Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy
Abstract
:1. Introduction
2. Extracellular pH Production in the Tumor Microenvironment
2.1. Lactate Production in the Tumor Microenvironment (Acidosis)
2.2. Interaction Between Activated T Cells and Tumor Cells
2.3. Effect of Lactic Acid on Macrophage Polarization
3. Targeting Lactate Metabolism for Cancer Immunotherapy
4. Recent Targeting Extracellular pH in Cancer Immunotherapy
4.1. Utilizing Buffer Agents
4.2. Enzymatic Inhibition
5. Genes Involved in Extracellular TME Acid Production and Modulation
6. Targeting Extracellular pH in Clinical Trials
7. Focusing Extracellular pH in Existing Cancer Treatment
8. Future Directions and Clinical Applications of Extracellular pH in Cancer Immunotherapy
9. Limitations in Therapeutic Perspective in Cancer Immunotherapy
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farhana, A.; Alsrhani, A.; Khan, Y.S.; Rasheed, Z. Cancer Bioenergetics and Tumor Microenvironments—Enhancing Chemotherapeutics and Targeting Resistant Niches through Nanosystems. Cancers 2023, 15, 3836. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Qi, F. Tumor Microenvironment. Tumor Microenviron. Res. 2020, 2, 42–49. [Google Scholar] [CrossRef]
- Bożyk, A.; Wojas-Krawczyk, K.; Krawczyk, P.; Milanowski, J. Tumor Microenvironment—A Short Review of Cellular and Interaction Diversity. Biology 2022, 11, 929. [Google Scholar] [CrossRef] [PubMed]
- Imodoye, S.O.; Adedokun, K.A.; Bello, I.O. From complexity to clarity: Unravelling tumor heterogeneity through the lens of tumor microenvironment for innovative cancer therapy. Histochem. Cell Biol. 2024, 161, 299–323. [Google Scholar] [CrossRef]
- Badparvar, F.; Marjani, A.P.; Salehi, R.; Ramezani, F. Dual pH/Redox-Responsive Hyperbranched Polymeric Nanocarriers with TME-Trigger Size Shrinkage and Charge Reversible Ability for Amplified Chemotherapy of Breast Cancer. Sci. Rep. 2024, 14, 8567. [Google Scholar] [CrossRef]
- Abdella, S.; Abid, F.; Youssef, S.H.; Kim, S.; Afinjuomo, F.; Malinga, C.; Song, Y.; Garg, S. pH and its applications in targeted drug delivery. Drug Discov. Today 2022, 28, 103414. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Peng, W.-B.; Zhang, P.; Yang, X.-P.; Zhou, Q. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine 2021, 73, 103627. [Google Scholar] [CrossRef]
- Li, W.; Yuan, Q.; Li, M.; He, X.; Shen, C.; Luo, Y.; Tai, Y.; Li, Y.; Deng, Z.; Luo, Y. Research advances on signaling pathways regulating the polarization of tumor-associated macrophages in lung cancer microenvironment. Front. Immunol. 2024, 15, 1452078. [Google Scholar] [CrossRef]
- Nishiguch, Y.; Fujiwara-Tani, R.; Nukaga, S.; Nishida, R.; Ikemoto, A.; Sasaki, R.; Mori, S.; Ogata, R.; Kishi, S.; Hojo, Y.; et al. Pterostilbene Induces Apoptosis from Endoplasmic Reticulum Stress Synergistically with Anticancer Drugs That Deposit Iron in Mitochondria. Int. J. Mol. Sci. 2024, 25, 2611. [Google Scholar] [CrossRef]
- Catherine, M.W.; Rob, B.V.; Elizabeth, S.M. The acidic tumour microenvironment: Manipulating the immune response to elicit escape. Hum Immunol. 2022, 83, 399–408. [Google Scholar]
- Rosso, D. Acidic Microenvironment as a Possible Niche of Dormant Tumor Cells. Cell. Mol. Life Sci. 2017, 74, 2761–2771. [Google Scholar]
- Zhao, J.; Jin, D.; Huang, M.; Ji, J.; Xu, X.; Wang, F.; Zhou, L.; Bao, B.; Jiang, F.; Xu, W. Glycolysis in the Tumor Microenvironment: A Driver of Cancer Progression and a Promising Therapeutic Target. Front. Cell Dev. Biol. 2024, 12, 1416472. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Sun, L.; Guo, J.; Lv, H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol. Res. 2024, 204, 107198. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, J.; Chen, Z.; Luo, J.; Guo, W.; Sun, L.; Lin, L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. npj Precis. Oncol. 2024, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ma, Z.; Jia, W.; Lan, P. Targeting macrophage metabolism to enhance tumor immunotherapy. Cell. Mol. Immunol. 2024, 21, 530–532. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.-X.; Wang, Z.; Yu, T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef]
- Tiersma, J.F.; Evers, B.; Bakker, B.M.; Reijngoud, D.J.; de Bruyn, M.; de Jong, S.; Jalving, M. Targeting Tumour Metabolism in Melanoma to Enhance Response to Immune Checkpoint Inhibition: A Balancing Act. Cancer Treat. Rev. 2024, 129, 102802. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, H.; Li, J.; Jiang, X.; Li, Z.; Shen, J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int. J. Biol. Macromol. 2023, 254, 127911. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Song, H.; Li, Y.; Liu, Z.; Ye, Z.; Zhao, J.; Wu, Y.; Tang, J.; Yao, M. Metabolic Reprogramming in Tumor Immune Microenvironment: Impact on Immune Cell Function and Therapeutic Implications. Cancer Lett. 2024, 597, 217076. [Google Scholar] [CrossRef]
- Bartoloni, B.; Mannelli, M.; Gamberi, T.; Fiaschi, T. The Multiple Roles of Lactate in the Skeletal Muscle. Cells 2024, 13, 1177. [Google Scholar] [CrossRef]
- Fang, B.; Lu, Y.; Li, X.; Wei, Y.; Ye, D.; Wei, G.; Zhu, Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Chavda, V.; Singh, T.R.R.; Thorat, N.D.; Vora, L.K. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. Small 2024, 20, e2401631. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Kou, D.; Lou, S.; Ashrafizadeh, M.; Aref, A.R.; Canadas, I.; Tian, Y.; Niu, X.; Wang, Y.; Torabian, P.; et al. Nanoparticles in Tumor Microenvironment Remodeling and Cancer Immunotherapy. J. Hematol. Oncol. 2024, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Araujo-Filho, I.; do Rêgo, A.C.M. Nanotechnology and Immunetherapy: Reduction of Hepatotoxicity and Anti-Antineoplastic Efficiency: Nanotechnology and Immunetherapy. J. Surg. Clin. Res. 2024, 15, 59–78. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ali, M.M. Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in Glioblastoma. Cancers 2024, 16, 2975. [Google Scholar] [CrossRef]
- Lilia, A. The Warburg Effect Explained: Integration of Enhanced Glycolysis with Heterogeneous Mitochondria to Promote Cancer Cell Proliferation. Int. J. Mol. Sci. 2023, 24, 15787. [Google Scholar] [CrossRef]
- Elisabetta, I.; Rosa, V.; Camilla, C.; Paola, M. Targeting the Interplay between Cancer Metabolic Reprogramming and Cell Death Pathways as a Viable Therapeutic Path. Biomedicines 2021, 9, 1942. [Google Scholar] [CrossRef]
- Fang, Y.; Li, Z.; Yang, L.; Li, W.; Wang, Y.; Kong, Z.; Miao, J.; Chen, Y.; Bian, Y.; Zeng, L. Emerging roles of lactate in acute and chronic inflammation. Cell Commun. Signal. 2024, 22, 276. [Google Scholar] [CrossRef]
- Vilbois, S.; Xu, Y.; Ho, P.-C. Metabolic interplay: Tumor macrophages and regulatory T cells. Trends Cancer 2023, 10, 242–255. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, M.; Zhang, J.; Liu, T.; Fu, S.; Wang, Y.; Xu, Z. The pivotal role of glucose transporter 1 in diabetic kidney disease. Life Sci. 2024, 353, 122932. [Google Scholar] [CrossRef]
- Fadaka, A.; Ajiboye, B.; Ojo, O.; Adewale, O.; Olayide, I.; Emuowhochere, R. Biology of glucose metabolization in cancer cells. J. Oncol. Sci. 2017, 3, 45–51. [Google Scholar] [CrossRef]
- Bosso, M.; Haddad, D.; Al Madhoun, A.; Al-Mulla, F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; He, G.; Cai, D.; Giovannetti, E.; Inamura, K.; Liu, S.; Ma, W. Lactic acid: A narrative review of a promoter of the liver cancer microenvironment. J. Gastrointest. Oncol. 2024, 15, 1282–1296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Peng, Q.; Zheng, J.; Yang, Y.; Zhang, X.; Ma, A.; Qin, Y.; Qin, Z.; Zheng, X. The function and mechanism of lactate and lactylation in tumor metabolism and microenvironment. Genes Dis. 2022, 10, 2029–2037. [Google Scholar] [CrossRef]
- Meng, L.; Zheng, Y.; Liu, H.; Fan, D. The tumor microenvironment: A key player in multidrug resistance in cancer. Oncologie 2024, 26, 41–58. [Google Scholar] [CrossRef]
- Yujing, Q.; Yujia, Y.; Xiaocui, Z.; Zhaoyuan, L.; Xipeng, W. Metabolic regulation of tumor-associated macrophage heterogeneity: Insights into the tumor microenvironment and immunotherapeutic opportunities. Biomark. Res. 2024, 12, 1. [Google Scholar]
- Cheng, Q.; Shi, X.; Chen, Y.; Li, Q.; Wang, J.; Li, H.; Wang, L.; Wang, Z. Tumor Microenvironment-Activatable Nanosystem Capable of Overcoming Multiple Therapeutic Obstacles for Augmenting Immuno/Metal-Ion Therapy. ACS Nano 2024, 18, 8996–9010. [Google Scholar] [CrossRef]
- Zhao, W.; Yao, Y.; Li, Q.; Xue, Y.; Gao, X.; Liu, X.; Zhang, Q.; Zheng, J.; Sun, S. Molecular mechanism of co-stimulatory domains in promoting CAR-T cell anti-tumor efficacy. Biochem. Pharmacol. 2024, 227, 116439. [Google Scholar] [CrossRef]
- Santos, N.; Pereira-Nunes, A.; Baltazar, F.; Granja, S. Lactate as a Regulator of Cancer Inflammation and Immunity. Immunometabolism 2019, 1, e190015. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Nakahata, S.; Iha, H. Complex Role of Regulatory T Cells (Tregs) in the Tumor Microenvironment: Their Molecular Mechanisms and Bidirectional Effects on Cancer Progression. Int. J. Mol. Sci. 2024, 25, 7346. [Google Scholar] [CrossRef]
- Yue, B.; Gao, Y.; Hu, Y.; Zhan, M.; Wu, Y.; Lu, L. Harnessing CD8+ T Cell Dynamics in Hepatitis B Virus-Associated Liver Diseases: Insights, Therapies and Future Directions. Clin. Transl. Med. 2024, 14, e1731. [Google Scholar] [CrossRef] [PubMed]
- Hafezi, M.; Lin, M.; Chia, A.; Chua, A.; Ho, Z.Z.; Fam, R.; Tan, D.; Aw, J.; Pavesi, A.; Krishnamoorthy, T.L.; et al. Immunosuppressive Drug-Resistant Armored T-Cell Receptor T Cells for Immune Therapy of HCC in Liver Transplant Patients. Hepatology 2021, 74, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, Y.; Zhang, K.; Zhu, R.; Chen, X.; Zhang, Z.; Yang, W. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity. Adv. Sci. 2024, 11, 2306580. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chen, S.; Chi, H. Immunometabolism of CD8+ T cell differentiation in cancer. Trends Cancer 2024, 10, 610–626. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, S.; Mandal, A.; Ghosh, N.; Sil, P.C. ROS-Associated Immune Response and Metabolism: A Mechanistic Approach with Implication of Various Diseases. Arch. Toxicol. 2020, 94, 2293–2317. [Google Scholar] [CrossRef]
- Certo, M.; Tsai, C.-H.; Pucino, V.; Ho, P.-C.; Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 2020, 21, 151–161. [Google Scholar] [CrossRef]
- Pucino, V.; Bombardieri, M.; Pitzalis, C.; Mauro, C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur. J. Immunol. 2016, 47, 14–21. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Peng, D.; Zhang, D.; Liu, L.; Wei, J.; Yuan, J.; Zhao, L.; Jiang, H.; Zhang, T.; et al. Activation and antitumor immunity of CD8 + T cells are supported by the glucose transporter GLUT10 and disrupted by lactic acid. Sci. Transl. Med. 2024, 16, eadk7399. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, L.; Kueth, G.; Shao, E.; Wang, X.; Ha, T.; Williams, D.L.; Li, C.; Fan, M.; Yang, K. Lactate’s impact on immune cells in sepsis: Unraveling the complex interplay. Front. Immunol. 2024, 15, 1483400. [Google Scholar] [CrossRef]
- Lim, S.A. Metabolic reprogramming of the tumor microenvironment to enhance immunotherapy. BMB Rep. 2024, 57, 388–399. [Google Scholar] [CrossRef]
- Heidari-Foroozan, M.; Rezalotfi, A.; Rezaei, N. The Molecular Landscape of T Cell Exhaustion in the Tumor Microenvironment and Reinvigoration Strategies. Int. Rev. Immunol. 2024, 43, 419–440. [Google Scholar] [CrossRef] [PubMed]
- Dai, E.; Wang, W.; Li, Y.; Ye, D.; Li, Y. Lactate and lactylation: Behind the development of tumors. Cancer Lett. 2024, 591, 216896. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, M.; Osorio-Forero, A.; Lüthi, A.; Chatton, J.-Y. The lactate receptor HCAR1: A key modulator of epileptic seizure activity. iScience 2024, 27, 109679. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Tomás, R.; Pérez-Guillén, I. Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment. Cancers 2020, 12, 3244. [Google Scholar] [CrossRef]
- Yan, L.; Wang, J.; Cai, X.; Liou, Y.; Shen, H.; Hao, J.; Huang, C.; Luo, G.; He, W. Macrophage plasticity: Signaling pathways, tissue repair, and regeneration. Medcomm 2024, 5, e658. [Google Scholar] [CrossRef]
- Stojadinović, M. Macrophage Polarization and Infectious Diseases. Biol. Serbica 2023, 45, 38–43. [Google Scholar]
- Dolmatova, L.S.; Dolmatov, I.Y. Tumor-Associated Macrophages as Potential Targets for Anti-Cancer Activity of Marine Invertebrate-Derived Compounds. Curr. Pharm. Des. 2021, 27, 3139–3160. [Google Scholar] [CrossRef]
- Zhang, W.X.; Neupane, A.S.; David, B.A.; Ginhoux, F.; Vargas e Silva Castanheira, F.; Kubes, P. A Functional Assessment of Fetal Liver and Monocyte-Derived Macrophages in the Lung Alveolar Environment. J. Immunol. 2024, 212, 1012–1021. [Google Scholar] [CrossRef]
- Hongxia, T.; Xuansheng, Z.; Anqi, Z.; Linjiang, S. Unveiling the veil of lactate in tumor-associated macrophages: A successful strategy for immunometabolic therapy. Front. Immunol. 2023, 14, 1208870. [Google Scholar]
- Dallavalasa, S.; Beeraka, N.M.; Basavaraju, C.G.; Tulimilli, S.V.; Sadhu, S.P.; Rajesh, K.; Aliev, G.; Madhunapantula, S.V. The Role of Tumor Associated Macrophages (TAMs) in Cancer Progression, Chemoresistance, Angiogenesis and Metastasis—Current Status. Curr. Med. Chem. 2021, 28, 8203–8236. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Yan, X.-Y.; Yu, W.-W.; Liang, X.-Q.; Du, X.-Y.; Liu, Z.-C.; Long, J.-P.; Zhao, G.-H.; Liu, H.-B. Lactic acid in macrophage polarization: The significant role in inflammation and cancer. Int. Rev. Immunol. 2021, 41, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Cao, W.; Chen, B.; Xiong, M.; Cao, G. Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Front. Cell Dev. Biol. 2022, 10, 808859. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zheng, J.; Liu, T.; Zhou, Z.; Song, C.; Geng, Y.; Wang, Z.; Huang, Y. Tumor Microenvironment Heterogeneity, Potential Therapeutic Avenues, and Emerging Therapies. Curr. Cancer Drug Targets 2023, 24, 288–307. [Google Scholar] [CrossRef] [PubMed]
- Arabpour, M.; Saghazadeh, A.; Rezaei, N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int. Immunopharmacol. 2021, 97, 107823. [Google Scholar] [CrossRef]
- Cai, L.; Xia, M.; Zhang, F. Redox Regulation of Immunometabolism in Microglia Underpinning Diabetic Retinopathy. Antioxidants 2024, 13, 423. [Google Scholar] [CrossRef]
- Zhi, S.; Chen, C.; Huang, H.; Zhang, Z.; Zeng, F.; Zhang, S. Hypoxia-inducible factor in breast cancer: Role and target for breast cancer treatment. Front. Immunol. 2024, 15, 1370800. [Google Scholar] [CrossRef]
- Elkoshi, Z. TGF-β, IL-1β, IL-6 Levels and TGF-β/Smad Pathway Reactivity Regulate the Link between Allergic Diseases, Cancer Risk, and Metabolic Dysregulations. Front. Immunol. 2024, 15, 1371753. [Google Scholar] [CrossRef]
- Luo, M.; Zhao, F.; Cheng, H.; Su, M.; Wang, Y. Macrophage polarization: An important role in inflammatory diseases. Front. Immunol. 2024, 15, 1352946. [Google Scholar] [CrossRef]
- Raghani, N.R.; Chorawala, M.R.; Mahadik, M.; Patel, R.B.; Prajapati, B.G.; Parekh, P.S. Revolutionizing cancer treatment: Comprehensive insights into immunotherapeutic strategies. Med. Oncol. 2024, 41, 51. [Google Scholar] [CrossRef]
- Liang, X.; Chen, X.; Yan, Y.; Cheng, A.; Lin, J.; Jiang, Y.; Chen, H.; Jin, J.; Luan, X. Targeting Metabolism to Enhance Immunotherapy within Tumor Microenvironment. Acta Pharmacol. Sin. 2024, 45, 2011–2022. [Google Scholar] [CrossRef]
- Li, A.; Wang, R.; Zhao, Y.; Zhao, P.; Yang, J. Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight. Metabolites 2024, 14, 325. [Google Scholar] [CrossRef] [PubMed]
- Tomas, K.; Larry, F. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals 2024, 17, 744. [Google Scholar] [CrossRef] [PubMed]
- Goglia, U.; Hasballa, I.; Teti, C.; Boschetti, M.; Ferone, D.; Albertelli, M. Ianus Bifrons: The Two Faces of Metformin. Cancers 2024, 16, 1287. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Kelekar, G.; Shen, J.; Shen, J.; Kaur, S.; Mita, M. The expanding role of metformin in cancer: An update on antitumor mechanisms and clinical development. Target. Oncol. 2016, 11, 447–467. [Google Scholar] [CrossRef]
- Kuo, T.-C.; Huang, K.-Y.; Yang, S.-C.; Wu, S.; Chung, W.-C.; Chang, Y.-L.; Hong, T.-M.; Wang, S.-P.; Chen, H.-Y.; Hsiao, T.-H.; et al. Monocarboxylate Transporter 4 Is a Therapeutic Target in Non-small Cell Lung Cancer with Aerobic Glycolysis Preference. Mol. Ther.-Oncolytics 2020, 18, 189–201. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Kong, D.; Zhang, X.; Xia, S.; Liang, B.; Li, Y.; Zhou, Y.; Zhang, Z.; Shao, J.; et al. Canonical Wnt Signaling Promotes HSC Glycolysis and Liver Fibrosis through an LDH-A/HIF-1α Transcriptional Complex. Hepatology 2024, 79, 606–623. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Y.; Xu, J.; Wang, P.; Wu, B.; Lu, S.; Lu, X.; You, S.; Huang, X.; Li, M.; et al. α-Myosin Heavy Chain Lactylation Maintains Sarcomeric Structure and Function and Alleviates the Development of Heart Failure. Cell Res. 2023, 33, 679–698. [Google Scholar] [CrossRef]
- Navarro, D.; Castaner, R.; Fernandez Forner, D. NME Digest. Drugs Future 2014, 39, 493. [Google Scholar] [CrossRef]
- Rosenstein, P.G.; Tennent-Brown, B.S.; Hughes, D. Clinical Use of Plasma Lactate Concentration. Part 1: Physiology, Pathophysiology, and Measurement. J. Vet. Emerg. Crit. Care 2018, 28, 85–105. [Google Scholar] [CrossRef]
- Kubik, J.; Humeniuk, E.; Adamczuk, G.; Madej-Czerwonka, B.; Korga-Plewko, A. Targeting Energy Metabolism in Cancer Treatment. Int. J. Mol. Sci. 2022, 23, 5572. [Google Scholar] [CrossRef]
- Gaspary, J.F.P.; Edgar, L.; Lopes, L.F.D.; Rosa, C.B.; Siluk, J.C.M. Translational insights into the hormetic potential of carbon dioxide: From physiological mechanisms to innovative adjunct therapeutic potential for cancer. Front. Physiol. 2024, 15, 1415037. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Zhang, L.; Feng, G.; Bao, W.; Wang, Y.; Huang, Y.; Chen, T.; Chen, J.; Cao, X.; You, K.; et al. Vanillic Acid Restores Homeostasis of Intestinal Epithelium in Colitis through Inhibiting CA9/STIM1-Mediated Ferroptosis. Pharmacol. Res. 2024, 202, 107128. [Google Scholar] [CrossRef] [PubMed]
- Tafech, A.; Stéphanou, A. On the Importance of Acidity in Cancer Cells and Therapy. Biology 2024, 13, 225. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Hu, P.; Shi, J. Nanomedicine Remodels Tumor Microenvironment for Solid Tumor Immunotherapy. J. Am. Chem. Soc. 2024, 146, 10217–10233. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Kroemer, G. The cancer-immune dialogue in the context of stress. Nat. Rev. Immunol. 2023, 24, 264–281. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, T.; Liu, X.; Fang, X.; Mo, Y.; Xie, N.; Nie, G.; Zhang, B.; Fan, X. Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy. Int. J. Nanomed. 2024, 19, 6253–6277. [Google Scholar] [CrossRef]
- Mai, Z.; Lin, Y.; Lin, P.; Zhao, X.; Cui, L. Modulating extracellular matrix stiffness: A strategic approach to boost cancer immunotherapy. Cell Death Dis. 2024, 15, 307. [Google Scholar] [CrossRef]
- Minaei, E.; Ranson, M.; Aghmesheh, M.; Sluyter, R.; Vine, K.L. Enhancing Pancreatic Cancer Immunotherapy: Leveraging Localized Delivery Strategies through the Use of Implantable Devices and Scaffolds. J. Control. Release 2024, 373, 145–160. [Google Scholar] [CrossRef]
- Butterfield, L.H.; Najjar, Y.G. Immunotherapy combination approaches: Mechanisms, biomarkers and clinical observations. Nat. Rev. Immunol. 2023, 24, 399–416. [Google Scholar] [CrossRef]
- Clemmons, A.B.; Chase, A.; Duong, P.; Waller, J.L.; Saunders, K.; Bryan, L. Assessing the Impact of Adding Acetazolamide to Oral or Intravenous Sodium Bicarbonate as Compared with Intravenous Bicarbonate Monotherapy as Urinary Alkalinization in Adults Receiving High-Dose Methotrexate. Support Care Cancer 2021, 29, 1527–1534. [Google Scholar] [CrossRef]
- Kapoor, K.; Kaur, N.; Sohal, H.S.; Kaur, M.; Singh, K.; Kumar, A. Drugs and Their Mode of Action: A Review on Sulfur-Containing Heterocyclic Compounds. Polycycl. Aromat. Compd. 2024, 1–40. [Google Scholar] [CrossRef]
- Rahman, A.; Janic, B.; Rahman, T.; Singh, H.; Ali, H.; Rattan, R.; Kazi, M.; Ali, M.M. Immunotherapy Enhancement by Targeting Extracellular Tumor pH in Triple-Negative Breast Cancer Mouse Model. Cancers 2023, 15, 4931. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, Y.; Sun, S. Proton pump inhibitors display anti-tumour potential in glioma. Cell Prolif. 2022, 56, e13321. [Google Scholar] [CrossRef] [PubMed]
- Gezmiş, T.; Albayrak, K.; Parlak, S.N.; Ulusoy, D.; Yilmaz, A.T. Investigation of the Effects of Omeprazole, a Proton Pump Inhibitor, on Apoptotic Gene Regions on Human Fibroblast Cells. Eurasian J. Mol. Biochem. Sci. 2024, 3, 10–16. [Google Scholar]
- Young, M.-J.; Wang, S.-A.; Chen, Y.-C.; Liu, C.-Y.; Hsu, K.-C.; Tang, S.-W.; Tseng, Y.-L.; Wang, Y.-C.; Lin, S.-M.; Hung, J.-J. USP24-i-101 targeting of USP24 activates autophagy to inhibit drug resistance acquired during cancer therapy. Cell Death Differ. 2024, 31, 574–591. [Google Scholar] [CrossRef]
- Giambra, M.; Di Cristofori, A.; Raimondo, F.; Rigolio, R.; Conconi, D.; Chiarello, G.; Tabano, S.M.; Antolini, L.; Nicolini, G.; Bua, M.; et al. Vacuolar Proton-Translocating ATPase May Take Part in the Drug Resistance Phenotype of Glioma Stem Cells. Int. J. Mol. Sci. 2024, 25, 2743. [Google Scholar] [CrossRef]
- Barchielli, G.; Capperucci, A.; Tanini, D. Therapeutic cysteine protease inhibitors: A patent review (2018–present). Expert Opin. Ther. Patents 2024, 34, 17–49. [Google Scholar] [CrossRef]
- Raith, J.; Bachmann, M.; Gonther, S.; Stülb, H.; Aghdassi, A.A.; Pham, C.T.N.; Mühl, H. Targeting cathepsin C ameliorates murine acetaminophen-induced liver injury. Theranostics 2024, 14, 3029–3042. [Google Scholar] [CrossRef]
- Stacpoole, P.W.; Martyniuk, C.J.; James, M.O.; Calcutt, N.A. Chapter Eight—Dichloroacetate-Induced Peripheral Neuropathy. In International Review of Neurobiology; Fernyhough, P., Calcutt, N.A., Eds.; Academic Press: Oxford, UK, 2019; Volume 145, pp. 211–238. ISSN 0074-7742. [Google Scholar]
- Chen, Y.; Guo, P.; Chen, L.; He, D. 5-aminolevulinic acid induced photodynamic reactions in diagnosis and therapy for female lower genital tract diseases. Front. Med. 2024, 11, 1370396. [Google Scholar] [CrossRef]
- da Silva, E.B.; Vasquez, M.W.M.; Teixeira, B.C.d.A.; Neto, M.C.; Sprenger, F.; Filho, J.L.N.; Almeida-Lopes, L.; Ramina, R. Association of 5-aminolevulinic acid fluorescence guided resection with photodynamic therapy in recurrent glioblastoma: A matched cohort study. Acta Neurochir. 2024, 166, 212. [Google Scholar] [CrossRef]
- Lin, G.; Tillman, L.; Luo, T.; Jiang, X.; Fan, Y.; Liu, G.; Lin, W. Nanoscale Metal-Organic Layer Reprograms Cellular Metabolism to Enhance Photodynamic Therapy and Antitumor Immunity. Angew. Chem. 2024, 136, e202410241. [Google Scholar] [CrossRef]
- Philip, P.A.; Sahai, V.; Bahary, N.; Mahipal, A.; Kasi, A.; Rocha Lima, C.M.S.; Alistar, A.T.; Oberstein, P.E.; Golan, T.; Metges, J.-P.; et al. Devimistat (CPI-613) With Modified Fluorouarcil, Oxaliplatin, Irinotecan, and Leucovorin (FFX) Versus FFX for Patients With Metastatic Adenocarcinoma of the Pancreas: The Phase III AVENGER 500 Study. JCO 2024, 42, 3692–3701. [Google Scholar] [CrossRef] [PubMed]
- Lycan, T.W.; Pardee, T.S.; Petty, W.J.; Bonomi, M.; Alistar, A.; Lamar, Z.S.; Isom, S.; Chan, M.D.; Miller, A.A.; Ruiz, J. A phase II clinical trial of CPI-613 in patients with relapsed or refractory small cell lung carcinoma. PLoS ONE 2016, 11, e0164244. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Wu, G.; Xie, Z.; Lei, X.; Yang, X.; Huang, S.; Deng, X.; Wang, Z.; Tang, G. pH regulators and their inhibitors in tumor microenvironment. Eur. J. Med. Chem. 2024, 267, 116170. [Google Scholar] [CrossRef] [PubMed]
- Ward, C.; Meehan, J.; Gray, M.E.; Murray, A.F.; Argyle, D.J.; Kunkler, I.H.; Langdon, S.P. The impact of tumour pH on cancer progression: Strategies for clinical intervention. Explor. Target. Anti-Tumor Ther. 2020, 1, 71–100. [Google Scholar] [CrossRef]
- Boedtkjer, E.; Pedersen, S.F. The Acidic Tumor Microenvironment as a Driver of Cancer. Annu. Rev. Physiol. 2020, 82, 103–126. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Hu, B.; Zou, B.; Xu, Y. Advancements in nanomedicine delivery systems: Unraveling immune regulation strategies for tumor immunotherapy. Nanomedicine 2024, 19, 1821–1840. [Google Scholar] [CrossRef]
- Ling, J.; Chang, Y.; Yuan, Z.; Chen, Q.; He, L.; Chen, T. Designing Lactate Dehydrogenase-Mimicking SnSe Nanosheets To Reprogram Tumor-Associated Macrophages for Potentiation of Photothermal Immunotherapy. ACS Appl. Mater. Interfaces 2022, 14, 27651–27665. [Google Scholar] [CrossRef]
- Miao, L.; Lu, C.; Zhang, B.; Li, H.; Zhao, X.; Chen, H.; Liu, Y.; Cui, X. Advances in metabolic reprogramming of NK cells in the tumor microenvironment on the impact of NK therapy. J. Transl. Med. 2024, 22, 229. [Google Scholar] [CrossRef]
- Kirthiga Devi, S.S.; Singh, S.; Joga, R.; Patil, S.Y.; Meghana Devi, V.; Chetan Dushantrao, S.; Dwivedi, F.; Kumar, G.; Kumar Jindal, D.; Singh, C.; et al. Enhancing Cancer Immunotherapy: Exploring Strategies to Target the PD-1/PD-L1 Axis and Analyzing the Associated Patent, Regulatory, and Clinical Trial Landscape. Eur. J. Pharm. Biopharm. 2024, 200, 114323. [Google Scholar] [CrossRef]
- Peng, S.; Xiao, F.; Chen, M.; Gao, H. Tumor-Microenvironment-Responsive Nanomedicine for Enhanced Cancer Immunotherapy. Adv. Sci. 2021, 9, 2103836. [Google Scholar] [CrossRef] [PubMed]
- Fecikova, S.; Csaderova, L.; Belvoncikova, P.; Puzderova, B.; Bernatova, K.; Talac, T.; Pastorek, J.; Barathova, M. Can Hypoxia Marker Carbonic Anhydrase IX Serve as a Potential New Diagnostic Marker and Therapeutic Target of Non-Small Cell Lung Cancer? Neoplasma 2024, 71, 123–142. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Gielecińska, A.; Mujwar, S.; Mojzych, M.; Marciniak, B.; Drozda, R.; Kontek, R. Targeting Carbonic Anhydrase IX and XII Isoforms with Small Molecule Inhibitors and Monoclonal Antibodies. J. Enzym. Inhib. Med. Chem. 2022, 37, 1278–1298. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Shi, X.; Li, Q.; Wang, L.; Wang, Z. Current Advances on Nanomaterials Interfering with Lactate Metabolism for Tumor Therapy. Adv. Sci. 2023, 11, e2305662. [Google Scholar] [CrossRef]
- Khan, F.; Lin, Y.; Ali, H.; Pang, L.; Dunterman, M.; Hsu, W.-H.; Frenis, K.; Rowe, R.G.; Wainwright, D.A.; McCortney, K.; et al. Lactate dehydrogenase A regulates tumor-macrophage symbiosis to promote glioblastoma progression. Nat. Commun. 2024, 15, 1–20. [Google Scholar] [CrossRef]
- Jin, S.; Yin, E.; Feng, C.; Sun, Y.; Yang, T.; Yuan, H.; Guo, Z.; Wang, X. Regulating tumor glycometabolism and the immune microenvironment by inhibiting lactate dehydrogenase with platinum(iv) complexes. Chem. Sci. 2023, 14, 8327–8337. [Google Scholar] [CrossRef]
- Sakuma, T.; Mukai, Y.; Yamaguchi, A.; Suganuma, Y.; Okamoto, K.; Furugen, A.; Narumi, K.; Ishikawa, S.; Saito, Y.; Kobayashi, M. Monocarboxylate Transporters 1 and 2 Are Responsible for L-Lactate Uptake in Differentiated Human Neuroblastoma SH-SY5Y Cells. Biol. Pharm. Bull. 2024, 47, 764–770. [Google Scholar] [CrossRef]
- Koltai, T.; Fliegel, L. Exploring monocarboxylate transporter inhibition for cancer treatment. Explor. Target. Anti-Tumor Ther. 2024, 5, 135–169. [Google Scholar] [CrossRef]
- Daniel, C.; Bell, C.; Burton, C.; Harguindey, S.; Reshkin, S.J.; Rauch, C. The Role of Proton Dynamics in the Development and Maintenance of Multidrug Resistance in Cancer. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2013, 1832, 606–617. [Google Scholar] [CrossRef]
- Chen, J.; Cui, L.; Lu, S.; Xu, S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis. 2024, 15, 42. [Google Scholar] [CrossRef]
- Mishra, D.; Banerjee, D. Lactate Dehydrogenases as Metabolic Links between Tumor and Stroma in the Tumor Microenvironment. Cancers 2019, 11, 750. [Google Scholar] [CrossRef] [PubMed]
- Swietach, P.; Jäättelä, M.; Pillon-Thomas, S.; Boedtkjer, E. Carnosine facilitates lysosomal release of inhibitors of T cell surveillance. Cell Metab. 2024, 36, 461–462. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yuan, D.; Cheng, X.; Tuo, B.; Liu, X.; Li, T. Function of ion transporters in maintaining acid-base homeostasis of the mammary gland and the pathophysiological role in breast cancer. Am. J. Physiol. Integr. Comp. Physiol. 2020, 318, R98–R111. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Muñoz, J.A.; Cupeiro, R.; Rubio-Arias, J.Á.; Amigo, T.; González-Lamuño, D. Exercise Influence on Monocarboxylate Transporter 1 (MCT1) and 4 (MCT4) in the Skeletal Muscle: A Systematic Review. Acta Physiol. 2024, 240, e14083. [Google Scholar] [CrossRef]
- Ajam-Hosseini, M.; Heydari, R.; Rasouli, M.; Akhoondi, F.; Hanjani, N.A.; Bekeschus, S.; Doroudian, M. Lactic acid in macrophage polarization: A factor in carcinogenesis and a promising target for cancer therapy. Biochem. Pharmacol. 2024, 222, 116098. [Google Scholar] [CrossRef]
- Xiao-Qun, Z.; Xian-Li, M.; Ariffin, N.S. The potential of carbonic anhydrase enzymes as a novel target for anti-cancer treatment. Eur. J. Pharmacol. 2024, 976, 176677. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, X.; Ma, Z.; Xu, L.; Wang, L.; Li, J.; Xiao, M.; Jiang, X. Enhanced Sampling Molecular Dynamics Simulations Reveal Transport Mechanism of Glycoconjugate Drugs through GLUT1. Int. J. Mol. Sci. 2024, 25, 5486. [Google Scholar] [CrossRef]
- Xu, W.; Borges, K. Case for supporting astrocyte energetics in glucose transporter 1 deficiency syndrome. Epilepsia 2024, 65, 2213–2226. [Google Scholar] [CrossRef]
- Akter, R.; Awais, M.; Boopathi, V.; Ahn, J.C.; Yang, D.C.; Kang, S.C.; Yang, D.U.; Jung, S.-K. Inversion of the Warburg Effect: Unraveling the Metabolic Nexus between Obesity and Cancer. ACS Pharmacol. Transl. Sci. 2024, 7, 560–569. [Google Scholar] [CrossRef]
- Sava, I.; Davis, L.J.; Gray, S.R.; Bright, N.A.; Luzio, J.P. Reversible assembly and disassembly of V-ATPase during the lysosome regeneration cycle. Mol. Biol. Cell 2024, 35, ar63. [Google Scholar] [CrossRef]
- Theparambil, S.M.; Begum, G.; Rose, C.R. pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain. Cell Calcium 2024, 120, 102882. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lu, Y.; Li, H.; Zhang, J.; Ju, Y.; Ouyang, M. Role of long non-coding RNAs in metabolic reprogramming of gastrointestinal cancer cells. Cancer Cell Int. 2024, 24, 15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shao, X.; Zhang, Y.; Zhu, M.; Wang, F.X.C.; Mu, J.; Li, J.; Yao, H.; Chen, K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023, 12, 11149–11165. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, C.; Zhang, Z.; Zeng, F.; Zhang, S. Exploring the Key Amino Acid Residues Surrounding the Active Center of Lactate Dehydrogenase A for the Development of Ideal Inhibitors. Molecules 2024, 29, 2029. [Google Scholar] [CrossRef]
- Yao, S.; Chai, H.; Tao, T.; Zhang, L.; Yang, X.; Li, X.; Yi, Z.; Wang, Y.; An, J.; Wen, G.; et al. Role of lactate and lactate metabolism in liver diseases (Review). Int. J. Mol. Med. 2024, 54, 1–15. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, C.; Wang, S.; Zhuo, S.; Zhu, J.; Li, Z.; Liu, Y.; Yang, L.; Chen, Y. Lactate transported by MCT1 plays an active role in promoting mitochondrial biogenesis and enhancing TCA flux in skeletal muscle. Sci. Adv. 2024, 10, eadn4508. [Google Scholar] [CrossRef]
- Arias-Betancur, A.; Fontova, P.; Alonso-Carrillo, D.; Carreira-Barral, I.; Duis, J.; García-Valverde, M.; Soto-Cerrato, V.; Quesada, R.; Pérez-Tomás, R. Deregulation of lactate permeability using a small-molecule transporter (Lactrans-1) disturbs intracellular pH and triggers cancer cell death. Biochem. Pharmacol. 2024, 229, 116469. [Google Scholar] [CrossRef]
- Yu, Y.; Poulsen, S.-A.; Di Trapani, G.; Tonissen, K.F. Exploring the Redox and pH Dimension of Carbonic Anhydrases in Cancer: A Focus on Carbonic Anhydrase 3. Antioxid. Redox Signal. 2024. [Google Scholar] [CrossRef]
- Malik, S.; Biswas, J.; Sarkar, P.; Nag, S.; Gain, C.; Roy, S.G.; Bhattacharya, B.; Ghosh, D.; Saha, A. Differential carbonic anhydrase activities control EBV-induced B-cell transformation and lytic cycle reactivation. PLoS Pathog. 2024, 20, e1011998. [Google Scholar] [CrossRef]
- Kim, H.J.; Hong, J.H. Multiple Regulatory Signals and Components in the Modulation of Bicarbonate Transporters. Pharmaceutics 2024, 16, 78. [Google Scholar] [CrossRef]
- Daida, T.; Shin, B.-C.; Cepeda, C.; Devaskar, S.U. Neurodevelopment Is Dependent on Maternal Diet: Placenta and Brain Glucose Transporters GLUT1 and GLUT3. Nutrients 2024, 16, 2363. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Wang, H.; Jing, H.; Dou, Y.; Krizkova, S.; Heger, Z.; Adam, V.; Li, N. “Golgi-customized Trojan horse” nanodiamonds impair GLUT1 plasma membrane localization and inhibit tumor glycolysis. J. Control. Release 2024, 371, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Lagzian, A.; Askari, M.; Haeri, M.S.; Sheikhi, N.; Banihashemi, S.; Nabi-Afjadi, M.; Malekzadegan, Y. Increased V-ATPase activity can lead to chemo-resistance in oral squamous cell carcinoma via autophagy induction: New insights. Med. Oncol. 2024, 41, 108. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Song, Z.; Hao, J.; Kong, X.; Yuan, W.; Shen, Y.; Zhang, C.; Yang, J.; Yu, P.; Qian, Y.; et al. Proton pump inhibitors enhance macropinocytosis-mediated extracellular vesicle endocytosis by inducing membrane v-ATPase assembly. J. Extracell. Vesicles 2024, 13, e12426. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Ibrahim-Hashim, A.; Ordway, B.; Gatenby, R.A. Back to basic: Trials and tribulations of alkalizing agents in cancer. Front. Oncol. 2022, 12, 981718. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, R.; Isowa, M.; Narui, R.; Morikawa, H.; Wada, H. Clinical review of alkalization therapy in cancer treatment. Front. Oncol. 2022, 12, 1003588. [Google Scholar] [CrossRef]
- Chafe, S.C.; McDonald, P.C.; Saberi, S.; Nemirovsky, O.; Venkateswaran, G.; Burugu, S.; Gao, D.; Delaidelli, A.; Kyle, A.H.; Baker, J.H.E.; et al. Targeting Hypoxia-Induced Carbonic Anhydrase IX Enhances Immune-Checkpoint Blockade Locally and Systemically. Cancer Immunol. Res. 2019, 7, 1064–1078. [Google Scholar] [CrossRef]
- McDonald, P.C.; Chia, S.; Bedard, P.L.M.; Chu, Q.; Lyle, M.; Tang, L.; Singh, M.; Zhang, Z.; Supuran, C.T.; Renouf, D.J.; et al. A Phase 1 Study of SLC-0111, a Novel Inhibitor of Carbonic Anhydrase IX, in Patients With Advanced Solid Tumors. Am. J. Clin. Oncol. 2020, 43, 484–490. [Google Scholar] [CrossRef]
- Uchiyama, A.A.T.; Silva, P.A.I.A.; Lopes, M.S.M.; Yen, C.T.; Ricardo, E.D.; Mutão, T.; Pimenta, J.R.; Machado, L.M.; Shimba, D.S.; Peixoto, R.D. Proton Pump Inhibitors and Oncologic Treatment Efficacy: A Practical Review of the Literature for Oncologists. Curr. Oncol. 2021, 28, 783–799. [Google Scholar] [CrossRef]
- Chi, Y.; Yue, R.; Lv, Y.; Liao, W.; Yin, R. Esomeprazole improves the acidic microenvironment of epithelial ovarian cancer by inhibiting the expression of V-ATPase. Trop. J. Pharm. Res. 2020, 19, 1585–1590. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.; Wang, Y.; Zhang, Z.; Nie, J.; Wang, X.; Ai, S.; Li, J.; Gao, Y.; Li, C.; et al. Deciphering metabolic heterogeneity in retinoblastoma unravels the role of monocarboxylate transporter 1 in tumor progression. Biomark. Res. 2024, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Viklund, J.; Avnet, S.; De Milito, A. Pathobiology and Therapeutic Implications of Tumor Acidosis. Curr. Med. Chem. 2017, 24, 2827–2845. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, H.; Chauhan, B.; Kapoor, D.U.; Satani, B.H.; Patel, S.; Pathak, Y.V.; Prajapati, B.G. pH-Responsive Delivery Nanoplatforms in Cancer Theranostics. In Site-Specific Cancer Nanotheranostics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024; pp. 38–53. [Google Scholar]
- Koltai, T. The complex relationship between multiple drug resistance and the tumor pH gradient: A review. Cancer Drug Resist. 2022, 5, 277–303. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Song, Y.; Wang, R.; Wang, T. Molecular mechanisms of tumor resistance to radiotherapy. Mol. Cancer 2023, 22, 96. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.-K. Tumor lactic acid: A potential target for cancer therapy. Arch. Pharmacal. Res. 2023, 46, 90–110. [Google Scholar] [CrossRef]
- Sanegre, S.; Lucantoni, F.; Burgos-Panadero, R.; De La Cruz-Merino, L.; Noguera, R.; Álvaro Naranjo, T. Integrating the Tumor Microenvironment into Cancer Therapy. Cancers 2020, 12, 1677. [Google Scholar] [CrossRef]
- Wu, P.; Han, J.; Gong, Y.; Liu, C.; Yu, H.; Xie, N. Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications. Pharmaceutics 2022, 14, 1990. [Google Scholar] [CrossRef]
- Ambrosini, G.; Cordani, M.; Zarrabi, A.; Alcon-Rodriguez, S.; Sainz, R.M.; Velasco, G.; Gonzalez-Menendez, P.; Dando, I. Transcending frontiers in prostate cancer: The role of oncometabolites on epigenetic regulation, CSCs, and tumor microenvironment to identify new therapeutic strategies. Cell Commun. Signal. 2024, 22, 36. [Google Scholar] [CrossRef]
- Silva, A.; Cerqueira, M.C.; Rosa, B.; Sobral, C.; Pinto-Ribeiro, F.; Costa, M.F.; Baltazar, F.; Afonso, J. Prognostic Value of Monocarboxylate Transporter 1 Overexpression in Cancer: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 5141. [Google Scholar] [CrossRef]
- Bird, B.H.; Nally, K.; Ronan, K.; Clarke, G.; Amu, S.; Almeida, A.S.; Flavin, R.; Finn, S. Cancer Immunotherapy with Immune Checkpoint Inhibitors-Biomarkers of Response and Toxicity; Current Limitations and Future Promise. Diagnostics 2022, 12, 124. [Google Scholar] [CrossRef]
- Jin, Y.; Huang, Y.; Ren, H.; Huang, H.; Lai, C.; Wang, W.; Tong, Z.; Zhang, H.; Wu, W.; Liu, C.; et al. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials 2024, 305, 122463. [Google Scholar] [CrossRef] [PubMed]
- Bigos, K.J.; Quiles, C.G.; Lunj, S.; Smith, D.J.; Krause, M.; Troost, E.G.; West, C.M.; Hoskin, P.; Choudhury, A. Tumour response to hypoxia: Understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front. Oncol. 2024, 14, 1331355. [Google Scholar] [CrossRef] [PubMed]
- Jardim-Perassi, B.V.; Irrera, P.; Oluwatola, O.E.; Abrahams, D.; Estrella, V.C.; Ordway, B.; Byrne, S.R.; Ojeda, A.A.; Whelan, C.J.; Kim, J.; et al. L-DOS47 Elevates Pancreatic Cancer Tumor pH and Enhances Response to Immunotherapy. Biomedicines 2024, 12, 461. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Xiang, J.; Qiu, N.; Wang, Y.; Piao, Y.; Shao, S.; Tang, J.; Zhou, Z.; Shen, Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem. Rev. 2023, 123, 10920–10989. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Jiang, C.-H.; Li, N. Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol. Cancer 2024, 23, 203. [Google Scholar] [CrossRef] [PubMed]
- Ronca, R.; Supuran, C.T. Carbonic anhydrase IX: An atypical target for innovative therapies in cancer. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2024, 1879, 189120. [Google Scholar] [CrossRef]
- Moinuddin, A.; Poznanski, S.M.; Portillo, A.L.; Monteiro, J.K.; Ashkar, A.A. Metabolic adaptations determine whether natural killer cells fail or thrive within the tumor microenvironment. Immunol. Rev. 2024, 323, 19–39. [Google Scholar] [CrossRef]
- Peng, X.; He, Z.; Yuan, D.; Liu, Z.; Rong, P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2024, 1879, 189164. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, L.; Wan, D.; Zhou, L.; Zheng, S.; Lin, S.; Qiao, Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target. Ther. 2021, 6, 153. [Google Scholar] [CrossRef]
Drug Name | Dose | Mode of Action | Application | References |
---|---|---|---|---|
Dichloroacetate (DCA) | 10–50 mg/kg/day | Inhibits pyruvate dehydrogenase kinase, shifts metabolism to oxidative phosphorylation | Used to reduce lactate production in cancer cells | [72] |
Metformin | 500–2550 mg/day | Inhibits mitochondrial complex I, reduces lactate production | Anti-diabetic drug, repurposed for cancer treatment | [73] |
2-Deoxyglucose (2-DG) | 25–50 mg/kg/week | Inhibits glycolysis, leading to reduced lactate production | Used to sensitize tumors to radiotherapy and chemotherapy | [74] |
AZD3965 | 5–10 mg/kg/day | Inhibits monocarboxylate transporter 1 (MCT1), reduces lactate export | Under investigation in solid tumors | [75] |
LDHA Inhibitor (FX11) | 50 mg/kg/day | Inhibits LDHA, reducing lactate production | Used to induce metabolic stress in cancer cells | [76] |
Galloflavin | 10–20 mg/kg/day | Inhibits lactate dehydrogenase, reducing lactate production | Investigational agent in various cancers | [77] |
IACS-10759 | 100 mg/day | Inhibits oxidative phosphorylation, leading to metabolic stress | Under investigation in AML and solid tumors | [78] |
Oxamate | 1–2 g/kg/day | Inhibits lactate dehydrogenase, reducing lactate production | Investigational agent in combination with other therapies | [79] |
3-Bromopyruvate (3-BP) | 50–100 mg/kg/day | Alkylates thiol groups in glycolytic enzymes, reducing lactate production | Experimental agent in glycolysis inhibition | [80] |
Gossypol | 10–70 mg/day | Inhibits LDHA and Bcl-2 family proteins, reducing lactate production | Used in combination therapy for various cancers | [80] |
Drug Name | Dose | Molecular Mechanism | Application | References |
---|---|---|---|---|
Acetazolamide | 250–500 mg/day | Reduces bicarbonate and acid output by inhibiting carbonic anhydrase | Reducing tumor acidity, enhancing immune cell function | [90,91] |
Sodium Bicarbonate | 0.5–1 g/kg (oral) | Buffers extracellular pH, neutralizing acidity | Alleviating acidic TME, improving drug efficacy | [92] |
Omeprazole | 20–40 mg/day | Proton pump inhibitors lower gastric acid secretion and tumor acidity. | Adjunct in cancer therapy, modulating TME acidity | [93,94] |
Esomeprazole | 20–40 mg/day | Proton pump inhibitor, reduces extracellular acidification | Combination with immunotherapy, enhancing T cell function | [93] |
Bafilomycin A1 | Variable (research) | By inhibiting V-ATPase, proton extrusion and extracellular acidification are reduced | Experimental, targeting acidic microenvironment | [95,96] |
AZD7986 | 3–300 mg/kg (clinical trials) | Inhibits CAIX, reducing extracellular acidity | Targeting hypoxic tumor regions, improving immune response | [97,98] |
Sodium Dichloroacetate (DCA) | 10–50 mg/kg | Pyruvate dehydrogenase kinase inhibition alters metabolism and reduces lactate generation | Modulating tumor metabolism, reducing acidosis | [72,99] |
5-Aminolevulinic Acid (ALA) | 2–20 mg/kg | Produces heme; targets acidic cancers with photodynamic treatment | Combined with light exposure for targeted tumor ablation | [100,101] |
Bromopyruvate | Variable (research) | Reduces tumor acidity and lactic acid generation by inhibiting glycolytic enzymes. | Experimental, targeting glycolytic tumors | [72,102] |
CPI-613 | 400–3000 mg/m2 (IV) | Alters tumor metabolism by inhibiting energy-producing mitochondrial enzymes | In combination with chemotherapy for enhanced effect | [103,104] |
Enzyme | Molecular Action | Function in pHe Regulation | Immunotherapy Application | References |
---|---|---|---|---|
Carbonic Anhydrase IX (CAIX) | Facilitates the reversible conversion of CO2 into bicarbonate (HCO3⁻) and protons (H⁺) through a chemical reaction | Contributes to the process of extracellular acidification by actively transporting H⁺ ions out of the cell | Tumor acidity is decreased by inhibition, which improves the functioning of immune cells and their response to checkpoint inhibitors | [113,114,115] |
Lactate Dehydrogenase (LDH) | Converts pyruvate to lactate, producing NAD⁺ | Increases lactate production, leading to extracellular acidification | Inhibitors of LDH can reduce lactate levels, leading to the normalization of pH levels and the enhancement of the immunological microenvironment | [116,117] |
Monocarboxylate Transporter (MCT) | Facilitate the movement of lactate and protons across cellular membranes | Lactate and H⁺ exports contribute to extracellular acidification | Lactate exports are reduced by MCT inhibitors, altering acidity and immunological response | [118,119] |
V-ATPase (Vacuolar-type H⁺-ATPase) | Pumps protons into the extracellular space or into intracellular vesicles | Major controller of internal and pHe levels in tumors | Suppression of acidity enhances the ability of immune cells to enter and function effectively | [120] |
Gene | Molecular Mechanism | Function | References |
---|---|---|---|
LDHA | Catalyzes the conversion of pyruvate to lactate | Increases extracellular acidity, especially under hypoxic conditions by producing lactate | [135,136] |
MCT1 | Facilitates the export of lactate and protons from cells | Maintains acidic environment by removing lactate, a glycolysis byproduct | [137,138] |
MCT4 | Same as MCT1, facilitates lactate and proton export | Supports the acidic TME by removing lactate from cancer cells | [119,138] |
CA9 | Converts CO2 to bicarbonate and protons | Enhances proton release, contributing to extracellular acidity, particularly in hypoxic conditions | [139,140] |
CA12 | Similar function to CA9 | Helps maintain acidic pHe through proton release | [140,141] |
GLUT1 | Transports glucose into cells | Supports glycolysis and subsequent lactate production, indirectly contributing to TME acidity | [142,143] |
V-ATPase | Transports protons across cellular and vesicular membranes | Acidifies intracellular compartments and the external environment, contributing to extracellular acidity | [83,144,145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.A.; Yadab, M.K.; Ali, M.M. Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy. Cells 2024, 13, 1924. https://doi.org/10.3390/cells13221924
Rahman MA, Yadab MK, Ali MM. Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy. Cells. 2024; 13(22):1924. https://doi.org/10.3390/cells13221924
Chicago/Turabian StyleRahman, Md Ataur, Mahesh Kumar Yadab, and Meser M. Ali. 2024. "Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy" Cells 13, no. 22: 1924. https://doi.org/10.3390/cells13221924
APA StyleRahman, M. A., Yadab, M. K., & Ali, M. M. (2024). Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy. Cells, 13(22), 1924. https://doi.org/10.3390/cells13221924