MicroRNAs and RNA-Binding Protein-Based Regulation of Bone Metastasis from Hepatobiliary Cancers and Potential Therapeutic Strategies
Abstract
:1. Introduction
2. Metastasis from Hepatobiliary Cancers
2.1. Impact on Prognosis and Survival of Patients
2.1.1. Hepatocellular Carcinoma (HCC)
2.1.2. Cholangiocarcinoma (CCA)
2.2. Hepatobiliary Metastatic Modifications and Dissemination of Cancer Cells
2.3. RNA Biology in Metastatic Cancers
2.3.1. Alternative Splicing
2.3.2. mRNA Translation Control
3. Dysregulated Expression of miRNAs and RBPs as Potential Biomarkers of Bone Metastasis from Hepatobiliary Tumors
3.1. Dysregulated miRNA Expression
3.2. Dysregulated RBP Expression
3.3. RBP/miRNA Crosstalk
4. Molecular and Cellular Alterations Leading to Bone Metastasis from Hepatobiliary Cancers and Indicative Therapeutic Targets
4.1. miRNAs in Promoting Bone Metastasis: Insights from Preclinical Models
4.2. RBPs in Modulating Bone Metastasis: Insights from Other Cancers
5. Future Therapeutic Perspectives and Challenges in Bone Metastasis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Storandt, M.H.; Tella, S.H.; Wieczorek, M.A.; Hodge, D.; Elrod, J.K.; Rosenberg, P.S.; Jin, Z.; Mahipal, A. Projected Incidence of Hepatobiliary Cancers and Trends Based on Age, Race, and Gender in the United States. Cancers 2024, 16, 684. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Tovo, C.V.; de Mattos, A.Z.; Coral, G.P.; Sartori, G.D.P.; Nogueira, L.V.; Both, G.T.; Villela-Nogueira, C.A.; de Mattos, A.A. Hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis. World J. Gastroenterol. 2023, 29, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Buettner, S.; van Vugt, J.L.; IJzermans, J.N.; Groot Koerkamp, B. Intrahepatic cholangiocarcinoma: Current perspectives. Onco Targets Ther. 2017, 10, 1131–1142. [Google Scholar] [CrossRef]
- Clements, O.; Eliahoo, J.; Kim, J.U.; Taylor-Robinson, S.D.; Khan, S.A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. J. Hepatol. 2020, 72, 95–103. [Google Scholar] [CrossRef]
- Saleh, M.; Virarkar, M.; Bura, V.; Valenzuela, R.; Javadi, S.; Szklaruk, J.; Bhosale, P. Intrahepatic cholangiocarcinoma: Pathogenesis, current staging, and radiological findings. Abdom. Radiol. 2020, 45, 3662–3680. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Cui, D.; Shi, Y.; Zhai, B. Radiofrequency ablation of hepatocellular carcinoma: Current status, challenges, and prospects. Liver Res. 2023, 7, 108–115. [Google Scholar] [CrossRef]
- Feng, J.; He, Y.; Wan, J.; Chen, Z. Pulmonary metastases in newly diagnosed hepatocellular carcinoma: A population-based retrospective study. HPB 2020, 22, 1295–1304. [Google Scholar] [CrossRef]
- Liao, P.; Cao, L.; Chen, H.; Pang, S.Z. Analysis of metastasis and survival between extrahepatic and intrahepatic cholangiocarcinoma: A large population-based study. Medicine 2021, 100, e25635. [Google Scholar] [CrossRef]
- Protopapa, M.N.; Lagadinou, M.; Papagiannis, T.; Gogos, C.A.; Solomou, E.E. Hepatocellular Carcinoma: An Uncommon Metastasis in the Orbit. Case Rep. Oncol. Med. 2020, 2020, 7526042. [Google Scholar] [CrossRef]
- Garajová, I.; Gelsomino, F.; Salati, M.; Leonardi, F.; De Lorenzo, S.; Granito, A.; Tovoli, F. Bone Metastases from Intrahepatic Cholangiocarcinoma Confer Worse Prognosis. Curr. Oncol. 2023, 30, 2613–2624. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhang, C.; Seidensticker, M.; Mayerle, J.; Reiter, F.P.; De Toni, E.N. Durable Complete Response of Brain Metastasis from Hepatocellular Carcinoma on Treatment with Nivolumab and Radiation Treatment. Am. J. Gastroenterol. 2020, 115, 2114–2116. [Google Scholar] [CrossRef] [PubMed]
- Shrateh, O.N.; Saa, S.A. Very rare metastatic phenomena of biliary tract cancer to the cerebellum: A case report and review of the literature. Int. J. Surg. Case Rep. 2023, 111, 108819. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, P.; Zhu, Z.; Ning, Z.; Xu, L.; Zhuang, L.; Sheng, J.; Meng, Z. Site-specific metastases of intrahepatic cholangiocarcinoma and its impact on survival: A population-based study. Future Oncol. 2019, 15, 2125–2137. [Google Scholar] [CrossRef]
- Coleman, R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 2006, 12, 6243s–6249s. [Google Scholar] [CrossRef]
- Macedo, F.; Ladeira, K.; Pinho, F.; Saraiva, N.; Bonito, N.; Pinto, L.; Goncalves, F. Bone Metastases: An Overview. Oncol. Rev. 2017, 11, 321. [Google Scholar] [CrossRef]
- Longo, V.; Brunetti, O.; D’Oronzo, S.; Ostuni, C.; Gatti, P.; Silvestris, F. Bone metastases in hepatocellular carcinoma: An emerging issue. Cancer Metastasis Rev. 2014, 33, 333–342. [Google Scholar] [CrossRef]
- Thammaroj, P.; Chimcherd, A.; Chowchuen, P.; Panitchote, A.; Sumananont, C.; Wongsurawat, N. Imaging features of bone metastases from cholangiocarcinoma. Eur. J. Radiol. 2020, 129, 109118. [Google Scholar] [CrossRef]
- Kim, S.; Choi, Y.; Kwak, D.W.; Lee, H.S.; Hur, W.J.; Baek, Y.H.; Lee, S.W. Prognostic factors in hepatocellular carcinoma patients with bone metastases. Radiat. Oncol. J. 2019, 37, 207–214. [Google Scholar] [CrossRef]
- Yuan, X.; Zhuang, M.; Zhu, X.; Cheng, D.; Liu, J.; Sun, D.; Qiu, X.; Lu, Y.; Sartorius, K. Emerging Perspectives of Bone Metastasis in Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 943866. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, J.G.; Lin, X.J.; Li, X.G. Bone metastases from hepatocellular carcinoma: Clinical features and prognostic factors. Hepatobiliary Pancreat. Dis. Int. 2017, 16, 499–505. [Google Scholar] [CrossRef]
- Ozer, M.; Goksu, S.Y.; Lin, R.Y.; Ayasun, R.; Kahramangil, D.; Rogers, S.C.; Fabregas, J.C.; Ramnaraign, B.H.; George, T.J.; Feely, M.; et al. Effects of Clinical and Tumor Characteristics on Survival in Patients with Hepatocellular Carcinoma with Bone Metastasis. J. Hepatocell. Carcinoma 2023, 10, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.; Ravulapati, S.; Befeler, A.; Dombrowski, J.; Gadani, S.; Poddar, N. Hepatocellular Carcinoma with Bone Metastases: Incidence, Prognostic Significance, and Management-Single-Center Experience. J. Gastrointest. Cancer 2017, 48, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Sanchez, L.; Lamarca, A.; La Casta, A.; Buettner, S.; Utpatel, K.; Klümpen, H.J.; Adeva, J.; Vogel, A.; Lleo, A.; Fabris, L.; et al. Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. J. Hepatol. 2022, 76, 1109–1121. [Google Scholar] [CrossRef] [PubMed]
- Chindaprasirt, P.; Promsorn, J.; Ungareewittaya, P.; Twinprai, N.; Chindaprasirt, J. Bone metastasis from cholangiocarcinoma mimicking osteosarcoma: A case report and review literature. Mol. Clin. Oncol. 2018, 9, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Ogunwobi, O.O.; Harricharran, T.; Huaman, J.; Galuza, A.; Odumuwagun, O.; Tan, Y.; Ma, G.X.; Nguyen, M.T. Mechanisms of hepatocellular carcinoma progression. World J. Gastroenterol. 2019, 25, 2279–2293. [Google Scholar] [CrossRef]
- Fava, G. Molecular mechanisms of cholangiocarcinoma. World J. Gastrointest. Pathophysiol. 2010, 1, 12–22. [Google Scholar] [CrossRef]
- Iguchi, H.; Yokota, M.; Fukutomi, M.; Uchimura, K.; Yonemasu, H.; Hachitanda, Y.; Nakao, Y.; Tanaka, Y.; Sumii, T.; Funakoshi, A. A possible role of VEGF in osteolytic bone metastasis of hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2002, 21, 309–313. [Google Scholar]
- Ahn, J.C.; Teng, P.C.; Chen, P.J.; Posadas, E.; Tseng, H.R.; Lu, S.C.; Yang, J.D. Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology 2021, 73, 422–436. [Google Scholar] [CrossRef]
- Harries, L.W. RNA Biology Provides New Therapeutic Targets for Human Disease. Front. Genet. 2019, 10, 205. [Google Scholar] [CrossRef]
- Yang, H.D.; Nam, S.W. Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Exp. Mol. Med. 2020, 52, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhou, J.K.; Peng, Y.; He, W.; Huang, C. The role of long noncoding RNAs in hepatocellular carcinoma. Mol. Cancer 2020, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.T.; Ye, H.; Wei, P.P.; Han, B.W.; He, B.; Chen, Z.H.; Chen, Y.Q. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J. Hematol. Oncol. 2016, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liao, Z.; Liu, F.; Su, C.; Zhu, H.; Li, Y.; Tao, R.; Liang, H.; Zhang, B.; Zhang, X. Long noncoding RNA HULC promotes hepatocellular carcinoma progression. Aging 2019, 11, 9111–9127. [Google Scholar] [CrossRef] [PubMed]
- Rojas, Á.; Gil-Gómez, A.; de la Cruz-Ojeda, P.; Muñoz-Hernández, R.; Sánchez-Torrijos, Y.; Gallego-Durán, R.; Millán, R.; Rico, M.C.; Montero-Vallejo, R.; Gato-Zambrano, S.; et al. Long non-coding RNA H19 as a biomarker for hepatocellular carcinoma. Liver Int. 2022, 42, 1410–1422. [Google Scholar] [CrossRef]
- Schultheiss, C.S.; Laggai, S.; Czepukojc, B.; Hussein, U.K.; List, M.; Barghash, A.; Tierling, S.; Hosseini, K.; Golob-Schwarzl, N.; Pokorny, J.; et al. The long non-coding RNA. Cell Stress. 2017, 1, 37–54. [Google Scholar] [CrossRef]
- Huang, Z.; Chu, L.; Liang, J.; Tan, X.; Wang, Y.; Wen, J.; Chen, J.; Wu, Y.; Liu, S.; Liao, J.; et al. H19 Promotes HCC Bone Metastasis Through Reducing Osteoprotegerin Expression in a Protein Phosphatase 1 Catalytic Subunit Alpha/p38 Mitogen-Activated Protein Kinase-Dependent Manner and Sponging microRNA 200b-3p. Hepatology 2021, 74, 214–232. [Google Scholar] [CrossRef]
- Wilkinson, M.E.; Charenton, C.; Nagai, K. RNA Splicing by the Spliceosome. Annu. Rev. Biochem. 2020, 89, 359–388. [Google Scholar] [CrossRef]
- Marasco, L.E.; Kornblihtt, A.R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 2023, 24, 242–254. [Google Scholar] [CrossRef]
- Zhan, X.; Lu, Y.; Shi, Y. Molecular basis for the activation of human spliceosome. Nat. Commun. 2024, 15, 6348. [Google Scholar] [CrossRef]
- Morais, P.; Adachi, H.; Yu, Y.T. Spliceosomal snRNA Epitranscriptomics. Front. Genet. 2021, 12, 652129. [Google Scholar] [CrossRef] [PubMed]
- Webster, N.J.G.; Kumar, D.; Wu, P. Dysregulation of RNA splicing in early non-alcoholic fatty liver disease through hepatocellular carcinoma. Sci. Rep. 2024, 14, 2500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Z.; Li, C.; Wang, C.; Jiang, W.; Chang, J.; Han, S.; Lu, Z.; Shao, Z.; Wang, Y.; et al. The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers. Nat. Commun. 2022, 13, 3061. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Yang, C.; Gao, F. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J. 2022, 289, 7970–7986. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Xia, H.; Xu, H.; Ma, J.; Zhou, S.; Hou, W.; Tang, Q.; Gong, Q.; Nie, Y.; Bi, F. Standard CD44 modulates YAP1 through a positive feedback loop in hepatocellular carcinoma. Biomed. Pharmacother. 2018, 103, 147–156. [Google Scholar] [CrossRef]
- Nanashima, A.; Hatachi, G.; Tsuchiya, T.; Matsumoto, H.; Arai, J.; Abo, T.; Murakami, G.; Tominaga, T.; Takagi, K.; Nagayasu, T. Clinical significances of cancer stem cells markers in patients with intrahepatic cholangiocarcinoma who underwent hepatectomy. Anticancer. Res. 2013, 33, 2107–2114. [Google Scholar]
- Pongcharoen, P.; Jinawath, A.; Tohtong, R. Silencing of CD44 by siRNA suppressed invasion, migration and adhesion to matrix, but not secretion of MMPs, of cholangiocarcinoma cells. Clin. Exp. Metastasis 2011, 28, 827–839. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, J.; Li, H.B. The physiological and pathological roles of RNA modifications in T cells. Cell Chem. Biol. 2024, 31, 1578–1592. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Feng, G.; Gao, S.; Wang, Y.; Zhang, S.; Liu, Y.; Ye, L.; Li, Y.; Zhang, X. MicroRNA-145 Modulates. J. Biol. Chem. 2017, 292, 3614–3623. [Google Scholar] [CrossRef]
- Su, T.; Huang, M.; Liao, J.; Lin, S.; Yu, P.; Yang, J.; Cai, Y.; Zhu, S.; Xu, L.; Peng, Z.; et al. Insufficient Radiofrequency Ablation Promotes Hepatocellular Carcinoma Metastasis Through N6-Methyladenosine mRNA Methylation-Dependent Mechanism. Hepatology 2021, 74, 1339–1356. [Google Scholar] [CrossRef]
- Liu, J.X.; Zhang, X.; Xu, W.H.; Hao, X.D. The role of RNA modifications in hepatocellular carcinoma: Functional mechanism and potential applications. Front. Immunol. 2024, 15, 1439485. [Google Scholar] [CrossRef] [PubMed]
- Bhatter, N.; Dmitriev, S.E.; Ivanov, P. Cell death or survival: Insights into the role of mRNA translational control. Semin. Cell Dev. Biol. 2024, 154, 138–154. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xie, Y.; Qian, S. Multifaceted role of GCN2 in tumor adaptation and therapeutic targeting. Transl. Oncol. 2024, 49, 102096. [Google Scholar] [CrossRef] [PubMed]
- Missiaen, R.; Anderson, N.M.; Kim, L.C.; Nance, B.; Burrows, M.; Skuli, N.; Carens, M.; Riscal, R.; Steensels, A.; Li, F.; et al. GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metab. 2022, 34, 1151–1167.e1157. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhang, Y.; Lu, H.; Ying, J.; Zhao, H.; Cai, J. Serum alpha-fetoprotein as a predictive biomarker for tissue alpha-fetoprotein status and prognosis in patients with hepatocellular carcinoma. Transl. Cancer Res. 2022, 11, 669–677. [Google Scholar] [CrossRef]
- Nicolosi, A.; Gaia, S.; Risso, A.; Rosso, C.; Rolle, E.; Abate, M.L.; Olivero, A.; Armandi, A.; Ribaldone, D.G.; Carucci, P.; et al. Serum glypican-3 for the prediction of survival in patients with hepatocellular carcinoma. Minerva Gastroenterol. 2022, 68, 378–386. [Google Scholar] [CrossRef]
- Coelho, R.; Silva, M.; Rodrigues-Pinto, E.; Cardoso, H.; Lopes, S.; Pereira, P.; Vilas-Boas, F.; Santos-Antunes, J.; Costa-Maia, J.; Macedo, G. CA 19-9 as a Marker of Survival and a Predictor of Metastization in Cholangiocarcinoma. GE Port. J. Gastroenterol. 2017, 24, 114–121. [Google Scholar] [CrossRef]
- Romeo, M.; Dallio, M.; Scognamiglio, F.; Ventriglia, L.; Cipullo, M.; Coppola, A.; Tammaro, C.; Scafuro, G.; Iodice, P.; Federico, A. Role of Non-Coding RNAs in Hepatocellular Carcinoma Progression: From Classic to Novel Clinicopathogenetic Implications. Cancers 2023, 15, 5178. [Google Scholar] [CrossRef]
- Shang, R.; Lee, S.; Senavirathne, G.; Lai, E.C. microRNAs in action: Biogenesis, function and regulation. Nat. Rev. Genet. 2023, 24, 816–833. [Google Scholar] [CrossRef]
- Ma, L.; Shao, H.; Chen, H.; Deng, Q. The Mechanism of miR-141 Regulating the Proliferation and Metastasis of Liver Cancer Cells by Targeting STAT4. J. Oncol. 2021, 2021, 5425491. [Google Scholar] [CrossRef]
- Chun, K.H. Molecular Targets and Signaling Pathways of microRNA-122 in Hepatocellular Carcinoma. Pharmaceutics 2022, 14, 1380. [Google Scholar] [CrossRef]
- Liu, N.; Jiang, F.; He, T.L.; Zhang, J.K.; Zhao, J.; Wang, C.; Jiang, G.X.; Cao, L.P.; Kang, P.C.; Zhong, X.Y.; et al. The Roles of MicroRNA-122 Overexpression in Inhibiting Proliferation and Invasion and Stimulating Apoptosis of Human Cholangiocarcinoma Cells. Sci. Rep. 2015, 5, 16566. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, J.; Cao, X.; Yang, Q.; Xia, D. Effect of Mir-122 on Human Cholangiocarcinoma Proliferation, Invasion, and Apoptosis Through P53 Expression. Med. Sci. Monit. 2016, 22, 2685–2690. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, W.; Qi, Y.; Liu, D.; Liu, Z.; Zhang, Q.; Yi, Y.; Wang, J.; Wu, W. miR-29c Suppresses the Malignant Phenotype of Hepatocellular Carcinoma Cells In Vitro by Mediating TPX2 Associated with Immune Infiltration. Dig. Dis. Sci. 2023, 68, 1923–1935. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Kong, W.; Lu, Y.; Zheng, Y. Traditional Chinese Medicine Xiaoai Jiedu Recipe Suppresses the Development of Hepatocellular Carcinoma via Regulating the microRNA-29a/Signal Transducer and Activator of Transcription 3 Axis. Onco Targets Ther. 2020, 13, 7329–7342. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Chang, Y.H.; Li, C.J.; Huang, Y.H.; Tsai, M.C.; Chu, P.Y.; Lin, H.Y. New Insights into the Role of miR-29a in Hepatocellular Carcinoma: Implications in Mechanisms and Theragnostics. J. Pers. Med. 2021, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Li, B.; Zhang, Y.W.; Song, H.; Chen, Y.G.; Gong, Y.J.; Li, H.Y.; Zuo, S. miR-29b restrains cholangiocarcinoma progression by relieving DNMT3B-mediated repression of CDKN2B expression. Aging 2021, 13, 6055–6065. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, N.; Li, S.; Fang, J.H.; Chen, M.X.; Yang, J.; Jia, W.H.; Yuan, Y.; Zhuang, S.M. MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology 2013, 58, 642–653. [Google Scholar] [CrossRef]
- Cao, K.; Li, J.; Zhao, Y.; Wang, Q.; Zeng, Q.; He, S.; Yu, L.; Zhou, J.; Cao, P. miR-101 Inhibiting Cell Proliferation, Migration and Invasion in Hepatocellular Carcinoma through Downregulating Girdin. Mol. Cells 2016, 39, 96–102. [Google Scholar] [CrossRef]
- Zhang, J.; Han, C.; Zhu, H.; Song, K.; Wu, T. miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF). Am. J. Pathol. 2013, 182, 1629–1639. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Y.; Huang, J.; Wang, S.; Ni, W.; Guan, J.; Li, Q.; Zhang, Y.; Chen, B.; Chen, L. MiR-141 suppresses the migration and invasion of HCC cells by targeting Tiam1. PLoS ONE 2014, 9, e88393. [Google Scholar] [CrossRef] [PubMed]
- Tokuhisa, A.; Tsunedomi, R.; Kimura, Y.; Nakajima, M.; Nishiyama, M.; Takahashi, H.; Ioka, T.; Kobayashi, S.; Eguchi, H.; Nagano, H. Exosomal miR-141-3p Induces Gemcitabine Resistance in Biliary Tract Cancer Cells. Anticancer. Res. 2024, 44, 2899–2908. [Google Scholar] [CrossRef] [PubMed]
- Prinz, C.; Frese, R.; Grams, M.; Fehring, L. Emerging Role of microRNA Dysregulation in Diagnosis and Prognosis of Extrahepatic Cholangiocarcinoma. Genes 2022, 13, 1479. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Yu, C.; Wu, M.; Wu, X.; Wan, L.; Zhu, X. MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_0000204/miR-191/KLF6 axis. Cell Prolif. 2019, 52, e12635. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Z.Q.; Yang, Z.R.; Tong, D.N.; Guan, J.; Shi, B.J.; Nie, J.; Ding, X.T.; Li, B.; Zhou, G.W.; et al. MicroRNA-191 acts as a tumor promoter by modulating the TET1-p53 pathway in intrahepatic cholangiocarcinoma. Hepatology 2017, 66, 136–151. [Google Scholar] [CrossRef]
- Jiang, Z.L.; Zhang, F.X.; Zhan, H.L.; Yang, H.J.; Zhang, S.Y.; Liu, Z.H.; Jiang, Y.; Lv, L.Z.; Ke, R.S. miR-181b-5p Promotes the Progression of Cholangiocarcinoma by Targeting PARK2 via PTEN/PI3K/AKT Signaling Pathway. Biochem. Genet. 2022, 60, 223–240. [Google Scholar] [CrossRef]
- Liu, Z.; Dou, C.; Yao, B.; Xu, M.; Ding, L.; Wang, Y.; Jia, Y.; Li, Q.; Zhang, H.; Tu, K.; et al. Methylation-mediated repression of microRNA-129-2 suppresses cell aggressiveness by inhibiting high mobility group box 1 in human hepatocellular carcinoma. Oncotarget 2016, 7, 36909–36923. [Google Scholar] [CrossRef]
- Chen, S.; Tu, Y.; Yuan, H.; Shi, Z.; Guo, Y.; Gong, W.; Tu, S. Regulatory functions of miR-200b-3p in tumor development (Review). Oncol. Rep. 2022, 47, 96. [Google Scholar] [CrossRef]
- Yerukala Sathipati, S.; Aimalla, N.; Tsai, M.J.; Carter, T.; Jeong, S.; Wen, Z.; Shukla, S.K.; Sharma, R.; Ho, S.Y. Prognostic microRNA signature for estimating survival in patients with hepatocellular carcinoma. Carcinogenesis 2023, 44, 650–661. [Google Scholar] [CrossRef]
- Ala, U.; Fagoonee, S. RNA-binding protein transcripts as potential biomarkers for detecting Primary Sclerosing Cholangitis and for predicting its progression to Cholangiocarcinoma. Front. Mol. Biosci. 2024, 11, 1388294. [Google Scholar] [CrossRef]
- Choi, P.; Thomas-Tikhonenko, A. RNA-binding proteins of COSMIC importance in cancer. J. Clin. Investig. 2021, 131, e151627. [Google Scholar] [CrossRef] [PubMed]
- Corkery, D.P.; Holly, A.C.; Lahsaee, S.; Dellaire, G. Connecting the speckles: Splicing kinases and their role in tumorigenesis and treatment response. Nucleus 2015, 6, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.H.; Huang, H.M.; Yang, D.L. Integrated analysis of the functions and prognostic values of RNA binding proteins in hepatocellular carcinoma. BMC Gastroenterol. 2021, 21, 265. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhou, X.; Qu, C.; Hu, L.; Tang, Y.; Zhang, Q.; Liang, M.; Hong, J. Musashi2 predicts poor prognosis and invasion in hepatocellular carcinoma by driving epithelial-mesenchymal transition. J. Cell Mol. Med. 2014, 18, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Niu, K.; Wang, J.; Shen, W.; Jiang, R.; Liu, L.; Song, W.; Wang, X.; Zhang, X.; Zhang, R.; et al. Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. J. Hepatol. 2024, 81, 651–666. [Google Scholar] [CrossRef]
- Kang, D.; Lee, Y.; Lee, J.S. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers 2020, 12, 2699. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Dai, Z.; Zhou, S.L.; Fu, X.T.; Zhao, Y.M.; Shi, Y.H.; Zhou, J.; Fan, J. Overexpression of HnRNP A1 promotes tumor invasion through regulating CD44v6 and indicates poor prognosis for hepatocellular carcinoma. Int. J. Cancer 2013, 132, 1080–1089. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Q.; Zhao, H.; Xie, R.; He, X.; Gu, H. Unraveling the Role of RNA-Binding Proteins, with a Focus on RPS5, in the Malignant Progression of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2024, 25, 773. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, M.; He, X.; Gu, H.; Ren, J.; Cheng, S.; Fu, Z.; Zhang, Z.; Chen, J. RNA-binding protein RPS7 promotes hepatocellular carcinoma progression via LOXL2-dependent activation of ITGB1/FAK/SRC signaling. J. Exp. Clin. Cancer Res. 2024, 43, 45. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, J.; Chen, W.; Ma, W.; Wu, T. RBM39 Enhances Cholangiocarcinoma Growth Through EZH2-mediated WNT7B/β-catenin Pathway. Cell Mol. Gastroenterol. Hepatol. 2024, 19, 101404. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Zhao, Q.; Liang, X.; Wang, Y.; Xiao, S.; Shen, S.; Wu, J. RNA binding motif protein 43 (RBM43) suppresses hepatocellular carcinoma metastasis by regulating Slug mRNA stability. Genes Dis. 2024, 11, 101192. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Xie, S.; Diao, L.; Lv, G.; Hou, Y.; Hu, Y.; Xu, W.; Du, B.; Xiao, Z. RNA-binding protein CCDC137 activates AKT signaling and promotes hepatocellular carcinoma through a novel non-canonical role of DGCR8 in mRNA localization. J. Exp. Clin. Cancer Res. 2023, 42, 194. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Wang, Z.; Zhang, X.; Xu, S.; Wang, F.; Li, L.; Deng, Z.; Wang, J.; Pan, K.; Ge, X.; et al. PIWIL4 and SUPT5H combine to predict prognosis and immune landscape in intrahepatic cholangiocarcinoma. Cancer Cell Int. 2021, 21, 657. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Huang, C.; Zhang, S. The RNA-binding protein SORBS2 suppresses hepatocellular carcinoma tumourigenesis and metastasis by stabilizing RORA mRNA. Liver Int. 2019, 39, 2190–2203. [Google Scholar] [CrossRef] [PubMed]
- Srikantan, S.; Gorospe, M. HuR function in disease. Front. Biosci.-Landmark 2012, 17, 189–205. [Google Scholar] [CrossRef]
- Viswanathan, S.; Daley, G.; Gregory, R. Selective blockade of MicroRNA processing by Lin28. Science 2008, 320, 97–100. [Google Scholar] [CrossRef]
- Zhao, K.; Gao, J.; Shi, J.; Shi, C.; Pang, C.; Li, J.; Guo, W.; Zhang, S. FXR1 promotes proliferation, invasion and migration of hepatocellular carcinoma in vitro and in vivo. Oncol. Lett. 2023, 25, 22. [Google Scholar] [CrossRef]
- Bell, J.L.; Wächter, K.; Mühleck, B.; Pazaitis, N.; Köhn, M.; Lederer, M.; Hüttelmaier, S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): Post-transcriptional drivers of cancer progression? Cell Mol. Life Sci. 2013, 70, 2657–2675. [Google Scholar] [CrossRef]
- Tian, S.; Liu, J.; Sun, K.; Liu, Y.; Yu, J.; Ma, S.; Zhang, M.; Jia, G.; Zhou, X.; Shang, Y.; et al. Systematic Construction and Validation of an RNA-Binding Protein-Associated Model for Prognosis Prediction in Hepatocellular Carcinoma. Front. Oncol. 2020, 10, 597996. [Google Scholar] [CrossRef]
- Liu, F.; Ke, J.; Song, Y. Application of Biomarkers for the Prediction and Diagnosis of Bone Metastasis in Breast Cancer. J. Breast Cancer 2020, 23, 588–598. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, F.; Ma, Y.; Luo, Y.; Zhang, Y.; Yang, N.; Liu, M.; Liu, H.; Li, J. Potential biomarkers for the early detection of bone metastases. Front. Oncol. 2023, 13, 1188357. [Google Scholar] [CrossRef] [PubMed]
- Sahay, D.; Leblanc, R.; Grunewald, T.; Ambatipudi, S.; Ribeiro, J.; Clézardin, P.; Peyruchaud, O. The LPA1/ZEB1/miR-21-activation pathway regulates metastasis in basal breast cancer. Oncotarget 2015, 6, 20604–20620. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, Y.; Huang, Y.; Chen, Y.; Wang, T.; Wu, S.; Tong, L.; Wang, Y.; Lin, L.; Hao, M.; et al. RNA-binding protein AUF1 suppresses miR-122 biogenesis by down-regulating Dicer1 in hepatocellular carcinoma. Oncotarget 2018, 9, 14815–14827. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Rhim, J.; Kim, J.H. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: The enemy within. Exp. Mol. Med. 2024, 56, 1080–1106. [Google Scholar] [CrossRef] [PubMed]
- Sokół, E.; Kędzierska, H.; Czubaty, A.; Rybicka, B.; Rodzik, K.; Tański, Z.; Bogusławska, J.; Piekiełko-Witkowska, A. microRNA-mediated regulation of splicing factors SRSF1, SRSF2 and hnRNP A1 in context of their alternatively spliced 3’UTRs. Exp. Cell Res. 2018, 363, 208–217. [Google Scholar] [CrossRef]
- Tian, Q.; Liang, L.; Ding, J.; Zha, R.; Shi, H.; Wang, Q.; Huang, S.; Guo, W.; Ge, C.; Chen, T.; et al. MicroRNA-550a acts as a pro-metastatic gene and directly targets cytoplasmic polyadenylation element-binding protein 4 in hepatocellular carcinoma. PLoS ONE 2012, 7, e48958. [Google Scholar] [CrossRef]
- Ciafrè, S.A.; Galardi, S. microRNAs and RNA-binding proteins: A complex network of interactions and reciprocal regulations in cancer. RNA Biol. 2013, 10, 935–942. [Google Scholar] [CrossRef]
- Puppo, M.; Jaafar, M.; Diaz, J.J.; Marcel, V.; Clézardin, P. MiRNAs and snoRNAs in Bone Metastasis: Functional Roles and Clinical Potential. Cancers 2022, 15, 242. [Google Scholar] [CrossRef]
- Huang, Z.; Wen, J.; Wang, Y.; Han, S.; Li, Z.; Hu, X.; Zhu, D.; Wang, Z.; Liang, J.; Liang, H.; et al. Bone metastasis of hepatocellular carcinoma: Facts and hopes from clinical and translational perspectives. Front. Med. 2022, 16, 551–573. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Huang, H.; Ye, M.; Li, X.; Wu, R.; Liu, H.; Song, Y. Metastasis-associated fibroblasts: An emerging target for metastatic cancer. Biomark. Res. 2021, 9, 47. [Google Scholar] [CrossRef]
- Kang, Y.; Li, H.; Liu, Y.; Li, Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J. Cancer Res. Clin. Oncol. 2024, 150, 221. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.N.; Riba, R.D.; Zacharoulis, S.; Bramley, A.H.; Vincent, L.; Costa, C.; MacDonald, D.D.; Jin, D.K.; Shido, K.; Kerns, S.A.; et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005, 438, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Bowler, E.; Oltean, S. Alternative Splicing in Angiogenesis. Int. J. Mol. Sci. 2019, 20, 2067. [Google Scholar] [CrossRef] [PubMed]
- Mamer, S.B.; Wittenkeller, A.; Imoukhuede, P.I. VEGF-A splice variants bind VEGFRs with differential affinities. Sci. Rep. 2020, 10, 14413. [Google Scholar] [CrossRef]
- Barbagallo, D.; Caponnetto, A.; Brex, D.; Mirabella, F.; Barbagallo, C.; Lauretta, G.; Morrone, A.; Certo, F.; Broggi, G.; Caltabiano, R.; et al. CircSMARCA5 Regulates VEGFA mRNA Splicing and Angiogenesis in Glioblastoma Multiforme Through the Binding of SRSF1. Cancers 2019, 11, 194. [Google Scholar] [CrossRef]
- Rabas, N.; Ferreira, R.M.M.; Di Blasio, S.; Malanchi, I. Cancer-induced systemic pre-conditioning of distant organs: Building a niche for metastatic cells. Nat. Rev. Cancer 2024, 24, 829–849. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Wang, W.; Ning, B.F.; Chen, F.; Shen, W.; Ding, J.; Chen, W.; Xie, W.F.; Zhang, X. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett. 2016, 379, 49–59. [Google Scholar] [CrossRef]
- Giancotti, F.G. Mechanisms governing metastatic dormancy and reactivation. Cell 2013, 155, 750–764. [Google Scholar] [CrossRef]
- Kusumbe, A.P. Vascular niches for disseminated tumour cells in bone. J. Bone Oncol. 2016, 5, 112–116. [Google Scholar] [CrossRef]
- Ma, Z.J.; Wang, Y.; Li, H.F.; Liu, M.H.; Bi, F.R.; Ma, L.; Ma, H.; Yan, H.L. LncZEB1-AS1 regulates hepatocellular carcinoma bone metastasis via regulation of the miR-302b-EGFR-PI3K-AKT axis. J. Cancer 2020, 11, 5118–5128. [Google Scholar] [CrossRef]
- Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020, 122, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Meng, F.; Venter, J.; Wu, N.; Wan, Y.; Standeford, H.; Francis, H.; Meininger, C.; Greene, J.; Trzeciakowski, J.P.; et al. miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. J. Hepatol. 2016, 64, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Song, K.; Han, C.; Zhang, J.; Lu, L.; Chen, W.; Wu, T. Epigenetic Silencing of miRNA-34a in Human Cholangiocarcinoma via EZH2 and DNA Methylation Impact on Regulation of Notch Pathway. Am. J. Pathol. 2017, 187, 2288–2299. [Google Scholar] [CrossRef] [PubMed]
- Weidle, U.H.; Schmid, D.; Birzele, F.; Brinkmann, U. MicroRNAs Involved in Metastasis of Hepatocellular Carcinoma: Target Candidates, Functionality and Efficacy in Animal Models and Prognostic Relevance. Cancer Genom. Proteom. 2020, 17, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Jalil, A.T.; Abdulhadi, M.A.; Al-Ameer, L.R.; Khaleel, L.A.; Abdulameer, S.J.; Hadi, A.M.; Merza, M.S.; Zabibah, R.S.; Ali, A. Small but mighty: How microRNAs drive the deadly progression of cholangiocarcinoma. Pathol. Res. Pract. 2023, 247, 154565. [Google Scholar] [CrossRef]
- Selaru, F.M.; Olaru, A.V.; Kan, T.; David, S.; Cheng, Y.; Mori, Y.; Yang, J.; Paun, B.; Jin, Z.; Agarwal, R.; et al. MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 2009, 49, 1595–1601. [Google Scholar] [CrossRef]
- Meng, F.; Henson, R.; Lang, M.; Wehbe, H.; Maheshwari, S.; Mendell, J.T.; Jiang, J.; Schmittgen, T.D.; Patel, T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006, 130, 2113–2129. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, Z.; Yang, J.; Liu, T. MicroRNA-7-5p Inhibits Migration, Invasion and Metastasis of Intrahepatic Cholangiocarcinoma by Inhibiting MyD88. J. Clin. Transl. Hepatol. 2021, 9, 809–817. [Google Scholar] [CrossRef]
- Nakao, K.; Miyaaki, H.; Ichikawa, T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J. Gastroenterol. 2014, 49, 589–593. [Google Scholar] [CrossRef]
- Al-Gazally, M.E.; Khan, R.; Imran, M.; Ramírez-Coronel, A.A.; Alshahrani, S.H.; Altalbawy, F.M.A.; Turki Jalil, A.; Romero-Parra, R.M.; Zabibah, R.S.; Shahid Iqbal, M.; et al. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int. Immunopharmacol. 2023, 123, 110713. [Google Scholar] [CrossRef]
- Zhang, H.T.; Sun, J.; Yan, Y.; Cui, S.H.; Wang, H.; Wang, C.H.; Qiu, C.; Chen, X.; Ding, J.S.; Qian, H.G.; et al. Encapsulated microRNA by gemcitabine prodrug for cancer treatment. J. Control. Release 2019, 316, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Zoni, E.; van der Pluijm, G. The role of microRNAs in bone metastasis. J. Bone Oncol. 2016, 5, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, H.; Chen, T.; Qiu, G.; Han, Y. The emerging role of osteoclasts in the treatment of bone metastases: Rationale and recent clinical evidence. Front. Oncol. 2024, 14, 1445025. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Piontek, K.; Ishida, M.; Fausther, M.; Dranoff, J.A.; Fu, R.; Mezey, E.; Gould, S.J.; Fordjour, F.K.; Meltzer, S.J.; et al. Extracellular vesicles carry microRNA-195 to intrahepatic cholangiocarcinoma and improve survival in a rat model. Hepatology 2017, 65, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, H.; Guo, X.J.; Feng, Y.C.; He, R.Z.; Li, X.; Yu, S.; Zhao, Y.; Shen, M.; Zhu, F.; et al. Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell Death Dis. 2018, 9, 249. [Google Scholar] [CrossRef]
- Fujiwara, T.; Zhou, J.; Ye, S.; Zhao, H. RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival. Cell Death Dis. 2016, 7, e2300. [Google Scholar] [CrossRef]
- Maroni, P.; Pesce, N.A.; Lombardi, G. RNA-binding proteins in bone pathophysiology. Front. Cell Dev. Biol. 2024, 12, 1412268. [Google Scholar] [CrossRef]
- Göttgens, E.L.; Span, P.N.; Zegers, M.M. Roles and Regulation of Epithelial Splicing Regulatory Proteins 1 and 2 in Epithelial-Mesenchymal Transition. Int. Rev. Cell Mol. Biol. 2016, 327, 163–194. [Google Scholar] [CrossRef]
- Fagoonee, S.; Picco, G.; Orso, F.; Arrigoni, A.; Longo, D.L.; Forni, M.; Scarfò, I.; Cassenti, A.; Piva, R.; Cassoni, P.; et al. The RNA-binding protein ESRP1 promotes human colorectal cancer progression. Oncotarget 2017, 8, 10007–10024. [Google Scholar] [CrossRef]
- Manco, M.; Ala, U.; Cantarella, D.; Tolosano, E.; Medico, E.; Altruda, F.; Fagoonee, S. The RNA-Binding Protein ESRP1 Modulates the Expression of RAC1b in Colorectal Cancer Cells. Cancers 2021, 13, 4092. [Google Scholar] [CrossRef]
- Hu, X.; Harvey, S.E.; Zheng, R.; Lyu, J.; Grzeskowiak, C.L.; Powell, E.; Piwnica-Worms, H.; Scott, K.L.; Cheng, C. The RNA-binding protein AKAP8 suppresses tumor metastasis by antagonizing EMT-associated alternative splicing. Nat. Commun. 2020, 11, 486. [Google Scholar] [CrossRef] [PubMed]
- Mobet, Y.; Wang, H.; Wei, Q.; Liu, X.; Yang, D.; Zhao, H.; Yang, Y.; Ngono Ngane, R.A.; Souopgui, J.; Xu, J.; et al. AKAP8 promotes ovarian cancer progression and antagonizes PARP inhibitor sensitivity through regulating hnRNPUL1 transcription. iScience 2024, 27, 109744. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, Q.; Wang, H.; Yang, X.; Mu, H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct. Target. Ther. 2024, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wodzenski, D.; Gao, D.; Shiraishi, T.; Terada, N.; Li, Y.; Vander Griend, D.J.; Luo, J.; Kong, C.; Getzenberg, R.H.; et al. Stress-response protein RBM3 attenuates the stem-like properties of prostate cancer cells by interfering with CD44 variant splicing. Cancer Res. 2013, 73, 4123–4133. [Google Scholar] [CrossRef]
- Zhang, S.; Lv, C.; Niu, Y.; Li, C.; Li, X.; Shang, Y.; Zhang, Y.; Zeng, Y. RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death Dis. 2023, 14, 91. [Google Scholar] [CrossRef]
- Doller, A.; Pfeilschifter, J.; Eberhardt, W. Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signal 2008, 20, 2165–2173. [Google Scholar] [CrossRef]
- Papatheofani, V.; Levidou, G.; Sarantis, P.; Koustas, E.; Karamouzis, M.V.; Pergaris, A.; Kouraklis, G.; Theocharis, S. HuR Protein in Hepatocellular Carcinoma: Implications in Development, Prognosis and Treatment. Biomedicines 2021, 9, 119. [Google Scholar] [CrossRef]
- Toyota, K.; Murakami, Y.; Kondo, N.; Uemura, K.; Nakagawa, N.; Takahashi, S.; Sueda, T. Cytoplasmic Hu-Antigen R (HuR) Expression is Associated with Poor Survival in Patients with Surgically Resected Cholangiocarcinoma Treated with Adjuvant Gemcitabine-Based Chemotherapy. Ann. Surg. Oncol. 2018, 25, 1202–1210. [Google Scholar] [CrossRef]
- Lee, S.K.; Park, K.K.; Kim, H.J.; Park, J.; Son, S.H.; Kim, K.R.; Chung, W.Y. Human antigen R-regulated CCL20 contributes to osteolytic breast cancer bone metastasis. Sci. Rep. 2017, 7, 9610. [Google Scholar] [CrossRef]
- Sun, Y.; Song, G.; Sun, N.; Chen, J.; Yang, S. Slug overexpression induces stemness and promotes hepatocellular carcinoma cell invasion and metastasis. Oncol. Lett. 2014, 7, 1936–1940. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, Z.J.; Liang, B.; Wang, Z.G.; Tao, Y.P.; Huang, S.Y.; Ni, J.S.; Li, H.F.; Yang, L.; Yuan, S.X.; et al. N6-Methyladenosine Modification of ANLN Enhances Hepatocellular Carcinoma Bone Metastasis. Int. J. Biol. Sci. 2023, 19, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Kudinov, A.; Karanicolas, J.; Golemis, E.; Boumber, Y. Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets. Clin. Cancer Res. 2017, 23, 2143–2153. [Google Scholar] [CrossRef] [PubMed]
- Fox, R.; Lytle, N.; Jaquish, D.; Park, F.; Ito, T.; Bajaj, J.; Koechlein, C.; Zimdahl, B.; Yano, M.; Kopp, J.; et al. Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma. Nature 2016, 534, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Sheng, W.; Ma, Y.; Dong, M. Potential Role of Musashi-2 RNA-Binding Protein in Cancer EMT. OncoTargets Ther. 2021, 14, 1969–1980. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Liu, C.; Xie, F.; Lin, X.; Yang, J.; Wang, C.; Huang, Q. MSI2 knockdown represses extrahepatic cholangiocarcinoma growth and invasion by inhibiting epithelial–mesenchymal transition. OncoTargets Ther. 2018, 11, 4035–4046. [Google Scholar] [CrossRef]
- Bădilă, A.E.; Rădulescu, D.M.; Niculescu, A.G.; Grumezescu, A.M.; Rădulescu, M.; Rădulescu, A.R. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review. Cancers 2021, 13, 4229. [Google Scholar] [CrossRef]
- Casarin, S.; Dondossola, E. An agent-based model of prostate Cancer bone metastasis progression and response to Radium223. BMC Cancer 2020, 20, 605. [Google Scholar] [CrossRef]
- Frieling, J.S.; Tordesillas, L.; Bustos, X.E.; Ramello, M.C.; Bishop, R.T.; Cianne, J.E.; Snedal, S.A.; Li, T.; Lo, C.H.; de la Iglesia, J.; et al. γδ-Enriched CAR-T cell therapy for bone metastatic castrate-resistant prostate cancer. Sci. Adv. 2023, 9, eadf0108. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, K.; Liu, Y.; Wu, Z.; Dai, H.; Yang, Q.; Wang, Y.; Jia, H.; Han, W. Phase I Study of Chimeric Antigen Receptor-Modified T Cells in Patients with EGFR-Positive Advanced Biliary Tract Cancers. Clin. Cancer Res. 2018, 24, 1277–1286. [Google Scholar] [CrossRef]
- Ruff, S.M.; Manne, A.; Cloyd, J.M.; Dillhoff, M.; Ejaz, A.; Pawlik, T.M. Current Landscape of Immune Checkpoint Inhibitor Therapy for Hepatocellular Carcinoma. Curr. Oncol. 2023, 30, 5863–5875. [Google Scholar] [CrossRef]
- Manthopoulou, E.; Ramai, D.; Dhar, J.; Samanta, J.; Ioannou, A.; Lusina, E.; Sacco, R.; Facciorusso, A. Cholangiocarcinoma in the Era of Immunotherapy. Vaccines 2023, 11, 1062. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tang, G.; Cheng, C.S.; Yeerken, R.; Chan, Y.T.; Fu, Z.; Zheng, Y.C.; Feng, Y.; Wang, N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: From clinical evidence to drug discovery. Mol. Cancer 2024, 23, 218. [Google Scholar] [CrossRef] [PubMed]
- Ning, N.; Pan, Q.; Zheng, F.; Teitz-Tennenbaum, S.; Egenti, M.; Yet, J.; Li, M.; Ginestier, C.; Wicha, M.S.; Moyer, J.S.; et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012, 72, 1853–1864. [Google Scholar] [CrossRef] [PubMed]
- Jeng, L.B.; Liao, L.Y.; Shih, F.Y.; Teng, C.F. Dendritic-Cell-Vaccine-Based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies. Cancers 2022, 14, 4380. [Google Scholar] [CrossRef]
- Rao, Q.; Zuo, B.; Lu, Z.; Gao, X.; You, A.; Wu, C.; Du, Z.; Yin, H. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology 2016, 64, 456–472. [Google Scholar] [CrossRef]
- Lu, Z.; Zuo, B.; Jing, R.; Gao, X.; Rao, Q.; Liu, Z.; Qi, H.; Guo, H.; Yin, H. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J. Hepatol. 2017, 67, 739–748. [Google Scholar] [CrossRef]
- Shi, S.; Wang, L.; Wang, C.; Xu, J.; Niu, Z. Serum-derived exosomes function as tumor antigens in patients with advanced hepatocellular carcinoma. Mol. Immunol. 2021, 134, 210–217. [Google Scholar] [CrossRef]
- Zhao, L.M.; Shi, A.D.; Yang, Y.; Liu, Z.L.; Hu, X.Q.; Shu, L.Z.; Tang, Y.C.; Zhang, Z.L. Advances in molecular and cell therapy for immunotherapy of cholangiocarcinoma. Front. Oncol. 2023, 13, 1140103. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sakabe, T.; Abe, H.; Tanii, M.; Takahashi, H.; Chiba, A.; Yanagida, E.; Shibamoto, Y.; Ogasawara, M.; Tsujitani, S.; et al. Dendritic cell-based immunotherapy targeting synthesized peptides for advanced biliary tract cancer. J. Gastrointest. Surg. 2013, 17, 1609–1617. [Google Scholar] [CrossRef]
- Shimizu, K.; Kotera, Y.; Aruga, A.; Takeshita, N.; Takasaki, K.; Yamamoto, M. Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. J. Hepatobiliary Pancreat. Sci. 2012, 19, 171–178. [Google Scholar] [CrossRef]
- Roy, B.; Ghose, S.; Biswas, S. Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma. Semin. Cell Dev. Biol. 2022, 124, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Pratama, M.Y.; Pascut, D.; Massi, M.N.; Tiribelli, C. The role of microRNA in the resistance to treatment of hepatocellular carcinoma. Ann. Transl. Med. 2019, 7, 577. [Google Scholar] [CrossRef] [PubMed]
- Obata, T.; Tsutsumi, K.; Ueta, E.; Oda, T.; Kikuchi, T.; Ako, S.; Fujii, Y.; Yamazaki, T.; Uchida, D.; Matsumoto, K.; et al. MicroRNA-451a inhibits gemcitabine-refractory biliary tract cancer progression by suppressing the MIF-mediated PI3K/AKT pathway. Mol. Ther. Nucleic Acids 2023, 34, 102054. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Li, H.; Wang, J.; Zhang, J.; Kong, F.; Zhang, Z.; Zong, J. MicroRNAs in Hepatocellular Carcinoma: Insights into Regulatory Mechanisms, Clinical Significance, and Therapeutic Potential. Cancer Manag. Res. 2024, 16, 1491–1507. [Google Scholar] [CrossRef] [PubMed]
- Komoll, R.M.; Hu, Q.; Olarewaju, O.; von Döhlen, L.; Yuan, Q.; Xie, Y.; Tsay, H.C.; Daon, J.; Qin, R.; Manns, M.P.; et al. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma. J. Hepatol. 2021, 74, 122–134. [Google Scholar] [CrossRef]
- Janssen, H.L.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.; Patick, A.K.; Chen, A.; Zhou, Y.; et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013, 368, 1685–1694. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, J.; Qian, X.; Han, L.; Zhang, K.; Chen, L.; Liu, J.; Ren, Y.; Yang, M.; Zhang, A.; et al. AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. Cancer Res. 2013, 73, 5519–5531. [Google Scholar] [CrossRef]
- Wang, F.; Li, L.; Piontek, K.; Sakaguchi, M.; Selaru, F.M. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology 2018, 67, 940–954. [Google Scholar] [CrossRef]
- Miao, X.; Zhang, N. Role of RBM3 in the regulation of cell proliferation in hepatocellular carcinoma. Exp. Mol. Pathol. 2020, 117, 104546. [Google Scholar] [CrossRef]
- Silva, L.; Egea, J.; Villanueva, L.; Ruiz, M.; Llopiz, D.; Repáraz, D.; Aparicio, B.; Lasarte-Cia, A.; Lasarte, J.J.; Ruiz de Galarreta, M.; et al. Cold-Inducible RNA Binding Protein as a Vaccination Platform to Enhance Immunotherapeutic Responses Against Hepatocellular Carcinoma. Cancers 2020, 12, 3397. [Google Scholar] [CrossRef]
- Mohibi, S.; Chen, X.; Zhang, J. Cancer the ’RBP’eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol. Ther. 2019, 203, 107390. [Google Scholar] [CrossRef] [PubMed]
miRNA | Type of Tumor | Role/Mechanism | Expression in Tumor Tissue (vs. Control) | Reference |
---|---|---|---|---|
miR-122 | HCC with intrahepatic metastasis | Tumor suppressor: reduces cell proliferation, migration, and invasion of tumor cells and regulates local invasion in vivo. | ↓ | [61] |
CCA | Tumor suppressor: reduces cell proliferation and invasion and stimulates apoptosis by controlling p53 expression. | ↓ | [62,63] | |
miR-29 | HCC | Tumor suppressor: regulates proliferation, neoangiogenesis, and metastasis by targeting IGF2BP1, VEGFA, and BCL2. MiR-29c-3p targets TPX2 involved in chromosomal instability. miR-29a targets STAT3, thus inhibiting cell proliferation, migration, and invasion. | ↓ | [58,64,65,66] |
CCA | Tumor suppressor: prevents CDKN2B promoter methylation by targeting DNMT3B. | ↓ | [67] | |
miR-195 | HCC | Tumor suppressor: inhibits the expression of VEGF, VAV2, and CDC42. | ↓ | [68] |
miR-101 | HCC | Tumor suppressor: inhibits cell proliferation, migration, and invasion though Girdin inhibition. | ↓ | [69] |
CCA | Tumor suppressor: inhibits angiogenesis by targeting VEGF. | ↓ | [70] | |
miR-141 | HCC | Tumor suppressor: targets STAT4 expression to control liver cancer cell proliferation, migration, and invasion, as well as the metastasis-promoting gene Tiam1. | ↓ | [60,71] |
CCA | Oncomir: exosomes miR-141 may induce gemcitabine resistance in iCCA. | ↑ | [72,73] | |
miR-191 | HCC | Oncomir: promotes cell proliferation by targeting the has_circ_0000204/miR-191/KLF6 axis. | ↑ | [74] |
iCCA | Oncomir: targets the TET1–p53 pathway. | ↑ | [75] | |
miR-181b-5p | CCA | Oncomir: targets PARK2 via the PTEN/PI3K/AKT pathway to promote cell proliferation, migration, and invasion. | ↑ | [76] |
miR-129-2 | HCC | Tumor suppressor: inhibits HMGB1 to suppress cell migration and invasion. | ↓ | [77] |
miR-200b | HCC | Tumor suppressor: targets ERG, ZEB1/2, and Notch1 to inhibit invasion and migration of cancer cells. | ↓ | [78] |
RBP | Type of Tumor | Role/Mechanism | Expression in Tumor Tissue (Versus Control) | Reference |
---|---|---|---|---|
MSI1 and MSI2 | HCC | Oncogenes: enhance HCC invasion by inducing EMT. | ↑ | [84] |
Nucleolin | iCCA | Oncogene: enhances CCA proliferation, growth, and invasion upon lactylation by the acyltransferase p300 at lysine 477, increasing MADD translation and ERK activation. | N/A | [85] |
SRSF1 | HCC | Oncogene: enhances cell proliferation, survival, and tumorigenesis through alternative splicing of the oncogenic isoforms of the antiapoptotic gene BIM and the oncogenes S6K1 and TEAD1 when its expression is induced by the lnc-RNA MALAT1. | ↑ | [86] |
hnRNP A1 | HCC | Oncogene: enhances the expression of CD44v6, increasing HCC invasiveness and resulting in a poor prognosis for HCC patients after curative resection. | ↑ | [87] |
RPS5 | HCC | Oncogene: regulates the cell cycle and metastasis. | ↑ | [88] |
RPS7 | HCC | Oncogene: promotes HCC cell adhesion, migration, invasion, and lung metastasis. | ↑ | [89] |
RBM39 | CCA | Oncogene: promotes CCA cell growth through the EZH2/WNT7B/β-catenin pathway. | ↑ | [90] |
RBM43 | HCC | Tumor suppressor: targets Slug mRNA stability and expression in HCC. | ↓ | [91] |
CCDC137 | HCC | Oncogene: modulates the subcellular localization of its target mRNAs by binding to the microprocessor complex subunit, DGCR8, and activates AKT signaling. | ↑ | [92] |
PIWIL4 | iCCA | Oncogene: activates the mTOR signaling pathway. | ↑ | [93] |
SUPT5H | iCCA | Oncogene: involved in tumor cell proliferation, migration, the cell cycle, and apoptosis. | ↑ | [93] |
SORBS2 | HCC | Tumor suppressor: stabilizes RORA mRNA by binding to its 3′UTR, hence promoting its expression, which is involved in the suppression of tumorigenesis and metastasis. | ↓ | [94] |
miRNA | Type of Intervention | Vector | Reference |
---|---|---|---|
miR-342-3p | Overexpression | Adeno-associated virus vector | [175] |
miR-34 | Replacement | Liposome (MRX34) | [121] |
miR-122 | Inhibition | Locked nucleic-acid-modified DNA phosphorothioate antisense oligonucleotide (LNA, miravirsen or SPC3649) | [176] |
miR-21 | Inhibition | Small molecule (AC1MMYR2) | [177] |
miR-335-5p | Delivery/restoration | LX2-derived exosomes | [178] |
RBP | Type of intervention | Approach | Reference |
RBM3 | Target inhibition (YAP1) | Lentivirus-mediated YAP1-silencing | [179] |
Cold-inducible RNA-binding protein (CIRP) | Vaccination | CIRP-containing immunogens in combination with immune checkpoint inhibitors | [180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fagoonee, S.; Weiskirchen, R. MicroRNAs and RNA-Binding Protein-Based Regulation of Bone Metastasis from Hepatobiliary Cancers and Potential Therapeutic Strategies. Cells 2024, 13, 1935. https://doi.org/10.3390/cells13231935
Fagoonee S, Weiskirchen R. MicroRNAs and RNA-Binding Protein-Based Regulation of Bone Metastasis from Hepatobiliary Cancers and Potential Therapeutic Strategies. Cells. 2024; 13(23):1935. https://doi.org/10.3390/cells13231935
Chicago/Turabian StyleFagoonee, Sharmila, and Ralf Weiskirchen. 2024. "MicroRNAs and RNA-Binding Protein-Based Regulation of Bone Metastasis from Hepatobiliary Cancers and Potential Therapeutic Strategies" Cells 13, no. 23: 1935. https://doi.org/10.3390/cells13231935
APA StyleFagoonee, S., & Weiskirchen, R. (2024). MicroRNAs and RNA-Binding Protein-Based Regulation of Bone Metastasis from Hepatobiliary Cancers and Potential Therapeutic Strategies. Cells, 13(23), 1935. https://doi.org/10.3390/cells13231935