Cell Cycle Dynamics in the Microalga Tisochrysis lutea: Influence of Light Duration and Drugs
Abstract
:1. Introduction
2. Material and Methods
2.1. Microalga Strain
2.2. Culture Conditions
2.3. Photoperiod Experiment
2.4. Chemical Blocking of the Cell Cycle
2.5. Commitment Experiment
2.6. Cell Size
2.7. Critical Volume Calculation and Timer Estimation
2.8. Cell Cycle Analysis by Flow Cytometry
3. Results
3.1. Synchronization of T. lutea Cultures by L:D Cycles
3.2. Synchronization of T. lutea Cultures by Blocking Agents
3.3. Determination of Commitment Point
4. Discussion
4.1. Natural Synchronization
4.2. Chemical Synchronization
4.3. Commitment Point
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naselli-Flores, L.; Padisák, J. Ecosystem services provided by marine and freshwater phytoplankton. Hydrobiologia 2023, 850, 2691–2706. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Bendif, E.M.; Probert, I.; Schroeder, D.C.; de Vargas, C. On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J. Appl. Phycol. 2013, 25, 1763–1776. [Google Scholar] [CrossRef]
- Simon, N.; Cras, A.-L.; Foulon, E.; Lemée, R. Diversity and evolution of marine phytoplankton. Comptes Rendus Biol. 2009, 332, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Guerin, M.; Huntley, M.E.; Olaizola, M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 2003, 21, 210–216. [Google Scholar] [CrossRef]
- Pajot, A.; Huynh, G.H.; Picot, L.; Marchal, L.; Nicolau, E. Fucoxanthin from Algae to Human, an Extraordinary Bioresource: Insights and Advances in up and Downstream Processes. Mar. Drugs 2022, 20, 222. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K. Fatty acids of microalgae: Diversity and applications. Rev. Environ. Sci. Bio/Technol. 2021, 20, 515–547. [Google Scholar] [CrossRef]
- Marchetti, J.; Bougaran, G.; Le Dean, L.; Mégrier, C.; Lukomska, E.; Kaas, R.; Olivo, E.; Baron, R.; Robert, R.; Cadoret, J. Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries. Aquaculture 2012, 326–329, 106–115. [Google Scholar] [CrossRef]
- Ippoliti, D.; Gómez, C.; Morales-Amaral, M.d.M.; Pistocchi, R.; Fernández-Sevilla, J.; Acién, F.G. Modeling of photosynthesis and respiration rate for Isochrysis galbana (T-Iso) and its influence on the production of this strain. Bioresour. Technol. 2016, 203, 71–79. [Google Scholar] [CrossRef]
- Mohamadnia, S.; Tavakoli, O.; Faramarzi, M.A.; Shamsollahi, Z. Production of fucoxanthin by the microalga Tisochrysis lutea: A review of recent developments. Aquaculture 2020, 516, 734637. [Google Scholar] [CrossRef]
- Gao, F.; Cabanelas, I.I.T.; Wijffels, R.H.; Barbosa, M.J. Process optimization of fucoxanthin production with Tisochrysis lutea. Bioresour. Technol. 2020, 315, 123894. [Google Scholar] [CrossRef] [PubMed]
- Bougaran, G. La Co-Limitation par l’Azote et le Phosphore: Étude des Mécanismes Chez la Microalgue Tisochrysis lutea. Ph.D. Thesis, Université de Nantes, Ecole Doctorale VENAM, Nantes, France, 2014. [Google Scholar]
- Bonnefond, H.; Grimaud, G.; Rumin, J.; Bougaran, G.; Talec, A.; Gachelin, M.; Boutoute, M.; Pruvost, E.; Bernard, O.; Sciandra, A. Continuous selection pressure to improve temperature acclimation of Tisochrysis lutea. PLoS ONE 2017, 12, e0183547. [Google Scholar] [CrossRef] [PubMed]
- Zachleder, V.; Bišová, K.; Vítová, M. The Cell Cycle of Microalgae. In The Physiology of Microalgae; Borowitzka, M.A., Beardall, J., Raven, J.A., Eds.; Developments in Applied Phycology; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–46. [Google Scholar] [CrossRef]
- Schafer, K.A. The Cell Cycle: A Review. Veter. Pathol. 1998, 35, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Vítová, M.; Zachleder, V. Points of commitment to reproductive events as a tool for analysis of the cell cycle in synchronous cultures of algae. Folia Microbiol. 2005, 50, 141–149. [Google Scholar] [CrossRef]
- Barnum, K.J.; O’Connell, M.J. Cell cycle regulation by checkpoints. In Methods in Molecular Biology; Noguchi, E., Gadaleta, M.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 29–40. [Google Scholar]
- Cadart, C.; Monnier, S.; Grilli, J.; Sáez, P.J.; Srivastava, N.; Attia, R.; Terriac, E.; Baum, B.; Cosentino-Lagomarsino, M.; Piel, M. Size control in mammalian cells involves modulation of both growth rate and cell cycle duration. Nat. Commun. 2018, 9, 3275. [Google Scholar] [CrossRef]
- Masui, Y. From oocyte maturation to the in vitro cell cycle: The history of discoveries of Maturation-Promoting Factor (MPF) and Cytostatic Factor (CSF). Differentiation 2001, 69, 1–17. [Google Scholar] [CrossRef]
- John, P.C. Control of the cell division cycle in Chlamydomonas. Microbiol. Sci. 1984, 1, 96–101. [Google Scholar]
- Craigie, R.A.; Cavalier-Smith, T. Cell volume and the control of the Chlamydomonas cell cycle. J. Cell Sci. 1982, 54, 173–191. [Google Scholar] [CrossRef]
- Donnan, L.; John, P.C.L. Cell cycle control by timer and sizer in Chlamydomonas. Nature 1983, 304, 630–633. [Google Scholar] [CrossRef]
- Zachleder, V.; Ende, H.V.D. Cell cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J. Cell Sci. 1992, 102, 469–474. [Google Scholar] [CrossRef]
- Bisova, K.; Krylov, D.M.; Umen, J.G. Genome-Wide Annotation and Expression Profiling of Cell Cycle Regulatory Genes in Chlamydomonas reinhardtii. Plant Physiol. 2005, 137, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Vítová, M.; Bišová, K.; Hlavová, M.; Kawano, S.; Zachleder, V.; Čížková, M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by temperature. Planta 2011, 234, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Kromkamp, J.C.; Forster, R.M. Developments in microphytobenthos primary productivity studies. In Functioning of Microphytobenthos in Estuaries Proceedings of the Colloquium, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands, 21–23 August 2003; Royal Netherlands Academy of Arts and Sciences: Amsterdam, The Netherlands, 2003; pp. 9–30. [Google Scholar]
- Nikaido, S.S.; Johnson, C.H. Daily and Circadian Variation in Survival from Ultraviolet Radiation in Chlamydomonas reinhardtii. Photochem. Photobiol. 2000, 71, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, S.; Partensky, F.; Lennon, J.; Vaulot, D. Diel patterns of growth and division in marine picoplankton in culture. J. Phycol. 2001, 37, 357–369. [Google Scholar] [CrossRef]
- Hlavová, M.; Vítová, M.; Bišová, K. Synchronization of Green Algae by Light and Dark Regimes for Cell Cycle and Cell Division Studies. In Plant Cell Division; Caillaud, M.-C., Ed.; Springer Science: Berlin/Heidelberg, Germany, 2016; pp. 3–16. [Google Scholar]
- Zhuk, A.S.; Stepchenkova, E.I.; Pavlov, Y.I.; Inge-Vechtomov, S.G. Evaluation of methods of synchronization of cell division in yeast Saccharomyces cerevisiae. Cell Tissue Biol. 2017, 11, 111–122. [Google Scholar] [CrossRef]
- Tamiya, H. Synchronous Cultures of Algae. Annu. Rev. Plant Physiol. 1966, 17, 1–27. [Google Scholar] [CrossRef]
- Krupinska, K.; Humbeck, K. New trends in photobiology: Light-induced synchronous cultures, an excellent tool to study the cell cycle of unicellular green algae. J. Photochem. Photobiol. B Biol. 1994, 26, 217–231. [Google Scholar] [CrossRef]
- Heldt, F.S.; Tyson, J.J.; Cross, F.R.; Novák, B. A Single Light-Responsive Sizer Can Control Multiple-Fission Cycles in Chlamydomonas. Curr. Biol. 2020, 30, 634.E7–644.E7. [Google Scholar] [CrossRef]
- Bordhan, P.; Bazaz, S.R.; Jin, D.; Warkiani, M.E. Advances and enabling technologies for phase-specific cell cycle synchronisation. Lab Chip 2022, 22, 445–462. [Google Scholar] [CrossRef]
- Lemaire, S.; Hours, M.; Gerard-Hirne, C.; Trouabal, A.; Roche, O.; Jacquot, J.-P. Analysis of light/dark synchronization of cell-wall-less Chlamydomonas reinhardtii (Chlorophyta) cells by flow cytometry. Eur. J. Phycol. 1999, 34, 279–286. [Google Scholar] [CrossRef]
- Vaulot, D. The Cell Cycle of Phytoplankton: Coupling Cell Growth to Population Growth. In Molecular Ecology of Aquatic Microbes; Joint, I., Ed.; NATO ASI Series; Springer: Berlin/Heidelberg, Germany, 1995; pp. 303–322. [Google Scholar] [CrossRef]
- Spudich, J.L.; Sager, R. Regulation of the Chlamydomonas cell cycle by light and dark. J. Cell Biol. 1980, 85, 136–145. [Google Scholar] [CrossRef]
- Yee, M.-C.; Bartholomew, J.C. Light regulation of the cell cycle in Euglena gracilis bacillaris. Cytometry 1988, 9, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Planchais, S.; Glab, N.; Inzé, D.; Bergounioux, C. Chemical inhibitors: A tool for plant cell cycle studies. FEBS Lett. 2000, 476, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Farinas, B.; Mary, C.; de O Manes, C.-L.; Bhaud, Y.; Peaucellier, G.; Moreau, H. Natural Synchronisation for the Study of Cell Division in the Green Unicellular Alga Ostreococcus tauri. Plant Mol. Biol. 2006, 60, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Šetlík, I.; Berková, E.; Doucha, J.; Kubín, Š.; Vendlová, J.; Zachleder, V. The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. Arch. Hydrobiol. 1972, 41, 172–213. [Google Scholar]
- Zachleder, V.; Šetlík, I. Distinct controls of dna replication and of nuclear division in the cell cycles of the chlorococcal alga Scenedesmus quadricauda. J. Cell Sci. 1988, 91, 531–539. [Google Scholar] [CrossRef]
- Matsumura, K.; Yagi, T.; Hattori, A.; Soloviev, M.; Yasuda, K. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle. J. Nanobiotechnol. 2010, 8, 23. [Google Scholar] [CrossRef]
- Zachleder, V.; Bišová, K.; Vítová, M.; Kubín, Š.; Hendrychová, J. Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur. J. Phycol. 2002, 37, 361–371. [Google Scholar] [CrossRef]
- Singh, H.P.; Raigar, O.P.; Chahota, R.K. Estimation of genetic diversity and its exploitation in plant breeding. Bot. Rev. 2022, 88, 413–435. [Google Scholar] [CrossRef]
- Pandey, K.; Dangi, R.; Prajapati, U.; Kumar, S.; Maurya, N.K.; Singh, A.V.; Pandey, A.K.; Singh, J.; Rajan, R. Advance breeding and biotechnological approaches for crop improvement: A review. Int. J. Chem. Stud. 2019, 7, 837–841. [Google Scholar]
- King, J.C. Biotechnology: A Solution for Improving Nutrient Bioavailability. Int. J. Vitam. Nutr. Res. 2002, 72, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Swarup, S.; Cargill, E.J.; Crosby, K.; Flagel, L.; Kniskern, J.; Glenn, K.C. Genetic diversity is indispensable for plant breeding to improve crops. Crop. Sci. 2021, 61, 839–852. [Google Scholar] [CrossRef]
- Walne, P.R. Experiments in the Large-Scale Culture of the Larvae of Ostrea edulis L.; His Majesty’s Stationery Office: London, UK, 1966. [Google Scholar]
- Hunter-Cevera, K.R.; Neubert, M.G.; Solow, A.R.; Olson, R.J.; Shalapyonok, A.; Sosik, H.M. Diel size distributions reveal seasonal growth dynamics of a coastal phytoplankter. Proc. Natl. Acad. Sci. USA 2014, 111, 9852–9857. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.; Frigeri, L.G.; Davis, A.K. Synchronized growth of Thalassiosira pseudonana (bacillariophyceae) provides novel insights into cell–wall synthesis processes in relation to the cell cycle. J. Phycol. 2007, 43, 730–740. [Google Scholar] [CrossRef]
- Goto, K.; Johnson, C.H. Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J. Cell Biol. 1995, 129, 1061–1069. [Google Scholar] [CrossRef]
- Morimura, Y. Synchronous culture of chlorellai. Kinetic analysis of the life cycle of Chlorella ellipsoidea as affected by changes of temperature and light intensity. Plant Cell Physiol. 1959, 1, 49–62. [Google Scholar] [CrossRef]
- Henley, W.J. The past, present and future of algal continuous cultures in basic research and commercial applications. Algal Res. 2019, 43, 101636. [Google Scholar] [CrossRef]
- Senger, H. Research on the synchronization of Chlorella cultures. Arch. Mikrobiol. 1961, 40, 47–72. [Google Scholar] [CrossRef]
- Soeder, C.J.; Ried, A. On the course of sporulation and protoplast division in synchronous cultures of Chlorella pyrenoidosa. Arch. Mikrobiol. 1962, 42, 176–189. [Google Scholar] [CrossRef]
- Cooper, S.; Iyer, G.; Tarquini, M.; Bissett, P. Nocodazole does not synchronize cells: Implications for cell-cycle control and whole-culture synchronization. Cell Tissue Res. 2006, 324, 237–242. [Google Scholar] [CrossRef]
- Claquin, P.; Kromkamp, J.C.; Martin-Jezequel, V. Relationship between photosynthetic metabolism and cell cycle in a synchronized culture of the marine alga Cylindrotheca fusiformis (Bacillariophyceae). Eur. J. Phycol. 2004, 39, 33–41. [Google Scholar] [CrossRef]
- Carrier, G.; Garnier, M.; Cunff, L.L.; Bougaran, G.; Probert, I.; Vargas, C.D.; Corre, E.; Cadoret, J.-P.; Saint-Jean, B. Comparative Transcriptome of Wild Type and Selected Strains of the Microalgae Tisochrysis lutea Provides Insights into the Genetic Basis, Lipid Metabolism and the Life Cycle. PLoS ONE 2014, 9, e86889. [Google Scholar] [CrossRef] [PubMed]
- Paasche, E. Marine Plankton Algae Grown with Light-Dark Cycles. I. Coccolithus huxleyi. Physiol. Plant. 1967, 20, 946–956. [Google Scholar] [CrossRef]
- Zachleder, V.; Ivanov, I.; Vítová, M.; Bišová, K.; Zachleder, V.; Ivanov, I.; Vítová, M.; Bišová, K.; Zachleder, V.; Ivanov, I.; et al. Cell Cycle Arrest by Supraoptimal Temperature in the Alga Chlamydomonas reinhardtii. Cells 2019, 8, 1237. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, M.; Marciniak, K.; Kuran, H. Analysis of mitotic synchrony induced by cold treatment in root meristems of Vicia faba L. Environ. Exp. Bot. 1990, 30, 373–382. [Google Scholar] [CrossRef]
- Banfalvi, G. Overview of Cell Synchronization, in Cell Cycle Synchronization: Methods and Protocols. In Methods in Molecular Biology; Banfalvi, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–27. [Google Scholar] [CrossRef]
- Vasquez, R.J.; Howell, B.; Yvon, A.M.; Wadsworth, P.; Cassimeris, L. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol. Biol. Cell 1997, 8, 973–985. [Google Scholar] [CrossRef]
- Luduena, R.F.; Roach, M.C. Tubulin sulfhydryl groups as probes and targets for antimitotic and antimicrotubule agents. Pharmacol. Ther. 1991, 49, 133–152. [Google Scholar] [CrossRef]
- Ng, C.K.F.; Lam, C.M.C.; Yeung, P.K.K.; Wong, J.T.Y. Flow cytometric analysis of nocodazole-induced cell-cycle arrest in the pennate diatom Phaeodactylum tricornutum Bohlin. J. Appl. Phycol. 1998, 10, 569–572. [Google Scholar] [CrossRef]
- Surani, A.A.; Colombo, S.L.; Barlow, G.; Foulds, G.A.; Montiel-Duarte, C. Optimizing Cell Synchronization Using Nocodazole or Double Thymidine Block. In Cell Cycle Oscillators: Methods and Protocols; Coutts, A.S., Weston, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 111–121. [Google Scholar] [CrossRef]
- Yiangou, L.; Grandy, R.A.; Morell, C.M.; Tomaz, R.A.; Osnato, A.; Kadiwala, J.; Muraro, D.; Garcia-Bernardo, J.; Nakanoh, S.; Bernard, W.G.; et al. Method to Synchronize Cell Cycle of Human Pluripotent Stem Cells without Affecting Their Fundamental Characteristics. Stem Cell Rep. 2018, 12, 165–179. [Google Scholar] [CrossRef]
- Jacobs, C.W.; E Adams, A.; Szaniszlo, P.J.; Pringle, J.R. Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 1988, 107, 1409–1426. [Google Scholar] [CrossRef] [PubMed]
- Regad, F.; Hervé, C.; Marinx, O.; Lescure, B.; Bergounioux, C.; Tremousaygue, D. Thetef1 box, a ubiquitouscis-acting element involved in the activation of plant genes that are highly expressed in cycling cells. Mol. Genet. Genom. 1995, 248, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.C.; Hemerly, A.S.; Engler, J.D.; van Montagu, M.; Engler, G.; Inzé, D. Developmental expression of the arabidopsis cyclin gene cyc1At. Plant Cell 1994, 6, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Young, C.W.; Hodas, S. Hydroxyurea: Inhibitory Effect on DNA Metabolism. Science 1964, 146, 1172–1174. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.D.I.; John, P.C.L. Coordination of division events in the Chlamydomonas cell cycle. Protoplasma 1986, 131, 118–130. [Google Scholar] [CrossRef]
- Krokan, H.; Wist, E.; Krokan, R.H. Aphidicolin inhibits DNA synthesis by DNA polymerase α and isolated nuclei by a similar mechanism. Nucleic Acids Res. 1981, 9, 4709–4719. [Google Scholar] [CrossRef]
- Spadari, S.; Focher, F.; Sala, F.; Ciarrocchi, G.; Koch, G.; Falaschi, A.; Pedrali-Noy, G. Control of cell division by aphidicolin without adverse effects upon resting cells. Arzneimittelforschung 1985, 35, 1108–1116. [Google Scholar] [PubMed]
- Cheng, C.H.; Kuchta, R.D. DNA polymerase epsilon: Aphidicolin inhibition and the relationship between polymerase and exonuclease activity. Biochemistry 1993, 32, 8568–8574. [Google Scholar] [CrossRef]
- Callard, D.; Mazzolini, L. Identification of Proliferation-Induced Genes in Arabidopsis thaliana (Characterization of a New Member of the Highly Evolutionarily Conserved Histone H2A.F/Z Variant Subfamily). Plant Physiol. 1997, 115, 1385–1395. [Google Scholar] [CrossRef]
- Moore, R.; Randall, C. Different effects of 1-β-d-arabinofuranosylcytosine and aphidicolin in S-phase cells—Chromosome aberrations, cell-cycle delay and cytotoxicity. Mutat. Res. Mol. Mech. Mutagen. 1987, 178, 73–80. [Google Scholar] [CrossRef]
- Banse, K. Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size—A review. J. Phycol. 1976, 12, 135–140. [Google Scholar] [CrossRef]
- Oldenhof, H.; Zachleder, V.; Ende, H.v.D. The cell cycle of Chlamydomonas reinhardtii: The role of the commitment point. Folia Microbiol. 2007, 52, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Zachleder, V.; Doucha, J.; Berková, E.; Šetlík, I. The effect of synchronizing dark period on populations of Scenedesmus quadricauda. Biol. Plant. 1975, 17, 416–433. [Google Scholar] [CrossRef]
- Vítová, M.; Bišová, K.; Umysová, D.; Hlavová, M.; Kawano, S.; Zachleder, V.; Čížková, M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by light intensity. Planta 2011, 233, 75–86. [Google Scholar] [CrossRef]
- Johnston, G.; Pringle, J.; Hartwell, L. Coordination of growth with cell division in the yeast. Exp. Cell Res. 1977, 105, 79–98. [Google Scholar] [CrossRef]
- Náhlík, V.; Zachleder, V.; Čížková, M.; Bišová, K.; Singh, A.; Mezricky, D.; Řezanka, T.; Vítová, M. Growth under Different Trophic Regimes and Synchronization of the Red Microalga Galdieria sulphuraria. Biomolecules 2021, 11, 939. [Google Scholar] [CrossRef]
- Atkins, K.C.; Cross, F.R. Interregulation of CDKA/CDK1 and the Plant-Specific Cyclin-Dependent Kinase CDKB in Control of the Chlamydomonas Cell Cycle. Plant Cell 2018, 30, 429–446. [Google Scholar] [CrossRef]
- Shoshani, A.; Bernstein, A.J. Synchronization in a parallel-accessed data base. Commun. ACM 1969, 12, 604–607. [Google Scholar] [CrossRef]
- Hense, I.; Beckmann, A. A theoretical investigation of the diatom cell size reduction–restitution cycle. Ecol. Model. 2015, 317, 66–82. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pageault, L.; Charrier, A.; Saint-Jean, B.; Bougaran, G.; Mairet, F.; Stachowski-Haberkorn, S. Cell Cycle Dynamics in the Microalga Tisochrysis lutea: Influence of Light Duration and Drugs. Cells 2024, 13, 1925. https://doi.org/10.3390/cells13221925
Pageault L, Charrier A, Saint-Jean B, Bougaran G, Mairet F, Stachowski-Haberkorn S. Cell Cycle Dynamics in the Microalga Tisochrysis lutea: Influence of Light Duration and Drugs. Cells. 2024; 13(22):1925. https://doi.org/10.3390/cells13221925
Chicago/Turabian StylePageault, Laura, Aurélie Charrier, Bruno Saint-Jean, Gaël Bougaran, Francis Mairet, and Sabine Stachowski-Haberkorn. 2024. "Cell Cycle Dynamics in the Microalga Tisochrysis lutea: Influence of Light Duration and Drugs" Cells 13, no. 22: 1925. https://doi.org/10.3390/cells13221925
APA StylePageault, L., Charrier, A., Saint-Jean, B., Bougaran, G., Mairet, F., & Stachowski-Haberkorn, S. (2024). Cell Cycle Dynamics in the Microalga Tisochrysis lutea: Influence of Light Duration and Drugs. Cells, 13(22), 1925. https://doi.org/10.3390/cells13221925