sci. USA 2020, 117, 23565–53570. [Google Scholar] [CrossRef]
- Sprenger, G.A. Genetics of Pentose-Phosphate Pathway Enzymes ofEscherichia Coli K-12. Arch. Microbiol. 1995, 164, 324–330. [Google Scholar] [CrossRef]
- Krüger, A.; Grüning, N.-M.; Wamelink, M.M.C.; Kerick, M.; Kirpy, A.; Parkhomchuk, D.; Bluemlein, K.; Schweiger, M.-R.; Soldatov, A.; Lehrach, H.; et al. The Pentose Phosphate Pathway Is a Metabolic Redox Sensor and Regulates Transcription During the Antioxidant Response. Antioxid. Redox Signal. 2011, 15, 311–324. [Google Scholar] [CrossRef]
- Jiao, Z.; Baba, T.; Mori, H.; Shimizu, K. Analysis of Metabolic and Physiological Responses to Gnd Knockout in Escherichia Coli by Using C-13 Tracer Experiment and Enzyme Activity Measurement. FEMS Microbiol. Lett. 2003, 220, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Giró, M.; Carrillo, N.; Krapp, A.R. Glucose-6-Phosphate Dehydrogenase and Ferredoxin-NADP(H) Reductase Contribute to Damage Repair during the soxRS Response of Escherichia Coli. Microbiology 2006, 152, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Stone, V.; Kudo, K.Y.; August, P.M.; Marcelino, T.B.; Matté, C. Polyols Accumulated in Ribose-5-Phosphate Isomerase Deficiency Increase Mitochondrial Superoxide Production and Improve Antioxidant Defenses in Rats’ Prefrontal Cortex. Int. J. Dev. Neurosci. 2014, 37, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Skinner, A.J.; Cooper, R.A. The Regulation of Ribose-5-Phosphate Isomerisation in Escherichia Coli K12. FEBS Lett. 1971, 12, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Roos, A.K.; Mariano, S.; Kowalinski, E.; Salmon, L.; Mowbray, S.L. D-Ribose-5-Phosphate Isomerase B from Escherichia Coli Is Also a Functional d-Allose-6-Phosphate Isomerase, While the Mycobacterium Tuberculosis Enzyme Is Not. J. Mol. Biol. 2008, 382, 667–679. [Google Scholar] [CrossRef]
- Sobota, J.M.; Imlay, J.A. Iron Enzyme Ribulose-5-Phosphate 3-Epimerase in Escherichia Coli Is Rapidly Damaged by Hydrogen Peroxide but Can Be Protected by Manganese. Proc. Natl. Acad. Sci. USA 2011, 108, 5402–5407. [Google Scholar] [CrossRef]
- Lyngstadaas, A.; Sprenger, G.A.; Boye, E. Impaired Growth of an Escherichia Coli Rpe Mutant Lacking Ribulose-5-Phosphate Epimerase Activity. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1998, 1381, 319–330. [Google Scholar] [CrossRef]
- Datsenko Kirill, A.; Wanner Barry, L. One-Step Inactivation of Chromosomal Genes in Escherichia Coli K-12 Using PCR Products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef]
- Kotova, V.Y.; Manukhov, I.V.; Zavilgelskii, G.B. Lux-Biosensors for Detection of SOS-Response, Heat Shock, and Oxidative Stress. Appl. Biochem. Microbiol. 2010, 46, 781–788. [Google Scholar] [CrossRef]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia Coli K-12 in-Frame, Single-Gene Knockout Mutants: The Keio Collection. Mol. Syst. Biol. 2006, 2, 2006.0008. [Google Scholar] [CrossRef]
- Rahman, I.; Kode, A.; Biswas, S.K. Assay for Quantitative Determination of Glutathione and Glutathione Disulfide Levels Using Enzymatic Recycling Method. Nat. Protoc. 2006, 1, 3159–3165. [Google Scholar] [CrossRef] [PubMed]
- Hurbain, J.; Thommen, Q.; Anquez, F.; Pfeuty, B. Quantitative Modeling of Pentose Phosphate Pathway Response to Oxidative Stress Reveals a Cooperative Regulatory Strategy. iScience 2022, 25. [Google Scholar] [CrossRef] [PubMed]
- Lomax Margaret, S.; Greenberg, G. Robert Characteristics of the Deo Operon: Role in Thymine Utilization and Sensitivity to Deoxyribonucleosides. J. Bacteriol. 1968, 96, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Valvano, M.A. Biosynthesis and Genetics of ADP-Heptose. J. Endotoxin Res. 1999, 5, 90–95. [Google Scholar] [CrossRef]
- Zhao, J.; Baba, T.; Mori, H.; Shimizu, K. Global Metabolic Response of Escherichia Coli to Gnd or Zwf Gene-Knockout, Based on 13C-Labeling Experiments and the Measurement of Enzyme Activities. Appl. Microbiol. Biotechnol. 2004, 64, 91–98. [Google Scholar] [CrossRef]
- Krapp, A.R.; Humbert, M.V.; Carrillo, N. The soxRS Response of Escherichia Coli Can Be Induced in the Absence of Oxidative Stress and Oxygen by Modulation of NADPH Content. Microbiology 2011, 157, 957–965. [Google Scholar] [CrossRef]
Strain | Genotype | Reference |
---|---|---|
MG1655 | F– wild type | Laboratory collection |
AM4001 | As MG1655 plus rpiAB | This work |
AM4002 | As MG1655 plus ∆rpe | “ |
AM4003 | As MG1655 plus ∆zwf | “ |
AM4005 | As AM4001 plus ∆deoB | “ |
AM4006 | As AM4001 plus Ptet-gmhA | “ |
AM4007 | As MG1655 plus pSoxS’::lux | “ |
AM4008 | As AM4001 plus pSoxS’::lux | “ |
AM4009 | As AM4002 plus pSoxS’::lux | “ |
AM4010 | As AM4003 plus pSoxS’::lux | “ |
Plasmid | ||
pCP20 | FLP+, λ cI857+, λ pR Repts, ApR, CmR | [18] |
pSoxS’::lux | pSoxS’:: luxCDABE, ApR | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seregina, T.A.; Shakulov, R.S.; Sklyarova, S.A.; Mironov, A.S. Disruptions of rpiAB Genes Encoding Ribose-5-Phosphate Isomerases in E. coli Increases Sensitivity of Bacteria to Antibiotics. Cells 2024, 13, 1915. https://doi.org/10.3390/cells13221915
Seregina TA, Shakulov RS, Sklyarova SA, Mironov AS. Disruptions of rpiAB Genes Encoding Ribose-5-Phosphate Isomerases in E. coli Increases Sensitivity of Bacteria to Antibiotics. Cells. 2024; 13(22):1915. https://doi.org/10.3390/cells13221915
Chicago/Turabian StyleSeregina, Tatyana A., Rustem S. Shakulov, Svetlana A. Sklyarova, and Alexander S. Mironov. 2024. "Disruptions of rpiAB Genes Encoding Ribose-5-Phosphate Isomerases in E. coli Increases Sensitivity of Bacteria to Antibiotics" Cells 13, no. 22: 1915. https://doi.org/10.3390/cells13221915
APA StyleSeregina, T. A., Shakulov, R. S., Sklyarova, S. A., & Mironov, A. S. (2024). Disruptions of rpiAB Genes Encoding Ribose-5-Phosphate Isomerases in E. coli Increases Sensitivity of Bacteria to Antibiotics. Cells, 13(22), 1915. https://doi.org/10.3390/cells13221915