Using Small Molecules to Reprogram RPE Cells in Regenerative Medicine for Degenerative Eye Disease
Abstract
:1. Introduction
2. Regeneration of RPE and Retinal Cells via RPE Reprogramming with Small Molecules
2.1. The RPE as an Important Endogenous Cell Source in Regenerative Medicine
2.2. Chemical Reprogramming of Cells Under the Influence of Small Molecules
2.2.1. Small Molecules Used for Chemically Induced Reprogramming of Different Cell Types into Neural Cells
2.2.2. Epigenetic Modulators
2.2.3. Molecules Acting on Signaling Pathways
2.2.4. Mesenchymal–Epithelial Transition
2.2.5. Metabolic Shift from Mitochondrial Energy to Glycolysis
2.2.6. Factors That Promote the Survival and Functioning of Reprogrammed Cells
2.3. Chemically Induced Cell Reprogramming into CiNSCs and CiNs
2.3.1. Reprogramming of Fibroblasts into CiNSCs and CiNs
2.3.2. Reprogramming of Astrocytes into CiNSCs and CiNs
2.3.3. Reprogramming of ESCs and IPSCs into CiNSCs and CiNs
3. Chemical Therapy for Degenerative Eye Diseases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambati, J.; Fowler, B.J. Mechanisms of Age-Related Macular Degeneration. Neuron 2012, 75, 26. [Google Scholar] [CrossRef] [PubMed]
- Surendran, H.; Nandakumar, S.; Reddy, K.V.B.; Stoddard, J.; Mohan, K.V.; Upadhyay, P.K.; McGill, T.J.; Pal, R. Transplantation of Retinal Pigment Epithelium and Photoreceptors Generated Concomitantly via Small Molecule-Mediated Differentiation Rescues Visual Function in Rodent Models of Retinal Degeneration. Stem Cell Res. Ther. 2021, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Parmeggiani, F.S.; Sorrentino, F.; Ponzin, D.; Barbaro, V.; Ferrari, S.; Di Iorio, E. Retinitis Pigmentosa: Genes and Disease Mechanisms. Curr. Genom. 2011, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Atala, A. Small Molecules and Small Molecule Drugs in Regenerative Medicine. Drug Discov. Today 2014, 19, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Tangeman, J.A.; Pérez-Estrada, J.R.; Van Zeeland, E.; Liu, L.; Danciutiu, A.; Grajales-Esquivel, E.; Smucker, B.; Liang, C.; Del Rio-Tsonis, K. A Stage-Specific OTX2 Regulatory Network and Maturation-Associated Gene Programs Are Inherent Barriers to RPE Neural Competency. Front. Cell Dev. Biol. 2022, 10, 875155. [Google Scholar] [CrossRef]
- Salero, E.; Blenkinsop, T.A.; Corneo, B.; Harris, A.; Rabin, D.; Stern, J.H.; Temple, S. Adult Human RPE Can Be Activated into a Multipotent Stem Cell That Produces Mesenchymal Derivatives. Cell Stem Cell 2012, 10, 88–95. [Google Scholar] [CrossRef]
- Rzhanova, L.A.; Markitantova, Y.V.; Aleksandrova, M.A. Recent Achievements in the Heterogeneity of Mammalian and Human Retinal Pigment Epithelium: In Search of a Stem Cell. Cells 2024, 13, 281. [Google Scholar] [CrossRef]
- Dvoriantchikova, G.; Seemungal, R.J.; Ivanov, D. The Epigenetic Basis for the Impaired Ability of Adult Murine Retinal Pigment Epithelium Cells to Regenerate Retinal Tissue. Sci. Rep. 2019, 9, 3860. [Google Scholar] [CrossRef]
- Hu, Q.; Friedrich, A.M.; Johnson, L.V.; Clegg, D.O. Memory in Induced Pluripotent Stem Cells: Reprogrammed Human Retinal-Pigmented Epithelial Cells Show Tendency for Spontaneous Redifferentiation. Stem Cells 2010, 28, 1981–1991. [Google Scholar] [CrossRef]
- Seko, Y.; Azuma, N.; Kaneda, M.; Nakatani, K.; Miyagawa, Y.; Noshiro, Y.; Kurokawa, R.; Okano, H.; Umezawa, A. Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD. PLoS ONE 2012, 7, e35611. [Google Scholar] [CrossRef]
- Tangeman, J.A.; Luz-Madrigal, A.; Sreeskandarajan, S.; Esquivel, E.G.-; Liu, L.; Liang, C.; Tsonis, P.A.; Rio-Tsonis, K. Del Transcriptome Profiling of Embryonic Retinal Pigment Epithelium Reprogramming. Genes 2021, 12, 840. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Lee, R.; Lim, S.Y.; Zhong, Z.; Wang, J.; Liu, Y.; Fan, G. Global Transcriptional and Epigenetic Reconfiguration during Chemical Reprogramming of Human Retinal Pigment Epithelial Cells into Photoreceptor-like Cells. Cells 2022, 11, 3146. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, R.N.; Chiang, M.F.; Dyer, M.A.; Greenwell, T.N.; Levin, L.A.; Wong, R.O.; Svendsen, C.N. Regenerative and Restorativemedicine for Eye Disease. Nat. Med. 2022, 28, 1149. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhou, J.; Li, D. Functions and Diseases of the Retinal Pigment Epithelium. Front. Pharmacol. 2021, 12, 1976. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, S. Eye Morphogenesis and Patterning of the Optic Vesicle. Curr. Top. Dev. Biol. 2010, 93, 61. [Google Scholar] [CrossRef]
- Rzhanova, L.A.; Kuznetsova, A.V.; Aleksandrova, M.A. Reprogramming of Differentiated Mammalian and Human Retinal Pigment Epithelium: Current Achievements and Prospects. Russ. J. Dev. Biol. 2020, 51, 212–230. [Google Scholar] [CrossRef]
- Fuhrmann, S.; Zou, C.; Levine, E.M. Retinal Pigment Epithelium Development, Plasticity, and Tissue Homeostasis. Exp. Eye Res. 2014, 123, 141–150. [Google Scholar] [CrossRef]
- Chiba, C. The Retinal Pigment Epithelium: An Important Player of Retinal Disorders and Regeneration. Exp. Eye Res. 2014, 123, 107–114. [Google Scholar] [CrossRef]
- Chung, E.J.; Chun, J.N.; Jung, S.A.; Cho, J.W.; Lee, J.H. TGF-β-Stimulated Aberrant Expression of Class III β-Tubulin via the ERK Signaling Pathway in Cultured Retinal Pigment Epithelial Cells. Biochem. Biophys. Res. Commun. 2011, 415, 367–372. [Google Scholar] [CrossRef]
- Zhu, J.; Nguyen, D.; Ouyang, H.; Zhang, X.-H.; Chen, X.-M.; Zhang, K. Inhibition of RhoA/Rho-Kinase Pathway Suppresses the Expression of Extracellular Matrix Induced by CTGF or TGF-β in ARPE-19. Int. J. Ophthalmol. 2013, 6, 8–14. [Google Scholar] [CrossRef]
- Huang, X.; Wei, Y.; Ma, H.; Zhang, S. Vitreous-Induced Cytoskeletal Rearrangements via the Rac1 GTPase-Dependent Signaling Pathway in Human Retinal Pigment Epithelial Cells. Biochem. Biophys. Res. Commun. 2012, 419, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Grigoryan, E.N. Pigment Epithelia of the Eye: Cell-Type Conversion in Regeneration and Disease. Life 2022, 12, 382. [Google Scholar] [CrossRef] [PubMed]
- Casco-Robles, M.M.; Islam, M.R.; Inami, W.; Tanaka, H.V.; Kunahong, A.; Yasumuro, H.; Hanzawa, S.; Casco-Robles, R.M.; Toyama, F.; Maruo, F.; et al. Turning the Fate of Reprogramming Cells from Retinal Disorder to Regeneration by Pax6 in Newts. Sci. Rep. 2016, 6, 33761. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ye, F.; Li, Q.; Tamiya, S.; Darling, D.S.; Kaplan, H.J.; Dean, D.C. Zeb1 Represses Mitf and Regulates Pigment Synthesis, Cell Proliferation, and Epithelial Morphology. Invest. Ophthalmol. Vis. Sci. 2009, 50, 5080–5088. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.; Temple, S. Retinal Pigment Epithelial Cell Proliferation. Exp. Biol. Med. 2015, 240, 1079. [Google Scholar] [CrossRef]
- Grigoryan, E.N. Molecular Factors of the Maintenance and Activation of the Juvenile Phenotype of Cellular Sources for Eye Tissue Regeneration. Biochemistry 2018, 83, 1318–1331. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Chen, Y.; Liu, J.Y.; Lu, H.; Wang, W.; Lu, X.; Dean, K.C.; Gao, L.; Kaplan, H.J.; et al. Sphere-Induced Reprogramming of RPE Cells into Dual-Potential RPE Stem-like Cells. EBioMedicine 2020, 52, 102618. [Google Scholar] [CrossRef]
- Zhao, S.; Thornquist, S.C.; Barnstable, C.J. In Vitro Transdifferentiation of Embryonic Rat Retinal Pigment Epithelium to Neural Retina. Brain Res. 1995, 677, 300–310. [Google Scholar] [CrossRef]
- Park, C.M.; Hollenberg, M.J. Basic Fibroblast Growth Factor Induces Retinal Regeneration in Vivo. Dev. Biol. 1989, 134, 201–205. [Google Scholar] [CrossRef]
- Spence, J.R.; Madhavan, M.; Ewing, J.D.; Jones, D.K.; Lehman, B.M.; Del Rio-Tsonis, K. The Hedgehog Pathway Is a Modulator of Retina Regeneration. Development 2004, 131, 4607–4621. [Google Scholar] [CrossRef]
- Luz-Madrigal, A.; Grajales-Esquivel, E.; McCorkle, A.; DiLorenzo, A.M.; Barbosa-Sabanero, K.; Tsonis, P.A.; Del Rio-Tsonis, K. Reprogramming of the Chick Retinal Pigmented Epithelium after Retinal Injury. BMC Biol. 2014, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- George, S.M.; Lu, F.; Rao, M.; Leach, L.L.; Gross, J.M. The Retinal Pigment Epithelium: Development, Injury Responses, and Regenerative Potential in Mammalian and Non-Mammalian Systems. Prog. Retin. Eye Res. 2021, 85, 100969. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Fatima, I.; Noor, F.; Qasim, M.; Wang, P.; Jia, J.; Alshabrmi, F.M.; Liao, M. Role of Small Molecules as Drug Candidates for Reprogramming Somatic Cells into Induced Pluripotent Stem Cells: A Comprehensive Review. Comput. Biol. Med. 2024, 177, 108661. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Gao, L.; Guan, W.; Mao, J.; Hu, W.; Qiu, B.; Zhao, J.; Yu, Y.; Pei, G. Direct Conversion of Astrocytes into Neuronal Cells by Drug Cocktail. Cell Res. 2015, 25, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.; Zhao, X. Genetics and Epigenetics in Adult Neurogenesis. Cold Spring Harb. Perspect. Biol. 2016, 8, a018911. [Google Scholar] [CrossRef]
- Cheng, L.; Hu, W.; Qiu, B.; Zhao, J.; Yu, Y.; Guan, W.; Wang, M.; Yang, W.; Pei, G. Generation of Neural Progenitor Cells by Chemical Cocktails and Hypoxia. Cell Res. 2014, 24, 665–679. [Google Scholar] [CrossRef]
- Hu, W.; Qiu, B.; Guan, W.; Wang, Q.; Wang, M.; Li, W.; Gao, L.; Shen, L.; Huang, Y.; Xie, G.; et al. Direct Conversion of Normal and Alzheimer’s Disease Human Fibroblasts into Neuronal Cells by Small Molecules. Cell Stem Cell 2015, 17, 204–212. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, J.C.; Yeh, H.; Ma, N.X.; Lee, G.; Chen, X.A.; Wang, Y.; Lin, L.; Chen, L.; Jin, P.; et al. Small Molecules Efficiently Reprogram Human Astroglial Cells into Functional Neurons. Cell Stem Cell 2015, 17, 735–747. [Google Scholar] [CrossRef]
- Zhu, S.; Ambasudhan, R.; Sun, W.; Kim, H.J.; Talantova, M.; Wang, X.; Zhang, M.; Zhang, Y.; Laurent, T.; Parker, J.; et al. Small Molecules Enable OCT4-Mediated Direct Reprogramming into Expandable Human Neural Stem Cells. Cell Res. 2013, 24, 126–129. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, J.; Xu, W.; Paquet-Durand, F.; Hu, Z.; Jiao, K. HDAC Inhibition Delays Photoreceptor Loss in Pde6b Mutant Mice of Retinitis Pigmentosa: Insights from ScRNA-Seq and CUT & Tag. PeerJ 2023, 11, e15659. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, Y.H.; Sun, Y.J.; Zhu, S.; Zheng, J.; Liu, K.; Cao, N.; Li, K.; Huang, Y.; Ding, S. Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation. Cell Stem Cell 2016, 18, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Fu, Y.; Liu, J. Chemical Reprogramming and Transdifferentiation. Curr. Opin. Genet. Dev. 2017, 46, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zuo, X.; Jing, J.; Ma, Y.; Wang, J.; Liu, D.; Zhu, J.; Du, X.; Xiong, L.; Du, Y.; et al. Small-Molecule-Driven Direct Reprogramming of Mouse Fibroblasts into Functional Neurons. Cell Stem Cell 2015, 17, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Ladewig, J.; Mertens, J.; Kesavan, J.; Doerr, J.; Poppe, D.; Glaue, F.; Herms, S.; Wernet, P.; Kögler, G.; Müller, F.J.; et al. Small Molecules Enable Highly Efficient Neuronal Conversion of Human Fibroblasts. Nat. Methods 2012, 9, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Rethineswaran, V.K.; Kim, D.Y.; Kim, Y.J.; Jang, W.; Ji, S.T.; Van, L.T.H.; Giang, L.T.T.; Ha, J.S.; Yun, J.; Jung, J.; et al. Chir99021 Augmented the Function of Late Endothelial Progenitor Cells by Preventing Replicative Senescence. Int. J. Mol. Sci. 2021, 22, 4796. [Google Scholar] [CrossRef]
- Shen, H.; Ding, C.; Yuan, S.; Pan, T.; Li, D.; Li, H.; Huang, B.; Liu, Q. Vitamin C-and Valproic Acid-Induced Fetal RPE Stem-like Cells Recover Retinal Degeneration via Regulating SOX2. Mol. Ther. 2020, 28, 1645–1657. [Google Scholar] [CrossRef]
- Osakada, F.; Jin, Z.B.; Hirami, Y.; Ikeda, H.; Danjyo, T.; Watanabe, K.; Sasai, Y.; Takahashi, M. In Vitro Differentiation of Retinal Cells from Human Pluripotent Stem Cells by Small-Molecule Induction. J. Cell Sci. 2009, 122, 3169–3179. [Google Scholar] [CrossRef]
- Vrbsky, J.; Tereh, T.; Kyrylenko, S.; Dvorak, P.; Krejci, L. MEK and TGF-Beta Inhibition Promotes Reprogramming without the Use of Transcription Factor. PLoS ONE 2015, 10, e0127739. [Google Scholar] [CrossRef]
- Zhu, J.; Lamba, D.A. Small Molecule-Based Retinal Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Bio Protoc. 2018, 8, 344–358. [Google Scholar] [CrossRef]
- Yin, J.C.; Zhang, L.; Ma, N.X.; Wang, Y.; Lee, G.; Hou, X.Y.; Lei, Z.F.; Zhang, F.Y.; Dong, F.P.; Wu, G.Y.; et al. Chemical Conversion of Human Fetal Astrocytes into Neurons through Modulation of Multiple Signaling Pathways. Stem Cell Rep. 2019, 12, 488–501. [Google Scholar] [CrossRef]
- Reichman, S.; Terray, A.; Slembrouck, A.; Nanteau, C.; Orieux, G.; Habeler, W.; Nandrot, E.F.; Sahel, J.-A.; Monville, C.; Goureau, O. From Confluent Human IPS Cells to Self-Forming Neural Retina and Retinal Pigmented Epithelium. Proc. Natl. Acad. Sci. USA 2014, 111, 8518–8523. [Google Scholar] [CrossRef] [PubMed]
- Riazifar, H.; Jia, Y.; Chen, J.; Lynch, G.; Huang, T. Chemically Induced Specification of Retinal Ganglion Cells from Human Embryonic and Induced Pluripotent Stem Cells. Stem Cells Transl. Med. 2014, 3, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Swoboda, J.G.; Elliott, J.; Deshmukh, V.; de Lichtervelde, L.; Shen, W.; Tremblay, M.S.; Peters, E.C.; Cho, C.Y.; Lu, B.; Girman, S.; et al. Small Molecule Mediated Proliferation of Primary Retinal Pigment Epithelial Cells. ACS Chem. Biol. 2013, 8, 1407–1411. [Google Scholar] [CrossRef] [PubMed]
- Mokady, D.; Charish, J.; Barretto-Burns, P.; Grisé, K.N.; Coles, B.L.K.; Raab, S.; Ortin-Martinez, A.; Müller, A.; Fasching, B.; Jain, P.; et al. Small-Molecule-Directed Endogenous Regeneration of Visual Function in a Mammalian Retinal Degeneration Model. Int. J. Mol. Sci. 2024, 25, 1521. [Google Scholar] [CrossRef]
- Huang, L.; Lai, X.; Liang, X.; Chen, J.; Yang, Y.; Xu, W.; Qin, Q.; Qin, R.; Huang, X.; Xie, M.; et al. A Promise for Neuronal Repair: Reprogramming Astrocytes into Neurons in Vivo. Biosci. Rep. 2024, 44, BSR20231717. [Google Scholar] [CrossRef]
- Yang, J.H.; Petty, C.A.; Dixon-McDougall, T.; Lopez, M.V.; Tyshkovskiy, A.; Maybury-Lewis, S.; Tian, X.; Ibrahim, N.; Chen, Z.; Griffin, P.T.; et al. Chemically Induced Reprogramming to Reverse Cellular Aging. Aging 2023, 15, 5966. [Google Scholar] [CrossRef]
- Lu, Y.R.; Tian, X.; Sinclair, D.A. The Information Theory of Aging. Nat. Aging 2023, 3, 1486–1499. [Google Scholar] [CrossRef]
- Yang, J.H.; Hayano, M.; Griffin, P.T.; Amorim, J.A.; Bonkowski, M.S.; Apostolides, J.K.; Salfati, E.L.; Blanchette, M.; Munding, E.M.; Bhakta, M.; et al. Loss of Epigenetic Information as a Cause of Mammalian Aging. Cell 2023, 186, 305. [Google Scholar] [CrossRef]
- Lu, Y.; Brommer, B.; Tian, X.; Krishnan, A.; Meer, M.; Wang, C.; Vera, D.L.; Zeng, Q.; Yu, D.; Bonkowski, M.S.; et al. Reprogramming to Recover Youthful Epigenetic Information and Restore Vision. Nature 2020, 588, 124–129. [Google Scholar] [CrossRef]
- Dvoriantchikova, G.; Lypka, K.R.; Ivanov, D. The Potential Role of Epigenetic Mechanisms in the Development of Retinitis Pigmentosa and Related Photoreceptor Dystrophies. Front. Genet. 2022, 13, 827274. [Google Scholar] [CrossRef]
- Alivand, M.R.; Soheili, Z.-S.; Pornour, M.; Solali, S.; Sabouni, F. Novel Epigenetic Controlling of Hypoxia Pathway Related to Overexpression and Promoter Hypomethylation of TET1 and TET2 in RPE Cells. J. Cell Biochem. 2017, 118, 3193–3204. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.K.; Dubey, R.; Prajapati, S.C.; Jung, K.; Mohan, K.; Liu, X.; Roney, J.; Tian, W.; Abney, J.; Giarmarco, M.M.; et al. Histone Deficiency and Hypoacetylation in the Aging Retinal Pigment Epithelium. Aging Cell 2024, 23, e14108. [Google Scholar] [CrossRef] [PubMed]
- Vignais, M.; Fafet, P. TGFβ-Dependent Epithelial-Mesenchymal Transition; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kopan, R. Notch Signaling. Cold Spring Harb. Perspect. Biol. 2012, 4, a011213. [Google Scholar] [CrossRef] [PubMed]
- Teven, C.M.; Farina, E.M.; Rivas, J.; Reid, R.R. Fibroblast Growth Factor (FGF) Signaling in Development and Skeletal Diseases. Genes. Dis. 2014, 1, 199. [Google Scholar] [CrossRef] [PubMed]
- Komiya, Y.; Habas, R. Wnt Signal Transduction Pathways. Organogenesis 2008, 4, 68. [Google Scholar] [CrossRef]
- Choudhry, Z.; Rikani, A.A.; Choudhry, A.M.; Tariq, S.; Zakaria, F.; Asghar, M.W.; Sarfraz, M.K.; Haider, K.; Shafiq, A.A.; Mobassarah, N.J. Sonic Hedgehog Signalling Pathway: A Complex Network. Ann. Neurosci. 2014, 21, 28. [Google Scholar] [CrossRef]
- Schmandke, A.; Schmandke, A.; Strittmatter, S.M. ROCK and Rho: Biochemistry and Neuronal Functions of Rho-Associated Protein Kinases. Neuroscientist 2007, 13, 454. [Google Scholar] [CrossRef]
- Hernández-Ramírez, L.C.; Trivellin, G.; Stratakis, C.A. Cyclic 3′,5′-Adenosine Monophosphate (CAMP) Signaling in the Anterior Pituitary Gland in Health and Disease. Mol. Cell Endocrinol. 2018, 463, 72–86. [Google Scholar] [CrossRef]
- Kawano, T.; Inokuchi, J.; Eto, M.; Murata, M.; Kang, J.H. Activators and Inhibitors of Protein Kinase C (PKC): Their Applications in Clinical Trials. Pharmaceutics 2021, 13, 1748. [Google Scholar] [CrossRef]
- Thompson, B.; Katsanis, N.; Apostolopoulos, N.; Thompson, D.C.; Nebert, D.W.; Vasiliou, V. Genetics and Functions of the Retinoic Acid Pathway, with Special Emphasis on the Eye. Hum. Genom. 2019, 13, 61. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, J.; Choi, D. Small-Molecule-Mediated Reprogramming: A Silver Lining for Regenerative Medicine. Exp. Mol. Med. 2020, 52, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Song, J. Methods for Differentiating Retinal Pigment Epithelial Cells from Human Pluripotent Stem Cells. In Stem Cell Research; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Saini, J.S.; Corneo, B.; Miller, J.D.; Kiehl, T.R.; Wang, Q.; Boles, N.C.; Blenkinsop, T.A.; Stern, J.H.; Temple, S. Nicotinamide Ameliorates Disease Phenotypes in a Human IPSC Model of Age-Related Macular Degeneration. Cell Stem Cell 2017, 20, 635. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Ren, Z.; Xu, F.; Zhou, X.; Song, C.; Wang, V.Y.F.; Liu, W.; Lu, L.; Thomson, J.A.; Chen, G. Nicotinamide Promotes Cell Survival and Differentiation as Kinase Inhibitor in Human Pluripotent Stem Cells. Stem Cell Rep. 2018, 11, 1347. [Google Scholar] [CrossRef] [PubMed]
- Hazim, R.A.; Volland, S.; Yen, A.; Burgess, B.L.; Williams, D.S. Rapid Differentiation of the Human RPE Cell Line, ARPE-19, Induced By. Exp. Eye Res. 2019, 179, 18. [Google Scholar] [CrossRef] [PubMed]
- Boles, N.C.; Fernandes, M.; Swigut, T.; Srinivasan, R.; Schiff, L.; Rada-Iglesias, A.; Wang, Q.; Saini, J.S.; Kiehl, T.; Stern, J.H.; et al. Epigenomic and Transcriptomic Changes During Human RPE EMT in a Stem Cell Model of Epiretinal Membrane Pathogenesis and Prevention by Nicotinamide. Stem Cell Rep. 2020, 14, 631–647. [Google Scholar] [CrossRef]
- Che, D.; Zhou, T.; Lan, Y.; Xie, J.; Gong, H.; Li, C.; Feng, J.; Hong, H.; Qi, W.; Ma, C.; et al. High Glucose-Induced Epithelial-Mesenchymal Transition Contributes to the Upregulation of Fibrogenic Factors in Retinal Pigment Epithelial Cells. Int. J. Mol. Med. 2016, 38, 1815–1822. [Google Scholar] [CrossRef]
- Khacho, M.; Slack, R.S. Mitochondrial Dynamics in the Regulation of Neurogenesis: From Development to the Adult Brain. Dev. Dyn. 2018, 247, 47–53. [Google Scholar] [CrossRef]
- Ney, P.A. Mitochondrial Autophagy: Origins, Significance, and Role of BNIP3 and NIX. Biochim. Biophys. Acta 2015, 1853, 2775–2783. [Google Scholar] [CrossRef]
- Zhu, S.; Li, W.; Zhou, H.; Wei, W.; Ambasudhan, R.; Lin, T.; Kim, J.; Zhang, K.; Ding, S. Reprogramming of Human Primary Somatic Cells by OCT4 and Chemical Compounds. Cell Stem Cell 2010, 7, 651–655. [Google Scholar] [CrossRef]
- Adlakha, Y.K.; Seth, P. The Expanding Horizon of MicroRNAs in Cellular Reprogramming. Prog. Neurobiol. 2017, 148, 21–39. [Google Scholar] [CrossRef]
- Kuznetsova, A.V.; Rzhanova, L.A.; Aleksandrova, M.A. Small Noncoding RNA in Regulation of Differentiation of Retinal Pigment Epithelium. Russ. J. Dev. Biol. 2021, 52, 268–275. [Google Scholar] [CrossRef]
- Hou, P.; Li, Y.; Zhang, X.; Liu, C.; Guan, J.; Li, H.; Zhao, T.; Ye, J.; Yang, W.; Liu, K.; et al. Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds. Science 2013, 341, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-L.; Zang, T.; Zou, Y.; Chang, J.C.; Gibson, J.R.; Huber, K.M.; Zhang, C.-L. Small Molecules Enable Neurogenin 2 to Efficiently Convert Human Fibroblasts into Cholinergic Neurons. Nat. Commun. 2013, 4, 2183. [Google Scholar] [CrossRef] [PubMed]
- Mahato, B.; Kaya, K.D.; Fan, Y.; Sumien, N.; Shetty, R.A.; Zhang, W.; Davis, D.; Mock, T.; Batabyal, S.; Ni, A.; et al. Pharmacologic Fibroblast Reprogramming into Photoreceptors Restores Vision. Nature 2020, 581, 83. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Guan, W.; Wang, M.; Wang, H.; Yu, J.; Liu, Q.; Qiu, B.; Yu, Y.; Ping, Y.; Bian, X.; et al. Direct Generation of Human Neuronal Cells from Adult Astrocytes by Small Molecules. Stem Cell Rep. 2017, 8, 538–547. [Google Scholar] [CrossRef]
- Ma, Y.; Xie, H.; Du, X.; Wang, L.; Jin, X.; Zhang, Q.; Han, Y.; Sun, S.; Wang, L.; Li, X.; et al. In Vivo Chemical Reprogramming of Astrocytes into Neurons. Cell Discov. 2021, 7, 12. [Google Scholar] [CrossRef]
- Fernandes, G.S.; Singh, R.D.; Kim, K.K. Generation of a Pure Culture of Neuron-Like Cells with a Glutamatergic Phenotype from Mouse Astrocytes. Biomedicines 2022, 10, 928. [Google Scholar] [CrossRef]
- Zhao, A.D.; Qin, H.; Sun, M.L.; Ma, K.; Fu, X.B. Efficient and Rapid Conversion of Human Astrocytes and ALS Mouse Model Spinal Cord Astrocytes into Motor Neuron-like Cells by Defined Small Molecules. Mil. Med. Res. 2020, 7, 42. [Google Scholar] [CrossRef]
- Tan, Z.; Qin, S.; Yuan, Y.; Hu, X.; Huang, X.; Liu, H.; Pu, Y.; He, C.; Su, Z. NOTCH1 Signaling Regulates the Latent Neurogenic Program in Adult Reactive Astrocytes after Spinal Cord Injury. Theranostics 2022, 12, 4548–4563. [Google Scholar] [CrossRef]
- Shen, K.; Wu, D.; Sun, B.; Zhu, Y.; Wang, H.; Zou, W.; Ma, Y.; Lu, Z. Ginsenoside Rg1 Promotes Astrocyte-to-neuron Transdifferentiation in Rat and Its Possible Mechanism. CNS Neurosci. Ther. 2023, 29, 256. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Wang, A.; Liu, Y.; Liu, H.; Yue, F.; Abulaiti, X.; Zhang, C.; Li, L. Differentiation of Adult Human Retinal Pigment Epithelial Cells into Dopaminergic-like Cells in Vitro and in the Recipient Monkey Brain. Mol. Med. 2019, 25, 9. [Google Scholar] [CrossRef] [PubMed]
- Ring, K.L.; Tong, L.M.; Balestra, M.E.; Javier, R.; Andrews-Zwilling, Y.; Li, G.; Walker, D.; Zhang, W.R.; Kreitzer, A.C.; Huang, Y. Direct Reprogramming of Mouse and Human Fibroblasts into Multipotent Neural Stem Cells with a Single Factor. Cell Stem Cell 2012, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Tripathi, P. How to Remake a Fibroblast into a Neural Stem Cell. Cell Stem Cell 2012, 10, 347–348. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xu, X.; Omari-Siaw, E.; Yu, J.; Deng, W. Progress of Reprogramming Astrocytes into Neuron. Mol. Cell. Neurosci. 2024, 130, 103947. [Google Scholar] [CrossRef] [PubMed]
- Maruotti, J.; Sripathi, S.R.; Bharti, K.; Fuller, J.; Wahlin, K.J.; Ranganathan, V.; Sluch, V.M.; Berlinicke, C.A.; Davis, J.; Kim, C.; et al. Small-Molecule-Directed, Efficient Generation of Retinal Pigment Epithelium from Human Pluripotent Stem Cells. Proc. Natl. Acad. Sci. USA 2015, 112, 10950–10955. [Google Scholar] [CrossRef]
- Zhu, J.; Cifuentes, H.; Reynolds, J.; Lamba, D.A. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of HESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell 2017, 20, 374–384.e5. [Google Scholar] [CrossRef]
- Zhu, J.; Reynolds, J.; Garcia, T.; Cifuentes, H.; Chew, S.; Zeng, X.; Lamba, D.A. Generation of Transplantable Retinal Photoreceptors from a Current Good Manufacturing Practice-Manufactured Human Induced Pluripotent Stem Cell Line. Stem Cells Transl. Med. 2017, 7, 210. [Google Scholar] [CrossRef]
- Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-Organizing Optic-Cup Morphogenesis in Three-Dimensional Culture. Nature 2011, 472, 51–56. [Google Scholar] [CrossRef]
- De Angelis, M.T.; Parrotta, E.I.; Santamaria, G.; Cuda, G. Short-Term Retinoic Acid Treatment Sustains Pluripotency and Suppresses Differentiation of Human Induced Pluripotent Stem Cells. Cell Death Dis. 2018, 9, 6. [Google Scholar] [CrossRef]
- Amemiya, K.; Haruta, M.; Takahashi, M.; Kosaka, M.; Eguchi, G. Adult Human Retinal Pigment Epithelial Cells Capable of Differentiating into Neurons. Biochem. Biophys. Res. Commun. 2004, 316, 1–5. [Google Scholar] [CrossRef]
- Carr, A.-J.; Vugler, A.A.; Yu, L.; Semo, M.; Coffey, P.; Moss, S.E.; Greenwood, J. The Expression of Retinal Cell Markers in Human Retinal Pigment Epithelial Cells and Their Augmentation by the Synthetic Retinoid Fenretinide. Mol. Vis. 2011, 17, 1701. [Google Scholar] [PubMed]
- Chen, S.; Fariss, R.N.; Kutty, R.K.; Nelson, R.; Wiggert, B. Fenretinide-Induced Neuronal Differentiation of ARPE-19 Human Retinal Pigment Epithelial Cells Is Associated with the Differential Expression of Hsp70, 14-3-3, Pax-6, Tubulin Beta-III, NSE, and Bag-1 Proteins. Mol. Vis. 2006, 12, 1355–1363. [Google Scholar] [PubMed]
- Vázquez-Domínguez, I.; Garanto, A.; Collin, R.W.J. Molecular Therapies for Inherited Retinal Diseases—Current Standing, Opportunities and Challenges. Genes 2019, 10, 654. [Google Scholar] [CrossRef] [PubMed]
- Benslimane, N.; Loret, C.; Chazelas, P.; Favreau, F.; Faye, P.-A.; Lejeune, F.; Lia, A.-S. Readthrough Activators and Nonsense-Mediated MRNA Decay Inhibitor Molecules: Real Potential in Many Genetic Diseases Harboring Premature Termination Codons. Pharmaceuticals 2024, 17, 314. [Google Scholar] [CrossRef] [PubMed]
- Hagenbuchner, J.; Ausserlechner, M.J. Targeting Transcription Factors by Small Compounds—Current Strategies and Future Implications. Biochem. Pharmacol. 2016, 107, 1–13. [Google Scholar] [CrossRef]
- Nakamura, P.A.; Shimchuk, A.A.; Tang, S.; Wang, Z.; DeGolier, K.; Ding, S.; Reh, T.A. Small Molecule Photoregulin3 Prevents Retinal Degeneration in the RhoP23H Mouse Model of Retinitis Pigmentosa. Elife 2017, 6, e30577. [Google Scholar] [CrossRef]
- Zhao, L.; Li, J.; Fu, Y.; Zhang, M.; Wang, B.; Ouellette, J.; Shahi, P.K.; Pattnaik, B.R.; Watters, J.J.; Wong, W.T.; et al. Photoreceptor Protection via Blockade of BET Epigenetic Readers in a Murine Model of Inherited Retinal Degeneration. J. Neuroinflammation 2017, 14, 14. [Google Scholar] [CrossRef]
- Faber, S.; Roepman, R. Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease. Genes. 2019, 10, 557. [Google Scholar] [CrossRef]
- Parfitt, D.A.; Cheetham, M.E. Chapter 64: Targeting the Proteostasis Network in Rhodopsin Retinitis Pigmentosa. Adv. Exp. Med. Biol. 2016, 854, 479. [Google Scholar] [CrossRef]
- Hanneken, A.; Lin, F.F.; Johnson, J.; Maher, P. Flavonoids Protect Human Retinal Pigment Epithelial Cells from Oxidative-Stress–Induced Death. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3164–3177. [Google Scholar] [CrossRef]
- Esteban, M.A.; Wang, T.; Qin, B.; Yang, J.; Qin, D.; Cai, J.; Li, W.; Weng, Z.; Chen, J.; Ni, S.; et al. Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells. Cell Stem Cell 2010, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Vighi, E.; Trifunovic, D.; Veiga-Crespo, P.; Rentsch, A.; Hoffmann, D.; Sahaboglu, A.; Strasser, T.; Kulkarni, M.; Bertolotti, E.; Van Den Heuvel, A.; et al. Combination of CGMP Analogue and Drug Delivery System Provides Functional Protection in Hereditary Retinal Degeneration. Proc. Natl. Acad. Sci. USA 2018, 115, E2997–E3006. [Google Scholar] [CrossRef] [PubMed]
- Tolone, A.; Belhadj, S.; Rentsch, A.; Schwede, F.; Paquet-Durand, F. The CGMP Pathway and Inherited Photoreceptor Degeneration: Targets, Compounds, and Biomarkers. Genes 2019, 10, 453. [Google Scholar] [CrossRef] [PubMed]
- Palczewski, K. Retinoids for Treatment of Retinal Diseases. Trends Pharmacol. Sci. 2010, 31, 284. [Google Scholar] [CrossRef] [PubMed]
- Scholl, H.P.N.; Moore, A.T.; Koenekoop, R.K.; Wen, Y.; Fishman, G.A.; Van Den Born, L.I.; Bittner, A.; Bowles, K.; Fletcher, E.C.; Collison, F.T.; et al. Safety and Proof-of-Concept Study of Oral QLT091001 in Retinitis Pigmentosa Due to Inherited Deficiencies of Retinal Pigment Epithelial 65 Protein (RPE65) or Lecithin:Retinol Acyltransferase (LRAT). PLoS ONE 2015, 10, e0143846. [Google Scholar] [CrossRef]
- Tochitsky, I.; Kienzler, M.A.; Isacoff, E.; Kramer, R.H. Restoring Vision to the Blind with Chemical Photoswitches. Chem. Rev. 2018, 118, 10748. [Google Scholar] [CrossRef]
- Polosukhina, A.; Litt, J.; Tochitsky, I.; Nemargut, J.; Sychev, Y.; De Kouchkovsky, I.; Huang, T.; Borges, K.; Trauner, D.; Van Gelder, R.N.; et al. Photochemical Restoration of Visual Responses in Blind Mice. Neuron 2012, 75, 271. [Google Scholar] [CrossRef]
- Tochitsky, I.; Polosukhina, A.; Degtyar, V.E.; Gallerani, N.; Smith, C.M.; Friedman, A.; Van Gelder, R.N.; Trauner, D.; Kaufer, D.; Kramer, R.H. Restoring Visual Function to Blind Mice with a Photoswitch That Exploits Electrophysiological Remodeling of Retinal Ganglion Cells. Neuron 2014, 81, 800. [Google Scholar] [CrossRef]
- Fang, L.; El Wazan, L.; Tan, C.; Nguyen, T.; Hung, S.S.C.; Hewitt, A.W.; Wong, R.C.B. Potentials of Cellular Reprogramming as a Novel Strategy for Neuroregeneration. Front. Cell Neurosci. 2018, 12, 426372. [Google Scholar] [CrossRef]
Small Molecule | Chemical Structure | Function | Induced Cells | References |
---|---|---|---|---|
Epigenetic Regulators | ||||
VPA | An inhibitor of HDAC | CiNPCs, CiNs | [36,37,38] | |
NaB | An inhibitor of HDAC | CiNPCs | [36,39] | |
TSA | An inhibitor of HDAC | CiNPCs | [36] | |
SAHA | An inhibitor of HDAC I/II | CiNPCs | [40] | |
RG108 | An inhibitor of DNA methyltransferases (DNMTs) | CiNPCs | [41] | |
Parnate | A histone demethylase inhibitor | CiNSCs, CiNs, CiRPCs, CiRNs | [41] | |
BrdU) | A thymidine nucleoside derivative commonly used to identify proliferating cells | CiPSCs | [42] | |
EPZ004777 | A potent inhibitor of histone H3K79 methyltransferase (DOT1L) | CiPSCs | [42] | |
SGC0946 | A potent inhibitor of DOT1L | CiPSCs | [42] | |
DZNep | A S-adenosylhomocysteine synthesis inhibitor and a histone methyltransferase EZH2 inhibitor | CiNPCs | [42] | |
5-aza-dC | A DNMT inhibitor | CiPSCs | [42] | |
I-BET151 (GSK1210151A) | An inhibitor of a BET bromodomain | CiNs | [43] | |
Molecules acting on signaling pathways | ||||
CHIR99021 | An inhibitor of GSK3 | CiNPCs | [36,37,38,39,41,43,44,45,46] | |
LiCl and Li2CO3 | An inhibitor of GSK3 | CiNPCs | [36] | |
Forskolin | An activator of adenylate cyclase | CiNPCs, CiNs | [37,43] | |
SB431542 | An inhibitor of TGF-βRI | CiNSCs, CiNs, CiRPCs, CiRNs | [36,38,43,44,47,48,49,50] | |
RepSox (E-616452) | An inhibitor of TGF-βRI (ALK5) | CiNPCs, CiNs | [36,37] | |
A83-01 | An inhibitor of TGF-βRI (ALK4/5/7) | CiPSCs | [41,42] | |
Tranilast | An inhibitor of TGF-β1 | CiPSCs, CiNPCs | [36] | |
LDN193189 | A BMP type I receptor (ALK2/3) inhibitor | CiNSCs, CiRNs | [38,41,49,50] | |
Dorsomorphin (IWR1-endo) | An inhibitor of AMPK and BMP I | CiNs | [37,38,49] | |
DAPT | An inhibitor of Notch | CiNs, CiRGCs | [38,50,51,52] | |
RA | An activator of PI3K | CiNSCs, CiNs, CiRPCs, CiRNs | [41,49] | |
SMER28 | An enhancer of autophagy | CiPSCs | [41] | |
ISX9 | A WNT pathway activator. An inducer of adult neural stem cell differentiation | CiNs | [43] | |
GO6983 | An inhibitor of protein kinase C | CiNs | [37] | |
SP600125 | A pan-JNK inhibitor | CiNs | [37,39] | |
Hh-Ag1,5 (SAg) | A smoothened (SMO) agonist, Hedgehog signaling pathway activator | CiNPCs | [38,41,50] | |
Purmorphamine | An agonist of SMO, Hedgehog signaling pathway activator | CiNs | [4,38,42] | |
CKI-7 | An inhibitor of Wnt and casein kinase 1 (CK1) | CiRNs | [4,47] | |
IQ-1 | A WNT pathway activator. Binds to PP2A, decreases phosphorylation of p300 | CiPSCs | [4] | |
TWS119 | An inhibitor of GSK3β | CiNs | [4] | |
Pyridium | Mode of action unspecified | CiNs | [4] | |
TTNPB | A potent selective RAR agonist | CiPSCs, CiNs | [38,42] | |
Ch 55 | A RAR agonist | CiPSCs | [42] | |
AM580 (CD336) | A selective RARα agonist | CiPSCs | [42] | |
PD0325901 | A MEK inhibitor that sustains stem cell renewal | CiPSCs | [42] | |
LPA | A lipid mediator of several receptors of the GPCR family | CiNSCs | [39] | |
Rolipram | A selective phosphodiesterase-4 inhibitor | CiNSCs | [39] | |
Compounds that promote survival, proliferation, and function of reprogrammable cells | ||||
Y-27632 | A ROCK inhibitor | CiNs, CiRNs | [37,47,50] | |
HA-1077 | A ROCK inhibitor | CiNs | [43] | |
SB203580 | A specific p38 MAPK inhibitor | CiNs | [43] | |
BIRB796 | A potent inhibitor of p38 MAPK | CiNs | [43] | |
WS3 | A non-specific proliferative molecule | RPE | [53] | |
Thiazovivin | A ROCK inhibitor | CiNs | [38,42] | |
CompA | An inhibitor of p70S6K, ROCK1, and PKG | Photorecep-tors | [54] |
Cocktail Name | Small Molecules | Functions | Cell Reprogramming | Reference |
---|---|---|---|---|
Forskolin |
An activator of adenylate cyclase | Mouse fibroblast into CiNs | [85] | |
Dorsomorphin (IWR1-endo) | An inhibitor of AMPK and BMP I | |||
CHIR99021 | An inhibitor of GSK3β | Human fibroblast into CiNs | [44] | |
SB431542 | An inhibitor of TGF-βRI | |||
Noggin | An inhibitor of BMP signaling | |||
VCR | VPA | An inhibitor of HDAC | Mouse fibroblast into CiNPCs | [36] |
CHIR99021 | An inhibitor of GSK3β | |||
RepSox | An inhibitor of TGF-β (ALK5) | |||
FICB | Forskolin |
An activator of adenylate cyclase | Human fibroblast into CiNs | [43] |
ISX9 | An inducer of adult neural stem cell differentiation | |||
CHIR99021 | An inhibitor of GSK3β | |||
SB431542 | An inhibitor of TGF-βRI | |||
FICB+1 | Forskolin |
An activator of adenylate cyclase | Human fibroblast into CiNs | [43] |
ISX9 | An inducer of adult neural stem cell differentiation | |||
CHIR99021 | An inhibitor of GSK3β | |||
SB431542 | An inhibitor of TGF-βRI | |||
I-BET151 | An inhibitor of a BET bromodomain | |||
VCRFSGYD | VPA | An inhibitor of HDAC | Mouse fibroblast into CiNs | [37] |
CHIR99021 | An inhibitor of GSK3β | |||
RepSox | An inhibitor of TGF-β (ALK5) | |||
Forskolin |
An activator of adenylate cyclase | |||
Sp600125 | An inhibitor of JNK | |||
GO6983 | An inhibitor of PKC | |||
Y27632 | An inhibitor of ROCK | |||
Dorsomorphin (IWR1-endo) | An inhibitor of AMPK and BMP I | |||
CHIR99021 | An inhibitor of GSK3β | Mouse fibroblast into CiNs | [38] | |
SB431542 | An inhibitor of TGF-βRI | |||
LDN193189 | A BMP type I receptor (ALK2/3) inhibitor | |||
TTNPB | An RAR ligand | |||
Thiazovivin (Tzv) | An inhibitor of ROCK | |||
VPA | An inhibitor of HDAC | Human fibroblast into CiNs | [37] | |
DAPT | An inhibitor of Notch via gamma-secretase | |||
Dorsomorphin (IWR1-endo) | An inhibitor of AMPK and BMP I | |||
SAg | A smoothened agonist (SMO), an activator of Hedgehog | |||
NaB | An inhibitor of HDAC | Human fibroblast into iNSCs | [39] | |
CHIR99021 | An inhibitor of GSK3β | |||
A83-01 | An inhibitor of TGF-βri (ALK4/5/7) | |||
LPA | A lipid mediator of several receptors of the GPCR family | |||
Rolipram | An inhibitor of PDE4 | |||
SP600125 | An inhibitor of JNK | |||
M9 | CHIR99021 | An inhibitor of GSK3β | MEF into iNSCs | [41] |
LDN193189 | A BMP type I receptor (ALK2/3) inhibitor | |||
A83-01 | An inhibitor of TGF-βri (ALK4/5/7) | |||
Retinoic acid | An agonist of RAR | |||
Hh-Ag1.5 | A smoothened agonist (SMO), an activator of Hedgehog | |||
RG108 | An inhibitor of DNMT | |||
Parnate | A histone demethylase inhibitor | |||
VCRFD | VPA | An inhibitor of HDAC | Fibroblast into CiNs | [86] |
CHIR99021 | An inhibitor of GSK3β | |||
RepSox | An inhibitor of TGF-β (ALK5) | |||
Forskolin |
An activator of adenylate cyclase | |||
Dorsomorphin (IWR1-endo) | An inhibitor of AMPK and BMP I | |||
VPA | An inhibitor of HDAC | Human astrocytes into CiNs | [38] | |
CHIR99021 | An inhibitor of GSK3β | |||
SB431542 | An inhibitor of TGF-βRI | |||
LDN193189 | A BMP type I receptor (ALK2/3) inhibitor | |||
DAPT | An inhibitor of Notch via gamma-secretase | |||
TTNPB | A ligand of RAR | |||
Tzv | A Rho/rock pathway inhibitor | |||
SAg | A smoothened agonist (SMO), an activator of Hedgehog | |||
Purmorphamine | A smoothened agonist (SMO), an activator of Hedgehog | |||
VCR | VPA | An inhibitor of HDAC | Mouse astrocytes into CiNs | [34] |
CHIR99021 | An inhibitor of GSK3β | |||
RepSox | An inhibitor of TGF-β (ALK5) | |||
VCRFI + 1 | VPA | An inhibitor of HDAC | Human astrocytes into CiNs | [87] |
CHIR99021 | An inhibitor of GSK3β | |||
RepSox | An inhibitor of TGF-β (ALK5) | |||
Forskolin |
An activator of adenylate cyclase | |||
i-BET151 | An inhibitor of a BET bromodomain | |||
ISX9 | An inducer of adult neural stem cell differentiation | |||
FICY + 1 | Forskolin |
An activator of adenylate cyclase | Human astrocytes into CiNs | [88] |
ISX9 | An inducer of adult neural stem cell differentiation | |||
CHIR99021 | An inhibitor of GSK3β | |||
i-BET151 | An inhibitor of a BET bromodomain | |||
DBcAMP | A phosphodiesterase inhibitor | |||
Y-27632 | An inhibitor of ROCK | |||
6C | SAg | A smoothened agonist (SMO), an activator of Hedgehog | Astrocytes into CiNs | [89] |
CHIR99021 | An inhibitor of a GSK3β | |||
DAPT | An inhibitor of Notch via gamma-secretase | |||
Ruxolitinib | An inhibitor of JAK 1 and JAK 2 | |||
RepSox | An inhibitor of TGF-β (ALK5) | |||
Y-26732 | An inhibitor of ROCK | |||
Kenpaullone | An inhibitor of GSK 3α and GSK 3β | Human and mouse astrocytes into CiNs | [90] | |
Forskolin |
An activator of adenylate cyclase | |||
Y-27632 | An inhibitor of ROCK | |||
Purmorphamine | A smoothened agonist (SMO), an activator of Hedgehog | |||
Retinoic acid | A RAR ligand, activates PI3K | |||
VPA | An inhibitor of HDAC | Human astrocytes into CiNs | [90] | |
RepSox | An inhibitor of TGF-β (ALK5) | |||
SB431542 | An inhibitor of TGF-βRI | |||
DAPT | An inhibitor of Notch via gamma-secretase | |||
Dorsomorphin (IWR1-endo) | An inhibitor of AMPK and BMP I | |||
LDN193189 | A BMP type I receptor (ALK2/3) inhibitor | |||
CHIR99021 | An inhibitor of GSK3β | |||
DAPT | An inhibitor of Notch via gamma-secretase | Mouse astrocytes into CiNs | [91] | |
Ginsenoside Rg1 | An inhibitor of Notch | Rat astrocytes into CiNs | [92] | |
SB431542 | An inhibitor of TGF-βRI | Mouse iPSCs into CiRGCs and CiRPE | [47] | |
CK-7 | An inhibitor of Wnt | |||
Y-27632 | An inhibitor of ROCK | |||
SB431542 | An inhibitor of TGF-βRI | Human ESCs/iPSCs into CiRNs, including CiPCs | [49] | |
LDN 193189 | An inhibitor of BMP type I (ALK2/3) | |||
Dorsomorphin (IWR1-endo) | An inhibitor of AMPK and BMP I | |||
CBL | CHIR99021 | An inhibitor of GSK3β | Human RPE into CiNs | [93] |
SB431542 | An inhibitor of TGF-βRI | |||
LDN193189 | A BMP type I receptor (ALK2/3) inhibitor | |||
VV | VPA | An inhibitor of HDAC | Human RPE into CiPCs | [46] |
Vitamin C | ||||
DAPT | An inhibitor of Notch via gamma-secretase | |||
VCRFD | VPA | An inhibitor of HDAC | Human RPE into CiPCs | [12] |
CHIR99021 | An inhibitor of GSK3β | |||
RepSox | An inhibitor of TGF-β (ALK5) | |||
Forskolin |
An activator of adenylate cyclase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rzhanova, L.A.; Alpeeva, E.V.; Aleksandrova, M.A. Using Small Molecules to Reprogram RPE Cells in Regenerative Medicine for Degenerative Eye Disease. Cells 2024, 13, 1931. https://doi.org/10.3390/cells13231931
Rzhanova LA, Alpeeva EV, Aleksandrova MA. Using Small Molecules to Reprogram RPE Cells in Regenerative Medicine for Degenerative Eye Disease. Cells. 2024; 13(23):1931. https://doi.org/10.3390/cells13231931
Chicago/Turabian StyleRzhanova, Lyubov A., Elena V. Alpeeva, and Maria A. Aleksandrova. 2024. "Using Small Molecules to Reprogram RPE Cells in Regenerative Medicine for Degenerative Eye Disease" Cells 13, no. 23: 1931. https://doi.org/10.3390/cells13231931
APA StyleRzhanova, L. A., Alpeeva, E. V., & Aleksandrova, M. A. (2024). Using Small Molecules to Reprogram RPE Cells in Regenerative Medicine for Degenerative Eye Disease. Cells, 13(23), 1931. https://doi.org/10.3390/cells13231931