BCL2i-Based Therapies and Emerging Resistance in Chronic Lymphocytic Leukemia
Abstract
:1. Introduction
2. Apoptosis Pathway
3. The Life/Death Switch by BCL-2 Family Proteins
4. Activation of Apoptosis with BCL-2 Inhibitors
5. Mechanism of Resistance of Venetoclax
5.1. Genomic Mutations and Epigenetic Changes
5.2. Alteration in Anti-Apoptotic and Pro-Apoptotic Proteins
5.3. Metabolic Reprogramming
5.4. Aberrant Signaling Pathways
6. Why Is Combining Therapy a Good Strategy?
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Metzstein, M.M.; Hengartner, M.O.; Tsung, N.; Ellis, R.E.; Horvitz, H.R. Transcriptional Regulator of Programmed Cell Death Encoded by Caenorhabditis Elegans Gene Ces-2. Nature 1996, 382, 545–547. [Google Scholar] [CrossRef]
- Dighiero, G.; Hallek, M.J.; Gribben, J.G. CLL Biology and Prognosis. Hematology 2005, 2005, 278–284. [Google Scholar] [CrossRef]
- Morton, L.M.; Wang, S.S.; Devesa, S.S.; Hartge, P.; Weisenburger, D.D.; Linet, M.S. Lymphoma Incidence Patterns by WHO Subtype in the United States, 1992–2001. Blood 2006, 107, 265–276. [Google Scholar] [CrossRef]
- Zenz, T.; Mertens, D.; Küppers, R.; Döhner, H.; Stilgenbauer, S. From Pathogenesis to Treatment of Chronic Lymphocytic Leukaemia. Nat. Rev. Cancer 2010, 10, 37–50. [Google Scholar] [CrossRef]
- Guièze, R.; Wu, C.J. Genomic and Epigenomic Heterogeneity in Chronic Lymphocytic Leukemia. Blood 2015, 126, 445. [Google Scholar] [CrossRef]
- Pulte, D.; Castro, F.A.; Jansen, L.; Luttmann, S.; Holleczek, B.; Nennecke, A.; Ressing, M.; Katalinic, A.; Brenner, H. Trends in Survival of Chronic Lymphocytic Leukemia Patients in Germany and the USA in the First Decade of the Twenty-First Century. J. Hematol. Oncol. 2016, 9, 28. [Google Scholar] [CrossRef]
- Burger, J.A.; Landau, D.A.; Taylor-Weiner, A.; Bozic, I.; Zhang, H.; Sarosiek, K.; Wang, L.; Stewart, C.; Fan, J.; Hoellenriegel, J.; et al. Clonal Evolution in Patients with Chronic Lymphocytic Leukaemia Developing Resistance to BTK Inhibition. Nat. Commun. 2016, 7, 11589. [Google Scholar] [CrossRef]
- Landau, D.A.; Tausch, E.; Taylor-Weiner, A.N.; Stewart, C.; Reiter, J.G.; Bahlo, J.; Kluth, S.; Bozic, I.; Lawrence, M.; Böttcher, S.; et al. Mutations Driving CLL and Their Evolution in Progression and Relapse. Nature 2015, 526, 525–530. [Google Scholar] [CrossRef]
- Kapoor, I.; Bodo, J.; Hill, B.T.; Hsi, E.D.; Almasan, A. Targeting BCL-2 in B-Cell Malignancies and Overcoming Therapeutic Resistance. Cell Death Dis. 2020, 11, 941. [Google Scholar] [CrossRef]
- Tam, C.; Thompson, P.A. BTK Inhibitors in CLL: Second-Generation Drugs and Beyond. Blood Adv. 2024, 8, 2300–2309. [Google Scholar] [CrossRef]
- Metzstein, M.M.; Horvitz, H.R. The C. Elegans Cell Death Specification Gene Ces-1 Encodes a Snail Family Zinc Finger Protein. Mol. Cell 1999, 4, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazi, A.; Dixit, V.M. Death Receptors: Signaling and Modulation. Science 1998, 281, 1305–1308. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Budihardjo, I.; Zou, H.; Slaughter, C.; Wang, X. Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors. Cell 1998, 94, 481–490. [Google Scholar] [CrossRef]
- Boatright, K.M.; Renatus, M.; Scott, F.L.; Sperandio, S.; Shin, H.; Pedersen, I.M.; Ricci, J.E.; Edris, W.A.; Sutherlin, D.P.; Green, D.R.; et al. A Unified Model for Apical Caspase Activation. Mol. Cell 2003, 11, 529–541. [Google Scholar] [CrossRef]
- Fukuhara, S.; Rowley, J.D. Chromosome 14 Translocations in Non-Burkitt Lymphomas. Int. J. Cancer 1978, 22, 14–21. [Google Scholar] [CrossRef]
- Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of Apoptosis by the BCL-2 Protein Family: Implications for Physiology and Therapy. Nat. Rev. Mol. Cell Biol. 2013, 15, 49–63. [Google Scholar] [CrossRef]
- Moldoveanu, T.; Czabotar, P.E. BAX, BAK, and BOK: A Coming of Age for the BCL-2 Family Effector Proteins. Cold Spring Harb. Perspect. Biol. 2020, 12, a036319. [Google Scholar] [CrossRef]
- Petros, A.M.; Olejniczak, E.T.; Fesik, S.W. Structural Biology of the Bcl-2 Family of Proteins. Biochim. Biophys. Acta Mol. Cell Res. 2004, 1644, 83–94. [Google Scholar] [CrossRef]
- Adams, J.M.; Cory, S. The Bcl-2 Protein Family: Arbiters of Cell Survival. Science 1998, 281, 1322–1326. [Google Scholar] [CrossRef]
- Hinds, M.G.; Smits, C.; Fredericks-Short, R.; Risk, J.M.; Bailey, M.; Huang, D.C.S.; Day, C.L. Bim, Bad and Bmf: Intrinsically Unstructured BH3-Only Proteins That Undergo a Localized Conformational Change upon Binding to Prosurvival Bcl-2 Targets. Cell Death Differ. 2006, 14, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 Family Proteins: Changing Partners in the Dance towards Death. Cell Death Differ. 2018, 25, 65. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S.M.; Ahmad, M.; Alnemri, E.S.; Wang, X. Cytochrome c and DATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade. Cell 1997, 91, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Julien, O.; Wells, J.A. Caspases and Their Substrates. Cell Death Differ. 2017, 24, 1380–1389. [Google Scholar] [CrossRef]
- Kawane, K.; Motani, K.; Nagata, S. DNA Degradation and Its Defects. Cold Spring Harb. Perspect. Biol. 2014, 6, a016394. [Google Scholar] [CrossRef]
- Newton, K.; Strasser, A.; Kayagaki, N.; Dixit, V.M. Cell Death. Cell 2024, 187, 235–256. [Google Scholar] [CrossRef]
- Robin, A.Y.; Krishna Kumar, K.; Westphal, D.; Wardak, A.Z.; Thompson, G.V.; Dewson, G.; Colman, P.M.; Czabotar, P.E. Crystal Structure of Bax Bound to the BH3 Peptide of Bim Identifies Important Contacts for Interaction. Cell Death Dis. 2015, 6, e1809. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.C.S.; Strasser, A. BH3-Only Proteins-Essential Initiators of Apoptotic Cell Death. Cell 2000, 103, 839–842. [Google Scholar] [CrossRef]
- Malkinson, A.M. Molecular Comparison of Human and Mouse Pulmonary Adenocarcinomas. Exp. Lung Res. 1998, 24, 541–555. [Google Scholar] [CrossRef]
- Krajewska, M.; Krajewski, S.; Epstein, J.I.; Shabaik, A.; Sauvageot, J.; Song, K.; Kitada, S.; Reed, J.C. Immunohistochemical Analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 Expression in Prostate Cancers. Am. J. Pathol. 1996, 148, 1567. [Google Scholar]
- Tzortzatou-Stathopoulou, F.; Papadopoulou, A.L.; Moschovi, M.; Botsonis, A.; Tsangaris, G.T. Low Relapse Rate in Children with Acute Lymphoblastic Leukemia after Risk-Directed Therapy. Am. J. Pediatr. Hematol./Oncol. 2001, 23, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, A.; Yasui, W.; Yokozaki, H.; Seto, M.; Ueda, R.; Tahara, E. Loss of Heterozygosity at the Bcl-2 Gene Locus and Expression of Bcl-2 in Human Gastric and Colorectal Carcinomas. Jpn. J. Cancer Res. 1994, 85, 584. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.M.; Clark-Garvey, S.; Porcu, P.; Eischen, C.M. Targeting the Bcl-2 Family in B Cell Lymphoma. Front. Oncol. 2019, 9, 424135. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J. Tumor Surveillance via the ARF-P53 Pathway. Genes Dev. 1998, 12, 2984–2991. [Google Scholar] [CrossRef]
- Fairlie, W.D.; Lee, E.F. Co-Operativity between MYC and BCL-2 Pro-Survival Proteins in Cancer. Int. J. Mol. Sci. 2021, 22, 2841. [Google Scholar] [CrossRef]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as Anticancer Mechanism: Function and Dysfunction of Its Modulators and Targeted Therapeutic Strategies. Aging 2016, 8, 603. [Google Scholar] [CrossRef] [PubMed]
- Roufayel, R.; Younes, K.; Al-Sabi, A.; Murshid, N. BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life 2022, 12, 256. [Google Scholar] [CrossRef]
- Garrison, S.P.; Jeffers, J.R.; Yang, C.; Nilsson, J.A.; Hall, M.A.; Rehg, J.E.; Yue, W.; Yu, J.; Zhang, L.; Onciu, M.; et al. Selection against PUMA Gene Expression in Myc-Driven B-Cell Lymphomagenesis. Mol. Cell Biol. 2008, 28, 5391–5402. [Google Scholar] [CrossRef]
- Pompeia, C.; Hodge, D.R.; Plass, C.; Wu, Y.Z.; Marquez, V.E.; Kelley, J.A.; Farrar, W.L. Microarray Analysis of Epigenetic Silencing of Gene Expression in the KAS-6/1 Multiple Myeloma Cell Line. Cancer Res. 2004, 64, 3465–3473. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Q.; Cho, A.H.; Rondeau, G.; Welsh, J.; Adamson, E.; Mercola, D.; McClelland, M. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines. Neoplasia 2005, 7, 748–760. [Google Scholar] [CrossRef]
- Breitschopf, K.; Haendeler, J.; Malchow, P.; Zeiher, A.M.; Dimmeler, S. Posttranslational Modification of Bcl-2 Facilitates Its Proteasome-Dependent Degradation: Molecular Characterization of the Involved Signaling Pathway. Mol. Cell Biol. 2000, 20, 1886. [Google Scholar] [CrossRef] [PubMed]
- Sermeus, A.; Genin, M.; Maincent, A.; Fransolet, M.; Notte, A.; Leclere, L.; Riquier, H.; Arnould, T.; Michiels, C. Hypoxia-Induced Modulation of Apoptosis and BCL-2 Family Proteins in Different Cancer Cell Types. PLoS ONE 2012, 7, e47519. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.A.; Deng, J.; Seymour, J.F.; Tam, C.; Kim, S.Y.; Fein, J.; Yu, L.; Brown, J.R.; Westerman, D.; Si, E.G.; et al. The BCL2 Selective Inhibitor Venetoclax Induces Rapid Onset Apoptosis of CLL Cells in Patients via a TP53-Independent Mechanism. Blood 2016, 127, 3215–3224. [Google Scholar] [CrossRef] [PubMed]
- Vogler, M.; Dinsdale, D.; Dyer, M.J.S.; Cohen, G.M. ABT-199 Selectively Inhibits BCL2 but Not BCL2L1 and Efficiently Induces Apoptosis of Chronic Lymphocytic Leukaemic Cells but Not Platelets. Br. J. Haematol. 2013, 163, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; et al. ABT-199, a Potent and Selective BCL-2 Inhibitor, Achieves Antitumor Activity While Sparing Platelets. Nat. Med. 2013, 19, 202–208. [Google Scholar] [CrossRef]
- Schena, M.; Larsson, L.G.; Gottardi, D.; Gaidano, G.; Carlsson, M.; Nilsson, K.; Caligaris-Cappio, F. Growth- and Differentiation-Associated Expression of Bcl-2 in B-Chronic Lymphocytic Leukemia Cells. Blood 1992, 79, 2981–2989. [Google Scholar] [CrossRef]
- Plati, J.; Bucur, O.; Khosravi-Far, R. Dysregulation of Apoptotic Signaling in Cancer: Molecular Mechanisms and Therapeutic Opportunities. J. Cell Biochem. 2008, 104, 1124. [Google Scholar] [CrossRef]
- Hanada, M.; Delia, D.; Aiello, A.; Stadtmauer, E.; Reed, J.C. Bcl-2 Gene Hypomethylation and High-Level Expression in B-Cell Chronic Lymphocytic Leukemia. Blood 1993, 82, 1820–1828. [Google Scholar] [CrossRef]
- Faderl, S.; Keating, M.J.; Do, K.A.; Liang, S.Y.; Kantarjian, H.M.; O’Brien, S.; Garcia-Manero, G.; Manshouri, T.; Albitar, M. Expression Profile of 11 Proteins and Their Prognostic Significance in Patients with Chronic Lymphocytic Leukemia (CLL). Leukemia 2002, 16, 1045–1052. [Google Scholar] [CrossRef]
- Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; et al. An Inhibitor of Bcl-2 Family Proteins Induces Regression of Solid Tumours. Nature 2005, 435, 677–681. [Google Scholar] [CrossRef]
- Tse, C.; Shoemaker, A.R.; Adickes, J.; Anderson, M.G.; Chen, J.; Jin, S.; Johnson, E.F.; Marsh, K.C.; Mitten, M.J.; Nimmer, P.; et al. ABT-263: A Potent and Orally Bioavailable Bcl-2 Family Inhibitor. Cancer Res. 2008, 68, 3421–3428. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.W.; Seymour, J.F.; Brown, J.R.; Wierda, W.G.; Kipps, T.J.; Khaw, S.L.; Carney, D.A.; He, S.Z.; Huang, D.C.S.; Xiong, H.; et al. Substantial Susceptibility of Chronic Lymphocytic Leukemia to BCL2 Inhibition: Results of a Phase I Study of Navitoclax in Patients with Relapsed or Refractory Disease. J. Clin. Oncol. 2012, 30, 488–496. [Google Scholar] [CrossRef] [PubMed]
- de Vos, S.; Leonard, J.P.; Friedberg, J.W.; Zain, J.; Dunleavy, K.; Humerickhouse, R.; Hayslip, J.; Pesko, J.; Wilson, W.H. Safety and Efficacy of Navitoclax, a BCL-2 and BCL-XL Inhibitor, in Patients with Relapsed or Refractory Lymphoid Malignancies: Results from a Phase 2a Study. Leuk. Lymphoma 2021, 62, 810. [Google Scholar] [CrossRef] [PubMed]
- Debrincat, M.A.; Pleines, I.; Lebois, M.; Lane, R.M.; Holmes, M.L.; Corbin, J.; Vandenberg, C.J.; Alexander, W.S.; Ng, A.P.; Strasser, A.; et al. BCL-2 Is Dispensable for Thrombopoiesis and Platelet Survival. Cell Death Dis. 2015, 6, e1721. [Google Scholar] [CrossRef]
- Roberts, A.W.; Stilgenbauer, S.; Seymour, J.F.; Huang, D.C.S. Venetoclax in Patients with Previously Treated Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2017, 23, 4527–4533. [Google Scholar] [CrossRef]
- Stilgenbauer, S.; Eichhorst, B.; Schetelig, J.; Coutre, S.; Seymour, J.F.; Munir, T.; Puvvada, S.D.; Wendtner, C.M.; Roberts, A.W.; Jurczak, W.; et al. Venetoclax in Relapsed or Refractory Chronic Lymphocytic Leukaemia with 17p Deletion: A Multicentre, Open-Label, Phase 2 Study. Lancet Oncol. 2016, 17, 768–778. [Google Scholar] [CrossRef]
- Blombery, P.; Anderson, M.A.; Gong, J.N.; Thijssen, R.; Birkinshaw, R.W.; Thompson, E.R.; Teh, C.E.; Nguyen, T.; Xu, Z.; Flensburg, C.; et al. Acquisition of the Recurrent Gly101Val Mutation in BCL2 Confers Resistance to Venetoclax in Patients with Progressive Chronic Lymphocytic Leukemia. Cancer Discov. 2019, 9, 342–353. [Google Scholar] [CrossRef]
- Thomalla, D.; Beckmann, L.; Grimm, C.; Oliverio, M.; Meder, L.; Herling, C.D.; Nieper, P.; Feldmann, T.; Merkel, O.; Lorsy, E.; et al. Deregulation and Epigenetic Modification of BCL2-Family Genes Cause Resistance to Venetoclax in Hematologic Malignancies. Blood 2022, 140, 2113. [Google Scholar] [CrossRef]
- Birkinshaw, R.W.; Gong, J.N.; Luo, C.S.; Lio, D.; White, C.A.; Anderson, M.A.; Blombery, P.; Lessene, G.; Majewski, I.J.; Thijssen, R.; et al. Structures of BCL-2 in Complex with Venetoclax Reveal the Molecular Basis of Resistance Mutations. Nat. Commun. 2019, 10, 2385. [Google Scholar] [CrossRef]
- Tausch, E.; Close, W.; Dolnik, A.; Bloehdorn, J.; Chyla, B.; Bullinger, L.; Döhner, H.; Mertens, D.; Stilgenbauer, S. Venetoclax Resistance and Acquired BCL2 Mutations in Chronic Lymphocytic Leukemia. Haematologica 2019, 104, e434. [Google Scholar] [CrossRef]
- Herling, C.D.; Abedpour, N.; Weiss, J.; Schmitt, A.; Jachimowicz, R.D.; Merkel, O.; Cartolano, M.; Oberbeck, S.; Mayer, P.; Berg, V.; et al. Clonal Dynamics towards the Development of Venetoclax Resistance in Chronic Lymphocytic Leukemia. Nat. Commun. 2018, 9, 727. [Google Scholar] [CrossRef] [PubMed]
- Mlynarczyk, C.; Teater, M.; Pae, J.; Chin, C.R.; Wang, L.; Arulraj, T.; Barisic, D.; Papin, A.; Hoehn, K.B.; Kots, E.; et al. BTG1 Mutation Yields Supercompetitive B Cells Primed for Malignant Transformation. Science 2023, 379, eabj7412. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.J.F.; Zhu, F.; Dashevsky, O.; Mizuno, R.; Lai, J.X.H.; Hackett, L.; Ryan, C.E.; Collins, M.C.; Iorgulescu, J.B.; Guièze, R.; et al. Hyperphosphorylation of BCL-2 Family Proteins Underlies Functional Resistance to Venetoclax in Lymphoid Malignancies. J. Clin. Investig. 2023, 133, e170169. [Google Scholar] [CrossRef] [PubMed]
- Haselager, M.V.; Kielbassa, K.; ter Burg, J.; Bax, D.J.C.; Fernandes, S.M.; Borst, J.; Tam, C.; Forconi, F.; Chiodin, G.; Brown, J.R.; et al. Changes in Bcl-2 Members after Ibrutinib or Venetoclax Uncover Functional Hierarchy in Determining Resistance to Venetoclax in CLL. Blood 2020, 136, 2918–2926. [Google Scholar] [CrossRef]
- Blombery, P.; Lew, T.E.; Dengler, M.A.; Thompson, E.R.; Lin, V.S.; Chen, X.; Nguyen, T.; Panigrahi, A.; Handunnetti, S.M.; Carney, D.A.; et al. Clonal Hematopoiesis, Myeloid Disorders and BAX-Mutated Myelopoiesis in Patients Receiving Venetoclax for CLL. Blood 2022, 139, 1198–1207. [Google Scholar] [CrossRef]
- Certo, M.; Moore, V.D.G.; Nishino, M.; Wei, G.; Korsmeyer, S.; Armstrong, S.A.; Letai, A. Mitochondria Primed by Death Signals Determine Cellular Addiction to Antiapoptotic BCL-2 Family Members. Cancer Cell 2006, 9, 351–365. [Google Scholar] [CrossRef]
- Chonghaile, T.N.; Sarosiek, K.A.; Vo, T.T.; Ryan, J.A.; Tammareddi, A.; Moore, V.D.G.; Deng, J.; Anderson, K.C.; Richardson, P.; Tai, Y.T.; et al. Pretreatment Mitochondrial Priming Correlates with Clinical Response to Cytotoxic Chemotherapy. Science 2011, 334, 1129. [Google Scholar] [CrossRef]
- Smit, L.A.; Hallaert, D.Y.H.; Spijker, R.; De Goeij, B.; Jaspers, A.; Kater, A.P.; Van Oers, M.H.J.; Van Noesel, C.J.M.; Eldering, E. Differential Noxa/Mcl-1 Balance in Peripheral versus Lymph Node Chronic Lymphocytic Leukemia Cells Correlates with Survival Capacity. Blood 2007, 109, 1660–1668. [Google Scholar] [CrossRef]
- Huelsemann, M.F.; Patz, M.; Beckmann, L.; Brinkmann, K.; Otto, T.; Fandrey, J.; Becker, H.J.; Theurich, S.; Von Bergwelt-Baildon, M.; Pallasch, C.P.; et al. Hypoxia-Induced P38 MAPK Activation Reduces Mcl-1 Expression and Facilitates Sensitivity towards BH3 Mimetics in Chronic Lymphocytic Leukemia. Leukemia 2015, 29, 981–984. [Google Scholar] [CrossRef]
- Liu, V.M.; Guièze, R.; Rosebrock, D.; Jourdain, A.A.; Hernández-Sánchez, M.; Martinez, A.Z.; Ten Hacken, E.; Thompson, P.A.; Iorgulescu, J.B.; Li, S.; et al. MCL-1 and PKA/AMPK Axis Fuel Venetoclax Resistance in Lymphoid Cancers. Blood 2019, 134, 1284. [Google Scholar] [CrossRef]
- Chen, Z.; Cretenet, G.; Carnazzo, V.; Simon-Molas, H.; Kater, A.P.; van der Windt, G.J.W.; Eldering, E. Electron Transport Chain and MTOR Inhibition Synergistically Decrease CD40 Signaling and Counteract Venetoclax Resistance in Chronic Lymphocytic Leukemia. Haematologica 2024, 109, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Guièze, R.; Liu, V.M.; Rosebrock, D.; Jourdain, A.A.; Hernández-Sánchez, M.; Martinez Zurita, A.; Sun, J.; Ten Hacken, E.; Baranowski, K.; Thompson, P.A.; et al. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell 2019, 36, 369–384.e13. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, G.S.; Al-Harbi, S.; Mazumder, S.; Hill, B.T.; Smith, M.R.; Bodo, J.; Hsi, E.D.; Almasan, A. MCL-1 and BCL-XL-Dependent Resistance to the BCL-2 Inhibitor ABT-199 Can Be Overcome by Preventing PI3K/AKT/MTOR Activation in Lymphoid Malignancies. Cell Death Dis. 2015, 6, e1593. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.M.; Tonino, S.H.; Elias, J.A.; Jaspers, A.; Luijks, D.M.; Kater, A.P.; Van Lier, R.A.W.; Van Oers, M.H.J.; Eldering, E. Dichotomy in NF-ΚB Signaling and Chemoresistance in Immunoglobulin Variable Heavy-Chain-Mutated versus Unmutated CLL Cells upon CD40/TLR9 Triggering. Oncogene 2010, 29, 5071–5082. [Google Scholar] [CrossRef]
- Haselager, M.; Thijssen, R.; West, C.; Young, L.; Van Kampen, R.; Willmore, E.; Mackay, S.; Kater, A.; Eldering, E. Regulation of Bcl-XL by Non-Canonical NF-ΚB in the Context of CD40-Induced Drug Resistance in CLL. Cell Death Differ. 2021, 28, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, R.; Tian, L.; Anderson, M.A.; Flensburg, C.; Jarratt, A.; Garnham, A.L.; Jabbari, J.S.; Peng, H.; Lew, T.E.; Teh, C.E.; et al. Single-Cell Multiomics Reveal the Scale of Multilayered Adaptations Enabling CLL Relapse during Venetoclax Therapy. Blood 2022, 140, 2127–2141. [Google Scholar] [CrossRef]
- Mackay, F.; Browning, J.L. BAFF: A Fundamental Survival Factor for B Cells. Nat. Rev. Immunol. 2002, 2, 465–475. [Google Scholar] [CrossRef]
- Gardam, S.; Brink, R. Non-Canonical NF-ΚB Signaling Initiated by BAFF Influences B Cell Biology at Multiple Junctures. Front. Immunol. 2014, 4, 509. [Google Scholar] [CrossRef]
- Luo, M.-X.; Tan, T.; Trussart, M.; Poch, A.; Nguyen, M.-H.T.; Speed, T.P.; Hicks, D.G.; Bandala-Sanchez, E.; Peng, H.; Chappaz, S.; et al. Venetoclax Dose Escalation Rapidly Activates a BAFF/BCL-2 Survival Axis in Chronic Lymphocytic Leukemia. Blood 2024. [Google Scholar] [CrossRef]
- Tagami, N.; Yuda, J.; Goto, Y. Current Status of BAFF Targeting Immunotherapy in B-Cell Neoplasm. Int. J. Clin. Oncol. 2024, 29, 1676–1683. [Google Scholar] [CrossRef]
- Ghia, E.M.; Rassenti, L.Z.; Choi, M.Y.; Quijada-Álamo, M.; Chu, E.; Widhopfii, G.F.; Kipps, T.J. High Expression Level of ROR1 and ROR1-Signaling Associates with Venetoclax Resistance in Chronic Lymphocytic Leukemia. Leukemia 2022, 36, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Meng, X.; Yang, H.; Wang, X.; Qin, L.; Shen, G.; Xi, X.; Zhao, H.; Macip, S.; Chen, Y. IFN-γ Enhances CLL Cell Resistance to ABT-199 by Regulating MCL-1 and BCL-2 Expression via the JAK-STAT3 Signaling Pathway. Leuk. Lymphoma 2023, 64, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Haselager, M.V.; Thijssen, R.; Bax, D.; Both, D.; De Boer, F.; Mackay, S.; Dubois, J.; Mellink, C.; Kater, A.P.; Eldering, E. JAK-STAT Signalling Shapes the NF-ΚB Response in CLL towards Venetoclax Sensitivity or Resistance via Bcl-XL. Mol. Oncol. 2023, 17, 1112–1128. [Google Scholar] [CrossRef] [PubMed]
- Kotmayer, L.; László, T.; Mikala, G.; Kiss, R.; Lévay, L.; Hegyi, L.L.; Gróf, S.; Nagy, T.; Barna, G.; Farkas, P.; et al. Landscape of BCL2 Resistance Mutations in a Real-World Cohort of Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia Treated with Venetoclax. Int. J. Mol. Sci. 2023, 24, 5802. [Google Scholar] [CrossRef]
- Zenz, T.; Eichhorst, B.; Busch, R.; Denzel, T.; Häbe, S.; Winkler, D.; Bühler, A.; Edelmann, J.; Bergmann, M.; Hopfinger, G.; et al. TP53 Mutation and Survival in Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2010, 28, 4473–4479. [Google Scholar] [CrossRef]
- Khalsa, J.K.; Cha, J.; Utro, F.; Naeem, A.; Murali, I.; Kuang, Y.; Vasquez, K.; Li, L.; Tyekucheva, S.; Fernandes, S.M.; et al. Genetic Events Associated with Venetoclax Resistance in CLL Identified by Whole-Exome Sequencing of Patient Samples. Blood 2023, 142, 421. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; O’Brien, S. Evolution of CLL Treatment-from Chemoimmunotherapy to Targeted and Individualized Therapy. Nat. Rev. Clin. Oncol. 2018, 15, 510–527. [Google Scholar] [CrossRef]
- Jones, J.A.; Mato, A.R.; Wierda, W.G.; Davids, M.S.; Choi, M.; Cheson, B.D.; Furman, R.R.; Lamanna, N.; Barr, P.M.; Zhou, L.; et al. Venetoclax for Chronic Lymphocytic Leukaemia Progressing after Ibrutinib: An Interim Analysis of a Multicentre, Open-Label, Phase 2 Trial. Lancet Oncol. 2018, 19, 65–75. [Google Scholar] [CrossRef]
- Burger, J.A.; Tedeschi, A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Bairey, O.; Hillmen, P.; Bartlett, N.L.; Li, J.; et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2015, 373, 2425–2437. [Google Scholar] [CrossRef]
- Cramer, P.; von Tresckow, J.; Bahlo, J.; Robrecht, S.; Langerbeins, P.; Al-Sawaf, O.; Engelke, A.; Fink, A.M.; Fischer, K.; Tausch, E.; et al. Bendamustine Followed by Obinutuzumab and Venetoclax in Chronic Lymphocytic Leukaemia (CLL2-BAG): Primary Endpoint Analysis of a Multicentre, Open-Label, Phase 2 Trial. Lancet Oncol. 2018, 19, 1215–1228. [Google Scholar] [CrossRef]
- Jain, N.; Keating, M.; Thompson, P.; Ferrajoli, A.; Burger, J.; Borthakur, G.; Takahashi, K.; Estrov, Z.; Fowler, N.; Kadia, T.; et al. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N. Engl. J. Med. 2019, 380, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Hillmen, P.; Rawstron, A.C.; Brock, K.; Muñoz-Vicente, S.; Yates, F.J.; Bishop, R.; Boucher, R.; MacDonald, D.; Fegan, C.; McCaig, A.; et al. Ibrutinib Plus Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: The CLARITY Study. J. Clin. Oncol. 2019, 37, 2722. [Google Scholar] [CrossRef] [PubMed]
- Kater, A.P.; Wu, J.Q.; Kipps, T.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Robak, T.; de la Serna, J.; et al. Venetoclax Plus Rituximab in Relapsed Chronic Lymphocytic Leukemia: 4-Year Results and Evaluation of Impact of Genomic Complexity and Gene Mutations from the MURANO Phase III Study. J. Clin. Oncol. 2020, 38, 4042–4054. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Gentile, B.; Devine, J.; Zhang, C.; Sail, K.; Tandon, M.; Fink, A.M.; Kutsch, N.; Wendtner, C.M.; Eichhorst, B.; et al. Health-Related Quality of Life with Fixed-Duration Venetoclax-Obinutuzumab for Previously Untreated Chronic Lymphocytic Leukemia: Results from the Randomized, Phase 3 CLL14 Trial. Am. J. Hematol. 2021, 96, 1112–1119. [Google Scholar] [CrossRef] [PubMed]
- Wierda, W.G.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Opat, S.; Tedeschi, A.; Badoux, X.C.; Kuss, B.J.; Jackson, S.; Moreno, C.; et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results from the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J. Clin. Oncol. 2021, 39, 3853–3865. [Google Scholar] [CrossRef]
- Soumerai, J.D.; Mato, A.R.; Dogan, A.; Seshan, V.E.; Joffe, E.; Flaherty, K.; Carter, J.; Hochberg, E.; Barnes, J.A.; Hamilton, A.M.; et al. Zanubrutinib, Obinutuzumab, and Venetoclax with Minimal Residual Disease-Driven Discontinuation in Previously Untreated Patients with Chronic Lymphocytic Leukaemia or Small Lymphocytic Lymphoma: A Multicentre, Single-Arm, Phase 2 Trial. Lancet Haematol. 2021, 8, e879–e890. [Google Scholar] [CrossRef]
- Kater, A.P.; Owen, C.; Moreno, C.; Follows, G.; Munir, T.; Levin, M.-D.; Benjamini, O.; Janssens, A.; Osterborg, A.; Robak, T.; et al. Fixed-Duration Ibrutinib-Venetoclax in Patients with Chronic Lymphocytic Leukemia and Comorbidities. NEJM Evid. 2022, 1, EVIDoa2200006. [Google Scholar] [CrossRef]
- Eichhorst, B.; Niemann, C.U.; Kater, A.P.; Fürstenau, M.; von Tresckow, J.; Zhang, C.; Robrecht, S.; Gregor, M.; Juliusson, G.; Thornton, P.; et al. First-Line Venetoclax Combinations in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 1739–1754. [Google Scholar] [CrossRef]
- Kater, A.P.; Arslan, Ö.; Demirkan, F.; Herishanu, Y.; Ferhanoglu, B.; Diaz, M.G.; Leber, B.; Montillo, M.; Panayiotidis, P.; Rossi, D.; et al. Activity of Venetoclax in Patients with Relapsed or Refractory Chronic Lymphocytic Leukaemia: Analysis of the VENICE-1 Multicentre, Open-Label, Single-Arm, Phase 3b Trial. Lancet Oncol. 2024, 25, 463–473. [Google Scholar] [CrossRef]
- Munir, T.; Cairns, D.A.; Bloor, A.; Allsup, D.; Cwynarski, K.; Pettitt, A.; Paneesha, S.; Fox, C.P.; Eyre, T.A.; Forconi, F.; et al. Chronic Lymphocytic Leukemia Therapy Guided by Measurable Residual Disease. N. Engl. J. Med. 2024, 390, 326–337. [Google Scholar] [CrossRef]
- Rogers, K.A.; Huang, Y.; Ruppert, A.S.; Abruzzo, L.V.; Andersen, B.L.; Awan, F.T.; Bhat, S.A.; Dean, A.; Lucas, M.; Banks, C.; et al. Phase II Study of Combination Obinutuzumab, Ibrutinib, and Venetoclax in Treatment-Naïve and Relapsed or Refractory Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2020, 38, 3626–3637. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Zhang, C.; Tandon, M.; Sinha, A.; Fink, A.M.; Robrecht, S.; Samoylova, O.; Liberati, A.M.; Pinilla-Ibarz, J.; Opat, S.; et al. Venetoclax plus Obinutuzumab versus Chlorambucil plus Obinutuzumab for Previously Untreated Chronic Lymphocytic Leukaemia (CLL14): Follow-up Results from a Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2020, 21, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F.; Ma, S.; Brander, D.M.; Choi, M.Y.; Barrientos, J.; Davids, M.S.; Anderson, M.A.; Beaven, A.W.; Rosen, S.T.; Tam, C.S.; et al. Venetoclax plus Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukaemia: A Phase 1b Study. Lancet Oncol. 2017, 18, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, T.; Clay, P.; Murray, K.; Shekh, N.; Muir, A.; Rosen, S.T.; Coutre, S. Fixed Duration Combination Therapy with Ibrutinib (Ibr) and Venetoclax (Ven) Leads to Deep Responses in Relapsed/Refractory (Rel/Ref) Chronic Lymphocytic Leukemia (CLL): Results of a Phase 2 Study. Blood 2021, 138, 3754. [Google Scholar] [CrossRef]
- Jain, N.; Keating, M.; Thompson, P.; Ferrajoli, A.; Burger, J.A.; Borthakur, G.; Takahashi, K.; Estrov, Z.; Sasaki, K.; Fowler, N.; et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: A Nonrandomized Phase 2 Trial. JAMA Oncol. 2021, 7, 1213–1219. [Google Scholar] [CrossRef]
- Imbruvica|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/imbruvica (accessed on 10 November 2024).
- Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Nuri Yenerel, M.; Illés, A.; Kay, N.; et al. Acalabrutinib Versus Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia: Results of the First Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 3441–3452. [Google Scholar] [CrossRef]
- Manivannan, M.S.; Yang, X.; Patel, N.; Peters, A.; Johnston, J.B.; Gibson, S.B. Lysosome-Disrupting Agents in Combination with Venetoclax Increase Apoptotic Response in Primary Chronic Lymphocytic Leukemia (CLL) Cells Mediated by Lysosomal Cathepsin D Release and Inhibition of Autophagy. Cells 2024, 13, 1041. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Robrecht, S.; Zhang, C.; Olivieri, S.; Chang, Y.M.; Fink, A.M.; Tausch, E.; Schneider, C.; Ritgen, M.; Kreuzer, K.A.; et al. Venetoclax-Obinutuzumab for Previously Untreated Chronic Lymphocytic Leukemia: 6-Year Results of the Randomized Phase 3 CLL14 Study. Blood 2024, 144, 1924–1935. [Google Scholar] [CrossRef]
- Jain, N.; Croner, L.J.; Allan, J.N.; Siddiqi, T.; Tedeschi, A.; Badoux, X.C.; Eckert, K.; Cheung, L.W.K.; Mukherjee, A.; Dean, J.P.; et al. Absence of BTK, BCL2, and PLCG2 Mutations in Chronic Lymphocytic Leukemia Relapsing after First-Line Treatment with Fixed-Duration Ibrutinib plus Venetoclax. Clin. Cancer Res. 2023, 30, 498. [Google Scholar] [CrossRef]
- Barr, P.M.; Owen, C.; Robak, T.; Tedeschi, A.; Bairey, O.; Burger, J.A.; Hillmen, P.; Coutre, S.E.; Dearden, C.; Grosicki, S.; et al. Up to 8-Year Follow-up from RESONATE-2: First-Line Ibrutinib Treatment for Patients with Chronic Lymphocytic Leukemia. Blood Adv. 2022, 6, 3440–3450. [Google Scholar] [CrossRef]
- Mato, A.R.; Nabhan, C.; Thompson, M.C.; Lamanna, N.; Brander, D.M.; Hill, B.; Howlett, C.; Skarbnik, A.; Cheson, B.D.; Zent, C.; et al. Toxicities and Outcomes of 616 Ibrutinib-Treated Patients in the United States: A Real-World Analysis. Haematologica 2018, 103, 874. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S. Upfront Therapy: The Case for Continuous Treatment. Hematol. Am. Soc. Hematol. Educ. Program. 2021, 2021, 55. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Paulus, A.; Fang, D.D.; Manna, A.; Wang, G.; Wang, H.; Zhu, S.; Chen, J.; Min, P.; Yin, Y.; et al. Lisaftoclax (APG-2575) Is a Novel BCL-2 Inhibitor with Robust Antitumor Activity in Preclinical Models of Hematologic Malignancy. Clin. Cancer Res. 2022, 28, 5455–5468. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Wang, Q.; Feng, Y.; Xing, H.; Yang, X.; Guo, Y.; Guo, Y.; Sun, H.; Liu, X.; et al. Sonrotoclax Overcomes BCL2 G101V Mutation–Induced Venetoclax Resistance in Preclinical Models of Hematologic Malignancy. Blood 2024, 143, 1825. [Google Scholar] [CrossRef] [PubMed]
- Ailawadhi, S.; Chen, Z.; Huang, B.; Paulus, A.; Collins, M.C.; Fu, L.T.; Li, M.; Ahmad, M.; Men, L.; Wang, H.; et al. Novel BCL-2 Inhibitor Lisaftoclax in Relapsed or Refractory Chronic Lymphocytic Leukemia and Other Hematologic Malignancies: First-in-Human Open-Label Trial. Clin. Cancer Res. 2023, 29, 2385. [Google Scholar] [CrossRef]
- Tam, C.S.; Anderson, M.A.; Lasica, M.; Verner, E.; Opat, S.S.; Ma, S.; Weinkove, R.; Cordoba, R.; Soumerai, J.; Ghia, P.; et al. Combination Treatment with Sonrotoclax (BGB-11417), a Second-Generation BCL2 Inhibitor, and Zanubrutinib, a Bruton Tyrosine Kinase (BTK) Inhibitor, Is Well Tolerated and Achieves Deep Responses in Patients with Treatment-Naïve Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (TN-CLL/SLL): Data from an Ongoing Phase 1/2 Study. Blood 2023, 142, 327. [Google Scholar] [CrossRef]
- Heyman, B.M.; Tzachanis, D.; Kipps, T.J. Recent Advances in CAR T-Cell Therapy for Patients with Chronic Lymphocytic Leukemia. Cancers 2022, 14, 1715. [Google Scholar] [CrossRef]
- Mhibik, M.; Gaglione, E.M.; Eik, D.; Herrick, J.; Le, J.; Ahn, I.E.; Chiu, C.; Wielgos-Bonvallet, M.; Hiemstra, I.H.; Breij, E.C.W.; et al. Cytotoxicity of the CD3×CD20 Bispecific Antibody Epcoritamab in CLL Is Increased by Concurrent BTK or BCL-2 Targeting. Blood Adv. 2023, 7, 4089. [Google Scholar] [CrossRef]
- Hutchings, M.; Mous, R.; Clausen, M.R.; Johnson, P.; Linton, K.M.; Chamuleau, M.E.D.; Lewis, D.J.; Sureda Balari, A.; Cunningham, D.; Oliveri, R.S.; et al. Dose Escalation of Subcutaneous Epcoritamab in Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma: An Open-Label, Phase 1/2 Study. Lancet 2021, 398, 1157–1169. [Google Scholar] [CrossRef]
- Hill, B.T.; Ma, S.; Zent, C.S.; Baran, A.M.; Wallace, D.S.; Advani, A.; Winter, A.; Winter, J.; Gordan, L.; Karmali, R.; et al. Response-Adapted, Time-Limited Venetoclax, Umbralisib, and Ublituximab for Relapsed/Refractory Chronic Lymphocytic Leukemia. Blood Adv. 2024, 8, 378–387. [Google Scholar] [CrossRef]
Categories | Mechanism | Time to First Detection | Prevalence | Mechanisms of Resistance |
---|---|---|---|---|
Acquired genomic mutation | BCL-2 G101V mutation [57,84] | 19–42 months | 10.4–46.7% (7/67–7/15) | Reduces venetoclax binding affinity |
BCL-2 D103Y mutation [60,84] | 23–39 months | 11.9–16.7% (8/67–1/6) | Reduces venetoclax binding affinity | |
BTG1 mutation [61] | 10.6–18.1 months | 25% (2/8) | Impairs normal cell cycle regulation | |
CDKN2A/B deletion [61] | 4.5–14.5 months | 37.5% (3/8) | Impairs normal cell cycle regulation | |
BRAF mutation [61] | 4.5 months | 12.5% (1/8) | Increases expression of anti-apoptotic proteins like MCL-1 | |
CD274 (PD-L1) amplification [61] | 21.8 months | 12.5% (1/8) | Enhances immune evasion | |
TP53 mutations/deletions [85] | Not available (NA) | 10–37% | Fails to initiate the apoptotic pathway | |
Loss of 8p [86] | NA | 36% (4/11) | Downregulates TRAIL-R signaling and upregulates WNT5A signaling pathways | |
Gain of 1q [86] | NA | 18% (2/11) | Upregulates MCL-1 | |
Loss of PTEN (loss of 10q) [86] | NA | 18% (2/11) | Activates AKT pathway and subsequently upregulates BCL-XL | |
BTK C481S mutation [86] | 7.6–11.7 months | 80.6% (37/46) | Confers resistance to BTK inhibitors, impacting combination therapies | |
PLCG2 mutation [86] | 7.6–11.7 months | 19.6% (9/36) | Confers resistance to BTK inhibitors, impacting combination therapies | |
Epigenetic changes in BCL-2 | CpG island methylation in PUMA promoter [58] | NA | NA | Silences the PUMA gene and prevents apoptosis |
Alteration of anti-apoptotic proteins and pro-apoptotic proteins | Increased expression of MCL-1 [64] | NA | NA | Allows evasion of apoptosis in response to BCL2i |
Increased expression of BCL-XL [64] | NA | NA | Allows evasion of apoptosis in response to BCL2i | |
Increased expression of BFL-1 [64] | NA | NA | Allows evasion of apoptosis in response to BCL2i | |
BAX mutation [65] | 21–93 months | 31.7% (13/41) | Fails to initiate apoptotic cascade | |
Metabolic reprogramming | Lymph node microenvironment [69] | NA | NA | Increases BCL-XL and MCL-1 and suppresses NOXA |
Increased OXPHOS [70] | NA | NA | Increases MCL-1 expression and activates PKA/AMPK pathway | |
Loss of PUMA [58] | NA | NA | Enhances OXPHOS and ATP production | |
Aberrant signaling pathways | PI3K/AKT/mTOR pathway activation [73] | NA | NA | Increases levels of MCL-1 and BCL-XL |
NF-κB pathways activation [74] | NA | NA | Increases BCL-XL expression | |
non-canonical NF-κB signaling activation [79] | NA | NA | Enhances expression of anti-apoptotic proteins | |
ROR1 pathway activation [81] | NA | NA | Increases BCL-XL expression | |
JAK1/2-STAT3 pathway [82] | NA | NA | Increases expression of BCL-2, MCL-1, and BCL-XL |
Year | NCT | Study Name | Phase | Population | Intervention | n | ORR % | CR/Cri % | BM uMRD % | PB uMRD % | PFS % | OS % | Neutropenia/Anemia/Thrombocytopenia/Infection % |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 02401503 | CLL2-BAG [90] | 2 | Treatment-naïve vs. R/R | Bendamustine Obinutuzumab Venetoclax | 35 31 | 100 90 | 8 # | 13 # | 91 83 | 100 83 | 100 90 | 44/11/12/14 # |
2019 | 02756897 | MDACC [91] | 2 | Treatment-naïve | Ibrutinib Venetoclax | 80 | NR | 88 | 61 | NR | 98 | 99 | 48/NR/2/5 |
2019 | NR | CLARITY [92] | 2 | R/R | Ibrutinib Venetoclax | 54 | 89 | 51 | 36 | 53 | NR | 100 | 66/NR/26/17 |
2018 | 02005471 | MURANO [93] | 3 | R/R | Venetoclax Rituximab vs. Bendamustine Rituximab | 194 195 | 93.3 67.7 | 26.8 8.2 | 27.3 1.5 | 83.5 23.1 | 84.9 36.3 | 91.9 86.6 | 60.8/15.5/13.4/17.5 44.1/22.9/22.3/21.8 |
2021 | 02242942 | CLL14 [94] | 3 | Treatment-naïve | Venetoclax obinutuzumab vs. Chlorambucil Obinutuzumab | 216 216 | 84.7 71.3 | 49.5 23.1 | 56.9 17.1 | 75.5 35.2 | 88.2 64.1 | 91.8 93.3 | 52.8/10.7/14.2/17.5 15.0/14.8/12.6/15.0 |
2021 | 02910583 | CAPTIVATE [95] | 2 | Treatment-naive | Venetoclax Ibrutinib | 159 | 96 | 55 | 60 | 77 | 95 | 98 | 42/NR/NR/67 |
2021 | 03824483 | MSKCC [96] | 2 | Treatment-naïve | Zanubrutinib Obinutuzumab Venetoclax | 39 | 100 | 57 | 89 | 89 | NR | 100 | 18/41/59/8 |
2022 | 03462719 | GLOW [97] | 3 | Treatment-naïve | Ibrutinib Venetoclax vs. Chlorambucil Obinutuzumab | 106 105 | 86.8 84.8 | 38.7 11.4 | 55.7 21.0 | 53.7 39.0 | 84.4 44.1 | 89.6 88.6 | 34.9/NR/5.7/15.1 49.5/NR/20.0/10.5 |
2023 | 02950051 | CLL13 [98] | 3 | Treatment-naïve | FCR or BR vs. Venetoclax Rituximab vs. Venetoclax Obinutuzumab vs. Venetoclax Obinutuzumab Ibrutinib | 229 237 229 231 | 75.5 NR 87.7 90.5 | 31.0 49.4 56.8 61.9 | 37.1 43.0 72.5 77.9 | 52.0 57.0 86.5 92.2 | 75.5 80.8 87.7 90.5 | 95.0 96.5 96.3 95.3 | 29.3/NR/NR/18.5 29.6/NR/NR/10.5 29.8/NR/NR/13.2 27.7/NR/NR/21.2 |
2024 | 02756611 | VENICE-1 [99] | 3b | BCRi-naïve R/R vs. BCRi-pretreated R/R | Venetoclax | 191 67 | 85 64 | 35 27 | 27 # | 40 # | NR NR | 75 61 | 43/13/13/63 # |
2024 | NR | FLAIR [100] | 3 | Treatment-naïve | Ibrutinib Venetoclax vs. FCR | 260 263 | 86.5 76.4 | 59.2 49.0 | 65.9 49.8 | 92.7 67.9 | 97.2 76.8 | 98.0 93.0 | 10.3/0.8/2.0/21.5 47.3/15.5/10.0/17.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.F.; Atalla, E.; Dong, J.; Konopleva, M. BCL2i-Based Therapies and Emerging Resistance in Chronic Lymphocytic Leukemia. Cells 2024, 13, 1922. https://doi.org/10.3390/cells13221922
Li WF, Atalla E, Dong J, Konopleva M. BCL2i-Based Therapies and Emerging Resistance in Chronic Lymphocytic Leukemia. Cells. 2024; 13(22):1922. https://doi.org/10.3390/cells13221922
Chicago/Turabian StyleLi, Wing Fai, Eleftheria Atalla, Jiaxin Dong, and Marina Konopleva. 2024. "BCL2i-Based Therapies and Emerging Resistance in Chronic Lymphocytic Leukemia" Cells 13, no. 22: 1922. https://doi.org/10.3390/cells13221922
APA StyleLi, W. F., Atalla, E., Dong, J., & Konopleva, M. (2024). BCL2i-Based Therapies and Emerging Resistance in Chronic Lymphocytic Leukemia. Cells, 13(22), 1922. https://doi.org/10.3390/cells13221922