Hereditary Ataxias: From Bench to Clinic, Where Do We Stand?
Abstract
:1. Introduction
2. Autosomal-Dominant Hereditary Ataxias
2.1. SCA1
2.2. SCA2
2.3. SCA3 (Machado–Joseph Disease)
2.4. SCA6
2.5. SCA7
2.6. SCA17
2.7. SCA27B (GAA-FGF14 Ataxia)
3. Autosomal-Recessive Cerebellar Ataxias
3.1. Friedreich’s Ataxia
3.2. CANVAS
3.3. ARSACS
3.4. Ataxia–Telangiectasia
3.5. ARCA2
4. Episodic Ataxias
5. X-Linked Degenerative Ataxias
6. Congenital Ataxias
7. Difficulties in Diagnosis and Implementation of NGS
8. Different Approaches to Ameliorate Disease Outcome
- Genome editing strategies to correct the pathological mutation involved;
- Antisense oligonucleotides (ASO) or small RNA structures to interfere with repeat expansion translation or R-loop formation;
- Gene therapy approaches to rescue the levels of disease-mutated genes or key pathway regulators;
- Approaches to restore physiological protein levels that are disrupted by altered disease protein homeostasis;
- Pharmacological treatments, either to target specific pathophysiological mechanisms, reduce toxic metabolites, or supplement crucial compounds.
8.1. Genome Editing Strategies to Correct Pathological Mutation
8.2. Antisense Oligonucleotides (ASO) or Small RNA Structures Interfere with Repeat Expansion Translation or R-Loop Formation
8.3. Gene Therapy Approaches to Rescue the Levels of Disease-Mutated Genes or Key Pathway Regulators
8.4. Approaches to Restore Physiological Protein Levels That Are Disrupted by Altered Disease Protein Homeostasis
8.5. Pharmacological Treatments to Target Specific Pathomechanisms, Reduce Toxic Metabolites, and Supplement Crucial Compounds
9. Ataxia FDA-Approved Drugs and Treatments
10. Main Challenges and Limiting Factors
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pandolfo, M.; Manto, M. Cerebellar and Afferent Ataxias. Contin. Minneap. Minn. 2013, 19, 1312–1343. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, F.; Saxena, S. Epidemiology of Inherited Cerebellar Ataxias and Challenges in Clinical Research. Clin. Transl. Neurosci. 2018, 2, 2514183X1878525. [Google Scholar] [CrossRef]
- Zoghbi, H.Y.; Orr, H.T. Glutamine Repeats and Neurodegeneration. Annu. Rev. Neurosci. 2000, 23, 217–247. [Google Scholar] [CrossRef]
- Palau, F.; Espinós, C. Autosomal Recessive Cerebellar Ataxias. Orphanet J. Rare Dis. 2006, 1, 47. [Google Scholar] [CrossRef]
- Koeppen, A.H. Friedreich’s Ataxia: Pathology, Pathogenesis, and Molecular Genetics. J. Neurol. Sci. 2011, 303, 1–12. [Google Scholar] [CrossRef]
- Coarelli, G.; Wirth, T.; Tranchant, C.; Koenig, M.; Durr, A.; Anheim, M. The Inherited Cerebellar Ataxias: An Update. J. Neurol. 2023, 270, 208–222. [Google Scholar] [CrossRef]
- Leehey, M.A. Fragile X-Associated Tremor/Ataxia Syndrome: Clinical Phenotype, Diagnosis, and Treatment. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2009, 57, 830–836. [Google Scholar] [CrossRef]
- Jen, J.C.; Graves, T.D.; Hess, E.J.; Hanna, M.G.; Griggs, R.C.; Baloh, R.W. CINCH investigators Primary Episodic Ataxias: Diagnosis, Pathogenesis and Treatment. Brain J. Neurol. 2007, 130, 2484–2493. [Google Scholar] [CrossRef]
- Choi, K.-D.; Choi, J.-H. Episodic Ataxias: Clinical and Genetic Features. J. Mov. Disord. 2016, 9, 129–135. [Google Scholar] [CrossRef]
- Bushart, D.D.; Shakkottai, V.G. Ion Channel Dysfunction in Cerebellar Ataxia. Neurosci. Lett. 2019, 688, 41–48. [Google Scholar] [CrossRef]
- Pilotto, F.; Douthwaite, C.; Diab, R.; Ye, X.; Al Qassab, Z.; Tietje, C.; Mounassir, M.; Odriozola, A.; Thapa, A.; Buijsen, R.A.M.; et al. Early Molecular Layer Interneuron Hyperactivity Triggers Purkinje Neuron Degeneration in SCA1. Neuron 2023, 111, 2523–2543. [Google Scholar] [CrossRef] [PubMed]
- Ruegsegger, C.; Stucki, D.M.; Steiner, S.; Angliker, N.; Radecke, J.; Keller, E.; Zuber, B.; Rüegg, M.A.; Saxena, S. Impaired MTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron 2016, 89, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Ronnebaum, S.M.; Patterson, C.; Schisler, J.C. Emerging Evidence of Coding Mutations in the Ubiquitin–Proteasome System Associated with Cerebellar Ataxias. Hum. Genome Var. 2014, 1, 14018. [Google Scholar] [CrossRef]
- Luo, H.; Todi, S.V.; Paulson, H.L.; Costa, M.d.C. Regional and Age-Dependent Changes in Ubiquitination in Cellular and Mouse Models of Spinocerebellar Ataxia Type 3. Front. Mol. Neurosci. 2023, 16, 1154203. [Google Scholar] [CrossRef]
- Girard, M.; Larivière, R.; Parfitt, D.A.; Deane, E.C.; Gaudet, R.; Nossova, N.; Blondeau, F.; Prenosil, G.; Vermeulen, E.G.M.; Duchen, M.R.; et al. Mitochondrial Dysfunction and Purkinje Cell Loss in Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS). Proc. Natl. Acad. Sci. USA 2012, 109, 1661–1666. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.R.; Farmer, G. Mitochondrial and Metabolic Dysfunction in Friedreich Ataxia: Update on Pathophysiological Relevance and Clinical Interventions. Neuronal Signal. 2021, 5, NS20200093. [Google Scholar] [CrossRef]
- Manolaras, I.; Del Bondio, A.; Griso, O.; Reutenauer, L.; Eisenmann, A.; Habermann, B.H.; Puccio, H. Mitochondrial Dysfunction and Calcium Dysregulation in COQ8A-Ataxia Purkinje Neurons Are Rescued by CoQ10 Treatment. Brain J. Neurol. 2023, 146, 3836–3850. [Google Scholar] [CrossRef]
- Harmuth, T.; Weber, J.J.; Zimmer, A.J.; Sowa, A.S.; Schmidt, J.; Fitzgerald, J.C.; Schöls, L.; Riess, O.; Hübener-Schmid, J. Mitochondrial Dysfunction in Spinocerebellar Ataxia Type 3 Is Linked to VDAC1 Deubiquitination. Int. J. Mol. Sci. 2022, 23, 5933. [Google Scholar] [CrossRef]
- Stucki, D.M.; Ruegsegger, C.; Steiner, S.; Radecke, J.; Murphy, M.P.; Zuber, B.; Saxena, S. Mitochondrial Impairments Contribute to Spinocerebellar Ataxia Type 1 Progression and Can Be Ameliorated by the Mitochondria-Targeted Antioxidant MitoQ. Free Radic. Biol. Med. 2016, 97, 427–440. [Google Scholar] [CrossRef]
- Ward, J.M.; Stoyas, C.A.; Switonski, P.M.; Ichou, F.; Fan, W.; Collins, B.; Wall, C.E.; Adanyeguh, I.; Niu, C.; Sopher, B.L.; et al. Metabolic and Organelle Morphology Defects in Mice and Human Patients Define Spinocerebellar Ataxia Type 7 as a Mitochondrial Disease. Cell Rep. 2019, 26, 1189–1202.e6. [Google Scholar] [CrossRef]
- Li, P.P.; Moulick, R.; Feng, H.; Sun, X.; Arbez, N.; Jin, J.; Marque, L.O.; Hedglen, E.; Chan, H.Y.E.; Ross, C.A.; et al. RNA Toxicity and Perturbation of RRNA Processing in Spinocerebellar Ataxia Type 2. Mov. Disord. Off. J. Mov. Disord. Soc. 2021, 36, 2519–2529. [Google Scholar] [CrossRef]
- Zhang, N.; Ashizawa, T. RNA Toxicity and Foci Formation in Microsatellite Expansion Diseases. Curr. Opin. Genet. Dev. 2017, 44, 17–29. [Google Scholar] [CrossRef]
- Fiszer, A.; Krzyzosiak, W.J. RNA Toxicity in Polyglutamine Disorders: Concepts, Models, and Progress of Research. J. Mol. Med. 2013, 91, 683–691. [Google Scholar] [CrossRef]
- Matsuzono, K.; Imamura, K.; Murakami, N.; Tsukita, K.; Yamamoto, T.; Izumi, Y.; Kaji, R.; Ohta, Y.; Yamashita, T.; Abe, K.; et al. Antisense Oligonucleotides Reduce RNA Foci in Spinocerebellar Ataxia 36 Patient IPSCs. Mol. Ther. Nucleic Acids 2017, 8, 211–219. [Google Scholar] [CrossRef]
- Durr, A. Autosomal Dominant Cerebellar Ataxias: Polyglutamine Expansions and Beyond. Lancet Neurol. 2010, 9, 885–894. [Google Scholar] [CrossRef]
- Fujioka, S.; Sundal, C.; Wszolek, Z.K. Autosomal Dominant Cerebellar Ataxia Type III: A Review of the Phenotypic and Genotypic Characteristics. Orphanet J. Rare Dis. 2013, 8, 14. [Google Scholar] [CrossRef]
- Duenas, A.M. Molecular Pathogenesis of Spinocerebellar Ataxias. Brain 2006, 129, 1357–1370. [Google Scholar] [CrossRef]
- Honti, V.; Vécsei, L. Genetic and Molecular Aspects of Spinocerebellar Ataxias. Neuropsychiatr. Dis. Treat. 2005, 1, 125–133. [Google Scholar] [CrossRef]
- Maltecca, F.; Filla, A.; Castaldo, I.; Coppola, G.; Fragassi, N.A.; Carella, M.; Bruni, A.; Cocozza, S.; Casari, G.; Servadio, A.; et al. Intergenerational Instability and Marked Anticipation in SCA-17. Neurology 2003, 61, 1441–1443. [Google Scholar] [CrossRef] [PubMed]
- Nethisinghe, S.; Pigazzini, M.L.; Pemble, S.; Sweeney, M.G.; Labrum, R.; Manso, K.; Moore, D.; Warner, J.; Davis, M.B.; Giunti, P. PolyQ Tract Toxicity in SCA1 Is Length Dependent in the Absence of CAG Repeat Interruption. Front. Cell. Neurosci. 2018, 12, 200. [Google Scholar] [CrossRef] [PubMed]
- Filla, A.; Mariotti, C.; Caruso, G.; Coppola, G.; Cocozza, S.; Castaldo, I.; Calabrese, O.; Salvatore, E.; De Michele, G.; Riggio, M.C.; et al. Relative Frequencies of CAG Expansions in Spinocerebellar Ataxia and Dentatorubropallidoluysian Atrophy in 116 Italian Families. Eur. Neurol. 2000, 44, 31–36. [Google Scholar] [CrossRef]
- Donato, S.D.; Mariotti, C.; Taroni, F. Spinocerebellar Ataxia Type 1. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 103, pp. 399–421. ISBN 978-0-444-51892-7. [Google Scholar]
- Orengo, J.P.; van der Heijden, M.E.; Hao, S.; Tang, J.; Orr, H.T.; Zoghbi, H.Y. Motor Neuron Degeneration Correlates with Respiratory Dysfunction in SCA1. Dis. Model. Mech. 2018, 11, dmm.032623. [Google Scholar] [CrossRef]
- Paulson, H.L.; Shakkottai, V.G.; Clark, H.B.; Orr, H.T. Polyglutamine Spinocerebellar Ataxias—from Genes to Potential Treatments. Nat. Rev. Neurosci. 2017, 18, 613–626. [Google Scholar] [CrossRef]
- Robitaille, Y.; Schut, L.; Kish, S.J. Structural and Immunocytochemical Features of Olivopontocerebellar Atrophy Caused by the Spinocerebellar Ataxia Type 1 (SCA-1) Mutation Define a Unique Phenotype. Acta Neuropathol. 1995, 90, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Seidel, K.; Siswanto, S.; Brunt, E.R.P.; den Dunnen, W.; Korf, H.-W.; Rüb, U. Brain Pathology of Spinocerebellar Ataxias. Acta Neuropathol. 2012, 124, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Orr, H.T.; Chung, M.; Banfi, S.; Kwiatkowski, T.J.; Servadio, A.; Beaudet, A.L.; McCall, A.E.; Duvick, L.A.; Ranum, L.P.W.; Zoghbi, H.Y. Expansion of an Unstable Trinucleotide CAG Repeat in Spinocerebellar Ataxia Type 1. Nat. Genet. 1993, 4, 221–226. [Google Scholar] [CrossRef]
- Irwin, S.; Vandelft, M.; Pinchev, D.; Howell, J.L.; Graczyk, J.; Orr, H.T.; Truant, R. RNA Association and Nucleocytoplasmic Shuttling by Ataxin-1. J. Cell Sci. 2005, 118, 233–242. [Google Scholar] [CrossRef]
- Klement, I.A.; Skinner, P.J.; Kaytor, M.D.; Yi, H.; Hersch, S.M.; Clark, H.B.; Zoghbi, H.Y.; Orr, H.T. Ataxin-1 Nuclear Localization and Aggregation. Cell 1998, 95, 41–53. [Google Scholar] [CrossRef]
- Lam, Y.C.; Bowman, A.B.; Jafar-Nejad, P.; Lim, J.; Richman, R.; Fryer, J.D.; Hyun, E.D.; Duvick, L.A.; Orr, H.T.; Botas, J.; et al. ATAXIN-1 Interacts with the Repressor Capicua in Its Native Complex to Cause SCA1 Neuropathology. Cell 2006, 127, 1335–1347. [Google Scholar] [CrossRef]
- Rousseaux, M.W.C.; Tschumperlin, T.; Lu, H.-C.; Lackey, E.P.; Bondar, V.V.; Wan, Y.-W.; Tan, Q.; Adamski, C.J.; Friedrich, J.; Twaroski, K.; et al. ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron 2018, 97, 1235–1243.e5. [Google Scholar] [CrossRef] [PubMed]
- Emamian, E.S.; Kaytor, M.D.; Duvick, L.A.; Zu, T.; Tousey, S.K.; Zoghbi, H.Y.; Clark, H.B.; Orr, H.T. Serine 776 of Ataxin-1 Is Critical for Polyglutamine-Induced Disease in SCA1 Transgenic Mice. Neuron 2003, 38, 375–387. [Google Scholar] [CrossRef]
- Huttlin, E.L.; Jedrychowski, M.P.; Elias, J.E.; Goswami, T.; Rad, R.; Beausoleil, S.A.; Villén, J.; Haas, W.; Sowa, M.E.; Gygi, S.P. A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression. Cell 2010, 143, 1174–1189. [Google Scholar] [CrossRef] [PubMed]
- Serra, H.G.; Duvick, L.; Zu, T.; Carlson, K.; Stevens, S.; Jorgensen, N.; Lysholm, A.; Burright, E.; Zoghbi, H.Y.; Clark, H.B.; et al. RORα-Mediated Purkinje Cell Development Determines Disease Severity in Adult SCA1 Mice. Cell 2006, 127, 697–708. [Google Scholar] [CrossRef] [PubMed]
- de Chiara, C.; Menon, R.P.; Strom, M.; Gibson, T.J.; Pastore, A. Phosphorylation of S776 and 14-3-3 Binding Modulate Ataxin-1 Interaction with Splicing Factors. PLoS ONE 2009, 4, e8372. [Google Scholar] [CrossRef] [PubMed]
- Gehrking, K.M.; Andresen, J.M.; Duvick, L.; Lough, J.; Zoghbi, H.Y.; Orr, H.T. Partial Loss of Tip60 Slows Mid-Stage Neurodegeneration in a Spinocerebellar Ataxia Type 1 (SCA1) Mouse Model. Hum. Mol. Genet. 2011, 20, 2204–2212. [Google Scholar] [CrossRef] [PubMed]
- Antenora, A.; Rinaldi, C.; Roca, A.; Pane, C.; Lieto, M.; Saccà, F.; Peluso, S.; De Michele, G.; Filla, A. The Multiple Faces of Spinocerebellar Ataxia Type 2. Ann. Clin. Transl. Neurol. 2017, 4, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Rüb, U.; Schöls, L.; Paulson, H.; Auburger, G.; Kermer, P.; Jen, J.C.; Seidel, K.; Korf, H.-W.; Deller, T. Clinical Features, Neurogenetics and Neuropathology of the Polyglutamine Spinocerebellar Ataxias Type 1, 2, 3, 6 and 7. Prog. Neurobiol. 2013, 104, 38–66. [Google Scholar] [CrossRef] [PubMed]
- Bürk, K. Cognition in Hereditary Ataxia. Cerebellum Lond. Engl. 2007, 6, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Mutesa, L.; Pierquin, G.; Segers, K.; Vanbellinghen, J.F.; Gahimbare, L.; Bours, V. Spinocerebellar Ataxia Type 2 (SCA2): Clinical Features and Genetic Analysis. J. Trop. Pediatr. 2008, 54, 350–352. [Google Scholar] [CrossRef]
- Estrada, R.; Galarraga, J.; Orozco, G.; Nodarse, A.; Auburger, G. Spinocerebellar Ataxia 2 (SCA2): Morphometric Analyses in 11 Autopsies. Acta Neuropathol. 1999, 97, 306–310. [Google Scholar] [CrossRef]
- Vishwakarma, P.; Muthuswamy, S.; Agarwal, S. Current Molecular Insight to Reveal the Dynamics of CAG Repeating Units in Spinocerebellar Ataxia. Intractable Rare Dis. Res. 2018, 7, 79–86. [Google Scholar] [CrossRef]
- Elden, A.C.; Kim, H.-J.; Hart, M.P.; Chen-Plotkin, A.S.; Johnson, B.S.; Fang, X.; Armakola, M.; Geser, F.; Greene, R.; Lu, M.M.; et al. Ataxin-2 Intermediate-Length Polyglutamine Expansions Are Associated with Increased Risk for ALS. Nature 2010, 466, 1069–1075. [Google Scholar] [CrossRef]
- Van Damme, P.; Veldink, J.H.; van Blitterswijk, M.; Corveleyn, A.; van Vught, P.W.J.; Thijs, V.; Dubois, B.; Matthijs, G.; van den Berg, L.H.; Robberecht, W. Expanded ATXN2 CAG Repeat Size in ALS Identifies Genetic Overlap between ALS and SCA2. Neurology 2011, 76, 2066–2072. [Google Scholar] [CrossRef]
- Glass, J.D.; Dewan, R.; Ding, J.; Gibbs, J.R.; Dalgard, C.; Keagle, P.J.; Shankaracharya García-Redondo, A.; Traynor, B.J.; Chia, R.; Landers, J.E. ATXN2 Intermediate Expansions in Amyotrophic Lateral Sclerosis. Brain J. Neurol. 2022, 145, 2671–2676. [Google Scholar] [CrossRef] [PubMed]
- Rubino, E.; Mancini, C.; Boschi, S.; Ferrero, P.; Ferrone, M.; Bianca, S.; Zucca, M.; Orsi, L.; Pinessi, L.; Govone, F.; et al. ATXN2 Intermediate Repeat Expansions Influence the Clinical Phenotype in Frontotemporal Dementia. Neurobiol. Aging 2019, 73, e7–e231. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, G.; Trempe, J.F.; Khaleghpour, K.; Kahvejian, A.; Ekiel, I.; Gehring, K. Structure and Function of the C-Terminal PABC Domain of Human Poly(A)-Binding Protein. Proc. Natl. Acad. Sci. USA 2001, 98, 4409–4413. [Google Scholar] [CrossRef]
- Shibata, H.; Huynh, D.P.; Pulst, S.M. A Novel Protein with RNA-Binding Motifs Interacts with Ataxin-2. Hum. Mol. Genet. 2000, 9, 1303–1313. [Google Scholar] [CrossRef]
- Watanabe, R.; Higashi, S.; Nonaka, T.; Kawakami, I.; Oshima, K.; Niizato, K.; Akiyama, H.; Yoshida, M.; Hasegawa, M.; Arai, T. Intracellular Dynamics of Ataxin-2 in the Human Brains with Normal and Frontotemporal Lobar Degeneration with TDP-43 Inclusions. Acta Neuropathol. Commun. 2020, 8, 176. [Google Scholar] [CrossRef]
- Juvonen, V.; Hietala, M.; Kairisto, V.; Savontaus, M.-L. The Occurrence of Dominant Spinocerebellar Ataxias among 251 Finnish Ataxia Patients and the Role of Predisposing Large Normal Alleles in a Genetically Isolated Population. Acta Neurol. Scand. 2005, 111, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Vale, J.; Bugalho, P.; Silveira, I.; Sequeiros, J.; Guimarães, J.; Coutinho, P. Autosomal Dominant Cerebellar Ataxia: Frequency Analysis and Clinical Characterization of 45 Families from Portugal. Eur. J. Neurol. 2010, 17, 124–128. [Google Scholar] [CrossRef]
- Rosenberg, R.N. Machado-Joseph Disease: An Autosomal Dominant Motor System Degeneration. Mov. Disord. Off. J. Mov. Disord. Soc. 1992, 7, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, C.; Santos, C.; Coutinho, P.; Rizzu, P.; Vasconcelos, J.; Kay, T.; Cymbron, T.; Raposo, M.; Heutink, P.; Lima, M. Parkinsonian Phenotype in Machado-Joseph Disease (MJD/SCA3): A Two-Case Report. BMC Neurol. 2011, 11, 131. [Google Scholar] [CrossRef]
- Riess, O.; Rüb, U.; Pastore, A.; Bauer, P.; Schöls, L. SCA3: Neurological Features, Pathogenesis and Animal Models. Cerebellum Lond. Engl. 2008, 7, 125–137. [Google Scholar] [CrossRef]
- Rüb, U.; Brunt, E.R.; Deller, T. New Insights into the Pathoanatomy of Spinocerebellar Ataxia Type 3 (Machado-Joseph Disease). Curr. Opin. Neurol. 2008, 21, 111–116. [Google Scholar] [CrossRef]
- Stefanescu, M.R.; Dohnalek, M.; Maderwald, S.; Thürling, M.; Minnerop, M.; Beck, A.; Schlamann, M.; Diedrichsen, J.; Ladd, M.E.; Timmann, D. Structural and Functional MRI Abnormalities of Cerebellar Cortex and Nuclei in SCA3, SCA6 and Friedreich’s Ataxia. Brain J. Neurol. 2015, 138, 1182–1197. [Google Scholar] [CrossRef] [PubMed]
- Wan, N.; Chen, Z.; Wan, L.; Tang, B.; Jiang, H. MR Imaging of SCA3/MJD. Front. Neurosci. 2020, 14, 749. [Google Scholar] [CrossRef]
- Ma, J.; Wu, C.; Lei, J.; Zhang, X. Cognitive Impairments in Patients with Spinocerebellar Ataxia Types 1, 2 and 3 Are Positively Correlated to the Clinical Severity of Ataxia Symptoms. Int. J. Clin. Exp. Med. 2014, 7, 5765–5771. [Google Scholar] [PubMed]
- Doss-Pepe, E.W.; Stenroos, E.S.; Johnson, W.G.; Madura, K. Ataxin-3 Interactions with Rad23 and Valosin-Containing Protein and Its Associations with Ubiquitin Chains and the Proteasome Are Consistent with a Role in Ubiquitin-Mediated Proteolysis. Mol. Cell. Biol. 2003, 23, 6469–6483. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Ning, G.; Zhu, S.; Ma, X.; Liu, X.; Liu, C.; Huang, M.; Schmitt, I.; Wüllner, U.; et al. The Machado-Joseph Disease Deubiquitinase Ataxin-3 Regulates the Stability and Apoptotic Function of P53. PLoS Biol. 2016, 14, e2000733. [Google Scholar] [CrossRef]
- Zeng, C.; Zhao, C.; Ge, F.; Li, Y.; Cao, J.; Ying, M.; Lu, J.; He, Q.; Yang, B.; Dai, X.; et al. Machado-Joseph Deubiquitinases: From Cellular Functions to Potential Therapy Targets. Front. Pharmacol. 2020, 11, 1311. [Google Scholar] [CrossRef]
- Bichelmeier, U.; Schmidt, T.; Hübener, J.; Boy, J.; Rüttiger, L.; Häbig, K.; Poths, S.; Bonin, M.; Knipper, M.; Schmidt, W.J.; et al. Nuclear Localization of Ataxin-3 Is Required for the Manifestation of Symptoms in SCA3: In Vivo Evidence. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 7418–7428. [Google Scholar] [CrossRef]
- Sasaki, H.; Kojima, H.; Yabe, I.; Tashiro, K.; Hamada, T.; Sawa, H.; Hiraga, H.; Nagashima, K. Neuropathological and Molecular Studies of Spinocerebellar Ataxia Type 6 (SCA6). Acta Neuropathol. 1998, 95, 199–204. [Google Scholar] [CrossRef]
- Casey, H.L.; Gomez, C.M. Spinocerebellar Ataxia Type 6. In GeneReviews®; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Zhuchenko, O.; Bailey, J.; Bonnen, P.; Ashizawa, T.; Stockton, D.W.; Amos, C.; Dobyns, W.B.; Subramony, S.H.; Zoghbi, H.Y.; Lee, C.C. Autosomal Dominant Cerebellar Ataxia (SCA6) Associated with Small Polyglutamine Expansions in the Alpha 1A-Voltage-Dependent Calcium Channel. Nat. Genet. 1997, 15, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Ikeuchi, T.; Takano, H.; Koide, R.; Horikawa, Y.; Honma, Y.; Onishi, Y.; Igarashi, S.; Tanaka, H.; Nakao, N.; Sahashi, K.; et al. Spinocerebellar Ataxia Type 6: CAG Repeat Expansion in Alpha1A Voltage-Dependent Calcium Channel Gene and Clinical Variations in Japanese Population. Ann. Neurol. 1997, 42, 879–884. [Google Scholar] [CrossRef]
- Riess, O.; Schöls, L.; Bottger, H.; Nolte, D.; Vieira-Saecker, A.M.; Schimming, C.; Kreuz, F.; Macek, M.; Krebsová, A.; Sen, M.M.; et al. SCA6 Is Caused by Moderate CAG Expansion in the Alpha1A-Voltage-Dependent Calcium Channel Gene. Hum. Mol. Genet. 1997, 6, 1289–1293. [Google Scholar] [CrossRef] [PubMed]
- Shizuka, M.; Watanabe, M.; Ikeda, Y.; Mizushima, K.; Okamoto, K.; Shoji, M. Molecular Analysis of a de Novo Mutation for Spinocerebellar Ataxia Type 6 and (CAG)n Repeat Units in Normal Elder Controls. J. Neurol. Sci. 1998, 161, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Tanaka, H.; Saito, M.; Ohkoshi, N.; Fujita, T.; Yoshizawa, K.; Ikeuchi, T.; Watanabe, M.; Hayashi, A.; Takiyama, Y.; et al. Japanese Families with Autosomal Dominant Pure Cerebellar Ataxia Map to Chromosome 19p13.1-P13.2 and Are Strongly Associated with Mild CAG Expansions in the Spinocerebellar Ataxia Type 6 Gene in Chromosome 19p13.1. Am. J. Hum. Genet. 1997, 61, 336–346. [Google Scholar] [CrossRef]
- Du, X.; Wang, J.; Zhu, H.; Rinaldo, L.; Lamar, K.-M.; Palmenberg, A.C.; Hansel, C.; Gomez, C.M. Second Cistron in CACNA1A Gene Encodes a Transcription Factor Mediating Cerebellar Development and SCA6. Cell 2013, 154, 118–133. [Google Scholar] [CrossRef]
- La Spada, A.R. Spinocerebellar Ataxia Type 7. In GeneReviews®; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Aleman, T.S.; Cideciyan, A.V.; Volpe, N.J.; Stevanin, G.; Brice, A.; Jacobson, S.G. Spinocerebellar Ataxia Type 7 (SCA7) Shows a Cone-Rod Dystrophy Phenotype. Exp. Eye Res. 2002, 74, 737–745. [Google Scholar] [CrossRef]
- Benton, C.S.; de Silva, R.; Rutledge, S.L.; Bohlega, S.; Ashizawa, T.; Zoghbi, H.Y. Molecular and Clinical Studies in SCA-7 Define a Broad Clinical Spectrum and the Infantile Phenotype. Neurology 1998, 51, 1081–1086. [Google Scholar] [CrossRef]
- Turk, K.W.; Flanagan, M.E.; Josephson, S.; Keene, C.D.; Jayadev, S.; Bird, T.D. Psychosis in Spinocerebellar Ataxias: A Case Series and Study of Tyrosine Hydroxylase in Substantia Nigra. Cerebellum Lond. Engl. 2018, 17, 143–151. [Google Scholar] [CrossRef]
- Ansorge, O.; Giunti, P.; Michalik, A.; Van Broeckhoven, C.; Harding, B.; Wood, N.; Scaravilli, F. Ataxin-7 Aggregation and Ubiquitination in Infantile SCA7 with 180 CAG Repeats. Ann. Neurol. 2004, 56, 448–452. [Google Scholar] [CrossRef]
- David, G.; Abbas, N.; Stevanin, G.; Dürr, A.; Yvert, G.; Cancel, G.; Weber, C.; Imbert, G.; Saudou, F.; Antoniou, E.; et al. Cloning of the SCA7 Gene Reveals a Highly Unstable CAG Repeat Expansion. Nat. Genet. 1997, 17, 65–70. [Google Scholar] [CrossRef]
- Cheon, Y.; Kim, H.; Park, K.; Kim, M.; Lee, D. Dynamic Modules of the Coactivator SAGA in Eukaryotic Transcription. Exp. Mol. Med. 2020, 52, 991–1003. [Google Scholar] [CrossRef]
- Palhan, V.B.; Chen, S.; Peng, G.-H.; Tjernberg, A.; Gamper, A.M.; Fan, Y.; Chait, B.T.; La Spada, A.R.; Roeder, R.G. Polyglutamine-Expanded Ataxin-7 Inhibits STAGA Histone Acetyltransferase Activity to Produce Retinal Degeneration. Proc. Natl. Acad. Sci. USA 2005, 102, 8472–8477. [Google Scholar] [CrossRef]
- Nakamura, Y.; Tagawa, K.; Oka, T.; Sasabe, T.; Ito, H.; Shiwaku, H.; La Spada, A.R.; Okazawa, H. Ataxin-7 Associates with Microtubules and Stabilizes the Cytoskeletal Network. Hum. Mol. Genet. 2012, 21, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Monin, M.-L.; Tezenas du Montcel, S.; Marelli, C.; Cazeneuve, C.; Charles, P.; Tallaksen, C.; Forlani, S.; Stevanin, G.; Brice, A.; Durr, A. Survival and Severity in Dominant Cerebellar Ataxias. Ann. Clin. Transl. Neurol. 2015, 2, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Toyoshima, Y.; Yamada, M.; Onodera, O.; Shimohata, M.; Inenaga, C.; Fujita, N.; Morita, M.; Tsuji, S.; Takahashi, H. SCA17 Homozygote Showing Huntington’s Disease-like Phenotype. Ann. Neurol. 2004, 55, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Stevanin, G.; Brice, A. Spinocerebellar Ataxia 17 (SCA17) and Huntington’s Disease-like 4 (HDL4). Cerebellum Lond. Engl. 2008, 7, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Nolte, D.; Sobanski, E.; Wissen, A.; Regula, J.U.; Lichy, C.; Müller, U. Spinocerebellar Ataxia Type 17 Associated with an Expansion of 42 Glutamine Residues in TATA-Box Binding Protein Gene. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1396–1399. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.-J.; Li, S. Molecular Mechanisms Underlying Spinocerebellar Ataxia 17 (SCA17) Pathogenesis. Rare Dis. Austin Tex 2016, 4, e1223580. [Google Scholar] [CrossRef] [PubMed]
- Rafehi, H.; Read, J.; Szmulewicz, D.J.; Davies, K.C.; Snell, P.; Fearnley, L.G.; Scott, L.; Thomsen, M.; Gillies, G.; Pope, K.; et al. An Intronic GAA Repeat Expansion in FGF14 Causes the Autosomal-Dominant Adult-Onset Ataxia SCA27B/ATX-FGF14. Am. J. Hum. Genet. 2023, 110, 1018. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, C.; Pellerin, D.; Roth, V.; Clément, G.; Wandzel, M.; Lambert, L.; Frismand, S.; Douarinou, M.; Grosset, A.; Bekkour, I.; et al. Optimized Testing Strategy for the Diagnosis of GAA-FGF14 Ataxia/Spinocerebellar Ataxia 27B. Sci. Rep. 2023, 13, 9737. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bardgett, M.E.; Wong, M.; Wozniak, D.F.; Lou, J.; McNeil, B.D.; Chen, C.; Nardi, A.; Reid, D.C.; Yamada, K.; et al. Ataxia and Paroxysmal Dyskinesia in Mice Lacking Axonally Transported FGF14. Neuron 2002, 35, 25–38. [Google Scholar] [CrossRef]
- Bosch, M.K.; Carrasquillo, Y.; Ransdell, J.L.; Kanakamedala, A.; Ornitz, D.M.; Nerbonne, J.M. Intracellular FGF14 (IFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance. J. Neurosci. Off. J. Soc. Neurosci. 2015, 35, 6752–6769. [Google Scholar] [CrossRef]
- Xiao, M.; Bosch, M.K.; Nerbonne, J.M.; Ornitz, D.M. FGF14 Localization and Organization of the Axon Initial Segment. Mol. Cell. Neurosci. 2013, 56, 393–403. [Google Scholar] [CrossRef]
- Traschütz, A.; Reich, S.; Adarmes, A.D.; Anheim, M.; Ashrafi, M.R.; Baets, J.; Basak, A.N.; Bertini, E.; Brais, B.; Gagnon, C.; et al. The ARCA Registry: A Collaborative Global Platform for Advancing Trial Readiness in Autosomal Recessive Cerebellar Ataxias. Front. Neurol. 2021, 12, 677551. [Google Scholar] [CrossRef]
- Anheim, M.; Tranchant, C.; Koenig, M. The Autosomal Recessive Cerebellar Ataxias. N. Engl. J. Med. 2012, 366, 636–646. [Google Scholar] [CrossRef]
- Synofzik, M.; Németh, A.H. Recessive Ataxias. Handb. Clin. Neurol. 2018, 155, 73–89. [Google Scholar] [CrossRef]
- Rossi, M.; Anheim, M.; Durr, A.; Klein, C.; Koenig, M.; Synofzik, M.; Marras, C.; van de Warrenburg, B.P. International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders The Genetic Nomenclature of Recessive Cerebellar Ataxias. Mov. Disord. Off. J. Mov. Disord. Soc. 2018, 33, 1056–1076. [Google Scholar] [CrossRef] [PubMed]
- Pierson, T.M.; Adams, D.; Bonn, F.; Martinelli, P.; Cherukuri, P.F.; Teer, J.K.; Hansen, N.F.; Cruz, P.; Mullikin For The Nisc Comparative Sequencing Program; James, C.; et al. Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases. PLoS Genet. 2011, 7, e1002325. [Google Scholar] [CrossRef]
- Lise, S.; Clarkson, Y.; Perkins, E.; Kwasniewska, A.; Sadighi Akha, E.; Schnekenberg, R.P.; Suminaite, D.; Hope, J.; Baker, I.; Gregory, L.; et al. Recessive Mutations in SPTBN2 Implicate β-III Spectrin in Both Cognitive and Motor Development. PLoS Genet. 2012, 8, e1003074. [Google Scholar] [CrossRef]
- Gerber, S.; Alzayady, K.J.; Burglen, L.; Brémond-Gignac, D.; Marchesin, V.; Roche, O.; Rio, M.; Funalot, B.; Calmon, R.; Durr, A.; et al. Recessive and Dominant De Novo ITPR1 Mutations Cause Gillespie Syndrome. Am. J. Hum. Genet. 2016, 98, 971–980. [Google Scholar] [CrossRef]
- Nasca, A.; Rizza, T.; Doimo, M.; Legati, A.; Ciolfi, A.; Diodato, D.; Calderan, C.; Carrara, G.; Lamantea, E.; Aiello, C.; et al. Not Only Dominant, Not Only Optic Atrophy: Expanding the Clinical Spectrum Associated with OPA1 Mutations. Orphanet J. Rare Dis. 2017, 12, 89. [Google Scholar] [CrossRef]
- Othman, B.A.; Ong, J.E.; Dumitrescu, A.V. Biallelic Optic Atrophy 1 (OPA1) Related Disorder-Case Report and Literature Review. Genes 2022, 13, 1005. [Google Scholar] [CrossRef]
- Ruano, L.; Melo, C.; Silva, M.C.; Coutinho, P. The Global Epidemiology of Hereditary Ataxia and Spastic Paraplegia: A Systematic Review of Prevalence Studies. Neuroepidemiology 2014, 42, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.E. Classification of the Hereditary Ataxias and Paraplegias. Lancet Lond. Engl. 1983, 1, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.B.; Boesch, S.; Bürk, K.; Dürr, A.; Giunti, P.; Mariotti, C.; Pousset, F.; Schöls, L.; Vankan, P.; Pandolfo, M. Diagnosis and Treatment of Friedreich Ataxia: A European Perspective. Nat. Rev. Neurol. 2009, 5, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Vankan, P. Prevalence Gradients of Friedreich’s Ataxia and R1b Haplotype in Europe Co-Localize, Suggesting a Common Palaeolithic Origin in the Franco-Cantabrian Ice Age Refuge. J. Neurochem. 2013, 126 (Suppl. 1), 11–20. [Google Scholar] [CrossRef] [PubMed]
- Fogel, B.L. Autosomal-Recessive Cerebellar Ataxias. Handb. Clin. Neurol. 2018, 147, 187–209. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.E. Friedreich’s Ataxia: A Clinical and Genetic Study of 90 Families with an Analysis of Early Diagnostic Criteria and Intrafamilial Clustering of Clinical Features. Brain J. Neurol. 1981, 104, 589–620. [Google Scholar] [CrossRef]
- Pandolfo, M. Friedreich Ataxia: The Clinical Picture. J. Neurol. 2009, 256 (Suppl. 1), 3–8. [Google Scholar] [CrossRef]
- Collins, A. Clinical Neurogenetics: Friedreich Ataxia. Neurol. Clin. 2013, 31, 1095–1120. [Google Scholar] [CrossRef] [PubMed]
- Koeppen, A.H.; Ramirez, R.L.; Becker, A.B.; Mazurkiewicz, J.E. Dorsal Root Ganglia in Friedreich Ataxia: Satellite Cell Proliferation and Inflammation. Acta Neuropathol. Commun. 2016, 4, 46. [Google Scholar] [CrossRef]
- Kemp, K.C.; Cook, A.J.; Redondo, J.; Kurian, K.M.; Scolding, N.J.; Wilkins, A. Purkinje Cell Injury, Structural Plasticity and Fusion in Patients with Friedreich’s Ataxia. Acta Neuropathol. Commun. 2016, 4, 53. [Google Scholar] [CrossRef]
- Selvadurai, L.P.; Harding, I.H.; Corben, L.A.; Georgiou-Karistianis, N. Cerebral Abnormalities in Friedreich Ataxia: A Review. Neurosci. Biobehav. Rev. 2018, 84, 394–406. [Google Scholar] [CrossRef]
- Campuzano, V.; Montermini, L.; Moltò, M.D.; Pianese, L.; Cossée, M.; Cavalcanti, F.; Monros, E.; Rodius, F.; Duclos, F.; Monticelli, A.; et al. Friedreich’s Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion. Science 1996, 271, 1423–1427. [Google Scholar] [CrossRef]
- Groh, M.; Lufino, M.M.P.; Wade-Martins, R.; Gromak, N. R-Loops Associated with Triplet Repeat Expansions Promote Gene Silencing in Friedreich Ataxia and Fragile X Syndrome. PLoS Genet. 2014, 10, e1004318. [Google Scholar] [CrossRef] [PubMed]
- Colin, F.; Martelli, A.; Clémancey, M.; Latour, J.-M.; Gambarelli, S.; Zeppieri, L.; Birck, C.; Page, A.; Puccio, H.; Ollagnier de Choudens, S. Mammalian Frataxin Controls Sulfur Production and Iron Entry during de Novo Fe4S4 Cluster Assembly. J. Am. Chem. Soc. 2013, 135, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Martelli, A.; Puccio, H. Dysregulation of Cellular Iron Metabolism in Friedreich Ataxia: From Primary Iron-Sulfur Cluster Deficit to Mitochondrial Iron Accumulation. Front. Pharmacol. 2014, 5, 130. [Google Scholar] [CrossRef]
- Synofzik, M.; Puccio, H.; Mochel, F.; Schöls, L. Autosomal Recessive Cerebellar Ataxias: Paving the Way toward Targeted Molecular Therapies. Neuron 2019, 101, 560–583. [Google Scholar] [CrossRef]
- Cortese, A.; Tozza, S.; Yau, W.Y.; Rossi, S.; Beecroft, S.J.; Jaunmuktane, Z.; Dyer, Z.; Ravenscroft, G.; Lamont, P.J.; Mossman, S.; et al. Cerebellar Ataxia, Neuropathy, Vestibular Areflexia Syndrome Due to RFC1 Repeat Expansion. Brain J. Neurol. 2020, 143, 480–490. [Google Scholar] [CrossRef]
- Szmulewicz, D.J.; Waterston, J.A.; MacDougall, H.G.; Mossman, S.; Chancellor, A.M.; McLean, C.A.; Merchant, S.; Patrikios, P.; Halmagyi, G.M.; Storey, E. Cerebellar Ataxia, Neuropathy, Vestibular Areflexia Syndrome (CANVAS): A Review of the Clinical Features and Video-Oculographic Diagnosis. Ann. N. Y. Acad. Sci. 2011, 1233, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Cortese, A.; Simone, R.; Sullivan, R.; Vandrovcova, J.; Tariq, H.; Yau, W.Y.; Humphrey, J.; Jaunmuktane, Z.; Sivakumar, P.; Polke, J.; et al. Biallelic Expansion of an Intronic Repeat in RFC1 Is a Common Cause of Late-Onset Ataxia. Nat. Genet. 2019, 51, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Dominik, N.; Magri, S.; Currò, R.; Abati, E.; Facchini, S.; Corbetta, M.; MacPherson, H.; Di Bella, D.; Sarto, E.; Stevanovski, I.; et al. Normal and Pathogenic Variation of RFC1 Repeat Expansions: Implications for Clinical Diagnosis. Brain J. Neurol. 2023, 146, 5060–5069. [Google Scholar] [CrossRef] [PubMed]
- Ronco, R.; Perini, C.; Currò, R.; Dominik, N.; Facchini, S.; Gennari, A.; Simone, R.; Stuart, S.; Nagy, S.; Vegezzi, E.; et al. Truncating Variants in RFC1 in Cerebellar Ataxia, Neuropathy, and Vestibular Areflexia Syndrome. Neurology 2023, 100, e543–e554. [Google Scholar] [CrossRef] [PubMed]
- Abdi, M.H.; Zamiri, B.; Pazuki, G.; Sardari, S.; Pearson, C.E. Pathogenic CANVAS-Causing but Not Nonpathogenic RFC1 DNA/RNA Repeat Motifs Form Quadruplex or Triplex Structures. J. Biol. Chem. 2023, 299, 105202. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, J.P.; Barbeau, A.; Bouchard, R.; Bouchard, R.W. Electromyography and Nerve Conduction Studies in Friedreich’s Ataxia and Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS). Can. J. Neurol. Sci. J. Can. Sci. Neurol. 1979, 6, 185–189. [Google Scholar] [CrossRef]
- Bouhlal, Y.; Amouri, R.; El Euch-Fayeche, G.; Hentati, F. Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay: An Overview. Park. Relat. Disord. 2011, 17, 418–422. [Google Scholar] [CrossRef]
- Engert, J.C.; Bérubé, P.; Mercier, J.; Doré, C.; Lepage, P.; Ge, B.; Bouchard, J.P.; Mathieu, J.; Melançon, S.B.; Schalling, M.; et al. ARSACS, a Spastic Ataxia Common in Northeastern Québec, Is Caused by Mutations in a New Gene Encoding an 11.5-Kb ORF. Nat. Genet. 2000, 24, 120–125. [Google Scholar] [CrossRef]
- Synofzik, M.; Soehn, A.S.; Gburek-Augustat, J.; Schicks, J.; Karle, K.N.; Schüle, R.; Haack, T.B.; Schöning, M.; Biskup, S.; Rudnik-Schöneborn, S.; et al. Autosomal Recessive Spastic Ataxia of Charlevoix Saguenay (ARSACS): Expanding the Genetic, Clinical and Imaging Spectrum. Orphanet J. Rare Dis. 2013, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Longo, F.; De Ritis, D.; Miluzio, A.; Fraticelli, D.; Baets, J.; Scarlato, M.; Santorelli, F.M.; Biffo, S.; Maltecca, F. Assessment of Sacsin Turnover in Patients With ARSACS: Implications for Molecular Diagnosis and Pathogenesis. Neurology 2021, 97, e2315–e2327. [Google Scholar] [CrossRef]
- Xiromerisiou, G.; Dadouli, K.; Marogianni, C.; Provatas, A.; Ntellas, P.; Rikos, D.; Stathis, P.; Georgouli, D.; Loules, G.; Zamanakou, M.; et al. A Novel Homozygous SACS Mutation Identified by Whole Exome Sequencing-Genotype Phenotype Correlations of All Published Cases. J. Mol. Neurosci. MN 2020, 70, 131–141. [Google Scholar] [CrossRef]
- Parkinson, M.H.; Bartmann, A.P.; Clayton, L.M.S.; Nethisinghe, S.; Pfundt, R.; Chapple, J.P.; Reilly, M.M.; Manji, H.; Wood, N.J.; Bremner, F.; et al. Optical Coherence Tomography in Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay. Brain J. Neurol. 2018, 141, 989–999. [Google Scholar] [CrossRef]
- Ricca, I.; Morani, F.; Bacci, G.M.; Nesti, C.; Caputo, R.; Tessa, A.; Santorelli, F.M. Clinical and Molecular Studies in Two New Cases of ARSACS. Neurogenetics 2019, 20, 45–49. [Google Scholar] [CrossRef]
- Parfitt, D.A.; Michael, G.J.; Vermeulen, E.G.M.; Prodromou, N.V.; Webb, T.R.; Gallo, J.-M.; Cheetham, M.E.; Nicoll, W.S.; Blatch, G.L.; Chapple, J.P. The Ataxia Protein Sacsin Is a Functional Co-Chaperone That Protects against Polyglutamine-Expanded Ataxin-1. Hum. Mol. Genet. 2009, 18, 1556–1565. [Google Scholar] [CrossRef]
- Anderson, J.F.; Siller, E.; Barral, J.M. The Sacsin Repeating Region (SRR): A Novel Hsp90-Related Supra-Domain Associated with Neurodegeneration. J. Mol. Biol. 2010, 400, 665–674. [Google Scholar] [CrossRef]
- Duncan, E.J.; Larivière, R.; Bradshaw, T.Y.; Longo, F.; Sgarioto, N.; Hayes, M.J.; Romano, L.E.L.; Nethisinghe, S.; Giunti, P.; Bruntraeger, M.B.; et al. Altered Organization of the Intermediate Filament Cytoskeleton and Relocalization of Proteostasis Modulators in Cells Lacking the Ataxia Protein Sacsin. Hum. Mol. Genet. 2017, 26, 3130–3143. [Google Scholar] [CrossRef]
- Gentil, B.J.; Lai, G.-T.; Menade, M.; Larivière, R.; Minotti, S.; Gehring, K.; Chapple, J.-P.; Brais, B.; Durham, H.D. Sacsin, Mutated in the Ataxia ARSACS, Regulates Intermediate Filament Assembly and Dynamics. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 2982–2994. [Google Scholar] [CrossRef]
- Del Bondio, A.; Longo, F.; De Ritis, D.; Spirito, E.; Podini, P.; Brais, B.; Bachi, A.; Quattrini, A.; Maltecca, F. Restoring Calcium Homeostasis in Purkinje Cells Arrests Neurodegeneration and Neuroinflammation in the ARSACS Mouse Model. JCI Insight 2023, 8, e163576. [Google Scholar] [CrossRef]
- Bradshaw, T.Y.; Romano, L.E.L.; Duncan, E.J.; Nethisinghe, S.; Abeti, R.; Michael, G.J.; Giunti, P.; Vermeer, S.; Chapple, J.P. A Reduction in Drp1-Mediated Fission Compromises Mitochondrial Health in Autosomal Recessive Spastic Ataxia of Charlevoix Saguenay. Hum. Mol. Genet. 2016, 25, 3232–3244. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.H.; Gatti, R.A. Ataxia-Telangiectasia, an Evolving Phenotype. DNA Repair 2004, 3, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Perlman, S.L.; Boder Deceased, E.; Sedgewick, R.P.; Gatti, R.A. Ataxia-Telangiectasia. Handb. Clin. Neurol. 2012, 103, 307–332. [Google Scholar] [CrossRef]
- Shiloh, Y. ATM and Related Protein Kinases: Safeguarding Genome Integrity. Nat. Rev. Cancer 2003, 3, 155–168. [Google Scholar] [CrossRef]
- Fernandez-Capetillo, O.; Lee, A.; Nussenzweig, M.; Nussenzweig, A. H2AX: The Histone Guardian of the Genome. DNA Repair 2004, 3, 959–967. [Google Scholar] [CrossRef]
- Chang, J.R.; Ghafouri, M.; Mukerjee, R.; Bagashev, A.; Chabrashvili, T.; Sawaya, B.E. Role of P53 in Neurodegenerative Diseases. Neurodegener. Dis. 2012, 9, 68–80. [Google Scholar] [CrossRef]
- Lee, J.-H.; Paull, T.T. Cellular Functions of the Protein Kinase ATM and Their Relevance to Human Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 796–814. [Google Scholar] [CrossRef] [PubMed]
- Lagier-Tourenne, C.; Tazir, M.; López, L.C.; Quinzii, C.M.; Assoum, M.; Drouot, N.; Busso, C.; Makri, S.; Ali-Pacha, L.; Benhassine, T.; et al. ADCK3, an Ancestral Kinase, Is Mutated in a Form of Recessive Ataxia Associated with Coenzyme Q10 Deficiency. Am. J. Hum. Genet. 2008, 82, 661–672. [Google Scholar] [CrossRef]
- Mollet, J.; Delahodde, A.; Serre, V.; Chretien, D.; Schlemmer, D.; Lombes, A.; Boddaert, N.; Desguerre, I.; de Lonlay, P.; de Baulny, H.O.; et al. CABC1 Gene Mutations Cause Ubiquinone Deficiency with Cerebellar Ataxia and Seizures. Am. J. Hum. Genet. 2008, 82, 623–630. [Google Scholar] [CrossRef]
- Eto, M.; Watanabe, K.; Ishii, K. Apolipoprotein E Alleles and Hyperlipoproteinemia in Japan. Clin. Genet. 1988, 34, 246–251. [Google Scholar] [CrossRef]
- Traschütz, A.; Schirinzi, T.; Laugwitz, L.; Murray, N.H.; Bingman, C.A.; Reich, S.; Kern, J.; Heinzmann, A.; Vasco, G.; Bertini, E.; et al. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann. Neurol. 2020, 88, 251–263. [Google Scholar] [CrossRef]
- Floyd, B.J.; Wilkerson, E.M.; Veling, M.T.; Minogue, C.E.; Xia, C.; Beebe, E.T.; Wrobel, R.L.; Cho, H.; Kremer, L.S.; Alston, C.L.; et al. Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function. Mol. Cell 2016, 63, 621–632. [Google Scholar] [CrossRef]
- Stefely, J.A.; Reidenbach, A.G.; Ulbrich, A.; Oruganty, K.; Floyd, B.J.; Jochem, A.; Saunders, J.M.; Johnson, I.E.; Minogue, C.E.; Wrobel, R.L.; et al. Mitochondrial ADCK3 Employs an Atypical Protein Kinase-like Fold to Enable Coenzyme Q Biosynthesis. Mol. Cell 2015, 57, 83–94. [Google Scholar] [CrossRef]
- Stefely, J.A.; Licitra, F.; Laredj, L.; Reidenbach, A.G.; Kemmerer, Z.A.; Grangeray, A.; Jaeg-Ehret, T.; Minogue, C.E.; Ulbrich, A.; Hutchins, P.D.; et al. Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity. Mol. Cell 2016, 63, 608–620. [Google Scholar] [CrossRef]
- Cullen, J.K.; Abdul Murad, N.; Yeo, A.; McKenzie, M.; Ward, M.; Chong, K.L.; Schieber, N.L.; Parton, R.G.; Lim, Y.C.; Wolvetang, E.; et al. AarF Domain Containing Kinase 3 (ADCK3) Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation. PLoS ONE 2016, 11, e0148213. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A. Episodic Ataxias: Primary and Secondary Etiologies, Treatment, and Classification Approaches. Tremor Other Hyperkinetic Mov. 2023, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Jen, J.C.; Wan, J. Episodic Ataxias. Handb. Clin. Neurol. 2018, 148, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Monseny, A.F.; Edo, A.; Casas-Alba, D.; Izquierdo-Serra, M.; Bolasell, M.; Conejo, D.; Martorell, L.; Muchart, J.; Carrera, L.; Ortez, C.I.; et al. CACNA1A Mutations Causing Early Onset Ataxia: Profiling Clinical, Dysmorphic and Structural-Functional Findings. Int. J. Mol. Sci. 2021, 22, 5180. [Google Scholar] [CrossRef] [PubMed]
- Brussino, A.; Gellera, C.; Saluto, A.; Mariotti, C.; Arduino, C.; Castellotti, B.; Camerlingo, M.; de Angelis, V.; Orsi, L.; Tosca, P.; et al. FMR1 Gene Premutation Is a Frequent Genetic Cause of Late-Onset Sporadic Cerebellar Ataxia. Neurology 2005, 64, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Cabal-Herrera, A.M.; Tassanakijpanich, N.; Salcedo-Arellano, M.J.; Hagerman, R.J. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Pathophysiology and Clinical Implications. Int. J. Mol. Sci. 2020, 21, 4391. [Google Scholar] [CrossRef] [PubMed]
- Tassone, F.; Adams, J.; Berry-Kravis, E.M.; Cohen, S.S.; Brusco, A.; Leehey, M.A.; Li, L.; Hagerman, R.J.; Hagerman, P.J. CGG Repeat Length Correlates with Age of Onset of Motor Signs of the Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2007, 144, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Jacquemont, S.; Hagerman, R.J.; Leehey, M.; Grigsby, J.; Zhang, L.; Brunberg, J.A.; Greco, C.; Des Portes, V.; Jardini, T.; Levine, R.; et al. Fragile X Premutation Tremor/Ataxia Syndrome: Molecular, Clinical, and Neuroimaging Correlates. Am. J. Hum. Genet. 2003, 72, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Cronister, A.; Schreiner, R.; Wittenberger, M.; Amiri, K.; Harris, K.; Hagerman, R.J. Heterozygous Fragile X Female: Historical, Physical, Cognitive, and Cytogenetic Features. Am. J. Med. Genet. 1991, 38, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Tassone, F.; Hagerman, R.J.; Taylor, A.K.; Gane, L.W.; Godfrey, T.E.; Hagerman, P.J. Elevated Levels of FMR1 MRNA in Carrier Males: A New Mechanism of Involvement in the Fragile-X Syndrome. Am. J. Hum. Genet. 2000, 66, 6–15. [Google Scholar] [CrossRef]
- Bertini, E.; Zanni, G.; Boltshauser, E. Nonprogressive Congenital Ataxias. Handb. Clin. Neurol. 2018, 155, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Steinlin, M. Non-Progressive Congenital Ataxias. Brain Dev. 1998, 20, 199–208. [Google Scholar] [CrossRef]
- Romani, M.; Micalizzi, A.; Valente, E.M. Joubert Syndrome: Congenital Cerebellar Ataxia with the Molar Tooth. Lancet Neurol. 2013, 12, 894–905. [Google Scholar] [CrossRef]
- Subramony, S.H. Degenerative Ataxias: Challenges in Clinical Research. Ann. Clin. Transl. Neurol. 2017, 4, 53–60. [Google Scholar] [CrossRef]
- Fogel, B.L.; Lee, H.; Deignan, J.L.; Strom, S.P.; Kantarci, S.; Wang, X.; Quintero-Rivera, F.; Vilain, E.; Grody, W.W.; Perlman, S.; et al. Exome Sequencing in the Clinical Diagnosis of Sporadic or Familial Cerebellar Ataxia. JAMA Neurol. 2014, 71, 1237–1246. [Google Scholar] [CrossRef]
- Beijer, D.; Fogel, B.L.; Beltran, S.; Danzi, M.C.; Németh, A.H.; Züchner, S.; Synofzik, M.; AGI Ataxia NGS genomics, platforms Working Group; Adarmes, A.; Alhusaini, S.; et al. Standards of NGS Data Sharing and Analysis in Ataxias: Recommendations by the NGS Working Group of the Ataxia Global Initiative. Cerebellum, 2023, ahead of print. [CrossRef]
- Buijsen, R.A.M.; Toonen, L.J.A.; Gardiner, S.L.; van Roon-Mom, W.M.C. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019, 16, 263–286. [Google Scholar] [CrossRef]
- Brooker, S.M.; Edamakanti, C.R.; Akasha, S.M.; Kuo, S.; Opal, P. Spinocerebellar Ataxia Clinical Trials: Opportunities and Challenges. Ann. Clin. Transl. Neurol. 2021, 8, 1543–1556. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Mao, Q.; Eliason, S.L.; Harper, S.Q.; Martins, I.H.; Orr, H.T.; Paulson, H.L.; Yang, L.; Kotin, R.M.; Davidson, B.L. RNAi Suppresses Polyglutamine-Induced Neurodegeneration in a Model of Spinocerebellar Ataxia. Nat. Med. 2004, 10, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Keiser, M.S.; Geoghegan, J.C.; Boudreau, R.L.; Lennox, K.A.; Davidson, B.L. RNAi or Overexpression: Alternative Therapies for Spinocerebellar Ataxia Type 1. Neurobiol. Dis. 2013, 56, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Keiser, M.S.; Boudreau, R.L.; Davidson, B.L. Broad Therapeutic Benefit after RNAi Expression Vector Delivery to Deep Cerebellar Nuclei: Implications for Spinocerebellar Ataxia Type 1 Therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2014, 22, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Keiser, M.S.; Kordower, J.H.; Gonzalez-Alegre, P.; Davidson, B.L. Broad Distribution of Ataxin 1 Silencing in Rhesus Cerebella for Spinocerebellar Ataxia Type 1 Therapy. Brain J. Neurol. 2015, 138, 3555–3566. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Adachi, H.; Katsuno, M.; Sahashi, K.; Kondo, N.; Iida, M.; Tohnai, G.; Nakatsuji, H.; Sobue, G. BIIB021, a Synthetic Hsp90 Inhibitor, Induces Mutant Ataxin-1 Degradation through the Activation of Heat Shock Factor 1. Neuroscience 2016, 327, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Hourez, R.; Servais, L.; Orduz, D.; Gall, D.; Millard, I.; de Kerchove d’Exaerde, A.; Cheron, G.; Orr, H.T.; Pandolfo, M.; Schiffmann, S.N. Aminopyridines Correct Early Dysfunction and Delay Neurodegeneration in a Mouse Model of Spinocerebellar Ataxia Type 1. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 11795–11807. [Google Scholar] [CrossRef] [PubMed]
- Watase, K.; Gatchel, J.R.; Sun, Y.; Emamian, E.; Atkinson, R.; Richman, R.; Mizusawa, H.; Orr, H.T.; Shaw, C.; Zoghbi, H.Y. Lithium Therapy Improves Neurological Function and Hippocampal Dendritic Arborization in a Spinocerebellar Ataxia Type 1 Mouse Model. PLoS Med. 2007, 4, e182. [Google Scholar] [CrossRef]
- Simpson, B.P.; Yrigollen, C.M.; Izda, A.; Davidson, B.L. Targeted Long-Read Sequencing Captures CRISPR Editing and AAV Integration Outcomes in Brain. Mol. Ther. J. Am. Soc. Gene Ther. 2023, 31, 760–773. [Google Scholar] [CrossRef]
- Scoles, D.R.; Meera, P.; Schneider, M.D.; Paul, S.; Dansithong, W.; Figueroa, K.P.; Hung, G.; Rigo, F.; Bennett, C.F.; Otis, T.S.; et al. Antisense Oligonucleotide Therapy for Spinocerebellar Ataxia Type 2. Nature 2017, 544, 362–366. [Google Scholar] [CrossRef]
- Egorova, P.A.; Zakharova, O.A.; Vlasova, O.L.; Bezprozvanny, I.B. In Vivo Analysis of Cerebellar Purkinje Cell Activity in SCA2 Transgenic Mouse Model. J. Neurophysiol. 2016, 115, 2840–2851. [Google Scholar] [CrossRef]
- Kasumu, A.W.; Hougaard, C.; Rode, F.; Jacobsen, T.A.; Sabatier, J.M.; Eriksen, B.L.; Strøbæk, D.; Liang, X.; Egorova, P.; Vorontsova, D.; et al. Selective Positive Modulator of Calcium-Activated Potassium Channels Exerts Beneficial Effects in a Mouse Model of Spinocerebellar Ataxia Type 2. Chem. Biol. 2012, 19, 1340–1353. [Google Scholar] [CrossRef]
- Ouyang, S.; Xie, Y.; Xiong, Z.; Yang, Y.; Xian, Y.; Ou, Z.; Song, B.; Chen, Y.; Xie, Y.; Li, H.; et al. CRISPR/Cas9-Targeted Deletion of Polyglutamine in Spinocerebellar Ataxia Type 3-Derived Induced Pluripotent Stem Cells. Stem Cells Dev. 2018, 27, 756–770. [Google Scholar] [CrossRef]
- Alves, S.; Nascimento-Ferreira, I.; Auregan, G.; Hassig, R.; Dufour, N.; Brouillet, E.; Pedroso de Lima, M.C.; Hantraye, P.; Pereira de Almeida, L.; Déglon, N. Allele-Specific RNA Silencing of Mutant Ataxin-3 Mediates Neuroprotection in a Rat Model of Machado-Joseph Disease. PLoS ONE 2008, 3, e3341. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Lebrón, E.; Costa, M.d.C.; Luna-Cancalon, K.; Peron, T.M.; Fischer, S.; Boudreau, R.L.; Davidson, B.L.; Paulson, H.L. Silencing Mutant ATXN3 Expression Resolves Molecular Phenotypes in SCA3 Transgenic Mice. Mol. Ther. J. Am. Soc. Gene Ther. 2013, 21, 1909–1918. [Google Scholar] [CrossRef]
- Costa, M.d.C.; Luna-Cancalon, K.; Fischer, S.; Ashraf, N.S.; Ouyang, M.; Dharia, R.M.; Martin-Fishman, L.; Yang, Y.; Shakkottai, V.G.; Davidson, B.L.; et al. Toward RNAi Therapy for the Polyglutamine Disease Machado-Joseph Disease. Mol. Ther. J. Am. Soc. Gene Ther. 2013, 21, 1898–1908. [Google Scholar] [CrossRef]
- Bushart, D.D.; Zalon, A.J.; Zhang, H.; Morrison, L.M.; Guan, Y.; Paulson, H.L.; Shakkottai, V.G.; McLoughlin, H.S. Antisense Oligonucleotide Therapy Targeted Against ATXN3 Improves Potassium Channel-Mediated Purkinje Neuron Dysfunction in Spinocerebellar Ataxia Type 3. Cerebellum Lond. Engl. 2021, 20, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.-F.; Yang, G.-P.; Wang, J.-L.; Chuang, D.-M.; Song, W.-H.; Tang, B.-S.; Jiang, H. Safety and Efficacy of Valproic Acid Treatment in SCA3/MJD Patients. Parkinsonism Relat. Disord. 2016, 26, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Chang, J.-C.; Sun, H.-L.; Cheng, W.-L.; Yen, Y.-P.; Lin, Y.-S.; Chao, Y.-C.; Liu, K.-H.; Huang, C.-S.; Liu, K.-L.; et al. Coenzyme Q10 Supplementation Increases Removal of the ATXN3 Polyglutamine Repeat, Reducing Cerebellar Degeneration and Improving Motor Dysfunction in Murine Spinocerebellar Ataxia Type 3. Nutrients 2022, 14, 3593. [Google Scholar] [CrossRef]
- Zesiewicz, T.A.; Greenstein, P.E.; Sullivan, K.L.; Wecker, L.; Miller, A.; Jahan, I.; Chen, R.; Perlman, S.L. A Randomized Trial of Varenicline (Chantix) for the Treatment of Spinocerebellar Ataxia Type 3. Neurology 2012, 78, 545–550. [Google Scholar] [CrossRef]
- Cunha-Santos, J.; Duarte-Neves, J.; Carmona, V.; Guarente, L.; Pereira de Almeida, L.; Cavadas, C. Caloric Restriction Blocks Neuropathology and Motor Deficits in Machado-Joseph Disease Mouse Models through SIRT1 Pathway. Nat. Commun. 2016, 7, 11445. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Du, X.; Muramatsu, S.-I.; Gomez, C.M. An MiRNA-Mediated Therapy for SCA6 Blocks IRES-Driven Translation of the CACNA1A Second Cistron. Sci. Transl. Med. 2016, 8, 347ra94. [Google Scholar] [CrossRef] [PubMed]
- Pastor, P.D.H.; Du, X.; Fazal, S.; Davies, A.N.; Gomez, C.M. Targeting the CACNA1A IRES as a Treatment for Spinocerebellar Ataxia Type 6. Cerebellum Lond. Engl. 2018, 17, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Jayabal, S.; Chang, H.H.V.; Cullen, K.E.; Watt, A.J. 4-Aminopyridine Reverses Ataxia and Cerebellar Firing Deficiency in a Mouse Model of Spinocerebellar Ataxia Type 6. Sci. Rep. 2016, 6, 29489. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, P.S.; Bhattarai, S.; Singh, P.; Boudreau, R.L.; Thompson, S.; Laspada, A.R.; Drack, A.V.; Davidson, B.L. RNA Interference-Based Therapy for Spinocerebellar Ataxia Type 7 Retinal Degeneration. PLoS ONE 2014, 9, e95362. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, P.S.; Boudreau, R.L.; Schaefer, K.A.; La Spada, A.R.; Davidson, B.L. Nonallele Specific Silencing of Ataxin-7 Improves Disease Phenotypes in a Mouse Model of SCA7. Mol. Ther. J. Am. Soc. Gene Ther. 2014, 22, 1635–1642. [Google Scholar] [CrossRef]
- Mazzara, P.G.; Muggeo, S.; Luoni, M.; Massimino, L.; Zaghi, M.; Valverde, P.T.-T.; Brusco, S.; Marzi, M.J.; Palma, C.; Colasante, G.; et al. Frataxin Gene Editing Rescues Friedreich’s Ataxia Pathology in Dorsal Root Ganglia Organoid-Derived Sensory Neurons. Nat. Commun. 2020, 11, 4178. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Wang, J.; Zhang, S.; Giles, K.; Prakash, T.P.; Rigo, F.; Napierala, J.S.; Napierala, M. Premature Transcription Termination at the Expanded GAA Repeats and Aberrant Alternative Polyadenylation Contributes to the Frataxin Transcriptional Deficit in Friedreich’s Ataxia. Hum. Mol. Genet. 2022, 31, 3539–3557. [Google Scholar] [CrossRef]
- Li, Y.; Polak, U.; Bhalla, A.D.; Rozwadowska, N.; Butler, J.S.; Lynch, D.R.; Dent, S.Y.R.; Napierala, M. Excision of Expanded GAA Repeats Alleviates the Molecular Phenotype of Friedreich’s Ataxia. Mol. Ther. J. Am. Soc. Gene Ther. 2015, 23, 1055–1065. [Google Scholar] [CrossRef]
- Li, L.; Shen, X.; Liu, Z.; Norrbom, M.; Prakash, T.P.; O’Reilly, D.; Sharma, V.K.; Damha, M.J.; Watts, J.K.; Rigo, F.; et al. Activation of Frataxin Protein Expression by Antisense Oligonucleotides Targeting the Mutant Expanded Repeat. Nucleic Acid Ther. 2018, 28, 23–33. [Google Scholar] [CrossRef]
- Shen, X.; Wong, J.; Prakash, T.P.; Rigo, F.; Li, Y.; Napierala, M.; Corey, D.R. Progress towards Drug Discovery for Friedreich’s Ataxia: Identifying Synthetic Oligonucleotides That More Potently Activate Expression of Human Frataxin Protein. Bioorg. Med. Chem. 2020, 28, 115472. [Google Scholar] [CrossRef]
- Perdomini, M.; Belbellaa, B.; Monassier, L.; Reutenauer, L.; Messaddeq, N.; Cartier, N.; Crystal, R.G.; Aubourg, P.; Puccio, H. Prevention and Reversal of Severe Mitochondrial Cardiomyopathy by Gene Therapy in a Mouse Model of Friedreich’s Ataxia. Nat. Med. 2014, 20, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Belbellaa, B.; Reutenauer, L.; Monassier, L.; Puccio, H. Correction of Half the Cardiomyocytes Fully Rescue Friedreich Ataxia Mitochondrial Cardiomyopathy through Cell-Autonomous Mechanisms. Hum. Mol. Genet. 2019, 28, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Zuluaga, C.; Gertz, M.; Yost-Bido, M.; Greco, A.; Gorman, N.; Chen, A.; Kooner, V.; Rosenberg, J.B.; De, B.P.; Kaminsky, S.M.; et al. Identification of Safe and Effective Intravenous Dose of AAVrh.10hFXN to Treat the Cardiac Manifestations of Friedreich’s Ataxia. Hum. Gene Ther. 2023, 34, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Piguet, F.; de Montigny, C.; Vaucamps, N.; Reutenauer, L.; Eisenmann, A.; Puccio, H. Rapid and Complete Reversal of Sensory Ataxia by Gene Therapy in a Novel Model of Friedreich Ataxia. Mol. Ther. J. Am. Soc. Gene Ther. 2018, 26, 1940–1952. [Google Scholar] [CrossRef] [PubMed]
- Britti, E.; Delaspre, F.; Feldman, A.; Osborne, M.; Greif, H.; Tamarit, J.; Ros, J. Frataxin-Deficient Neurons and Mice Models of Friedreich Ataxia Are Improved by TAT-MTScs-FXN Treatment. J. Cell. Mol. Med. 2018, 22, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Erwin, G.S.; Grieshop, M.P.; Ali, A.; Qi, J.; Lawlor, M.; Kumar, D.; Ahmad, I.; McNally, A.; Teider, N.; Worringer, K.; et al. Synthetic Transcription Elongation Factors License Transcription across Repressive Chromatin. Science 2017, 358, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Soragni, E.; Gottesfeld, J.M. Translating HDAC Inhibitors in Friedreich’s Ataxia. Expert Opin. Orphan Drugs 2016, 4, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.K.; Torres, R.; Yandim, C.; Law, P.P.; Khadayate, S.; Mauri, M.; Grosan, C.; Chapman-Rothe, N.; Giunti, P.; Pook, M.; et al. Heterochromatinization Induced by GAA-Repeat Hyperexpansion in Friedreich’s Ataxia Can Be Reduced upon HDAC Inhibition by Vitamin B3. Hum. Mol. Genet. 2013, 22, 2662–2675. [Google Scholar] [CrossRef]
- Soragni, E.; Miao, W.; Iudicello, M.; Jacoby, D.; De Mercanti, S.; Clerico, M.; Longo, F.; Piga, A.; Ku, S.; Campau, E.; et al. Epigenetic Therapy for Friedreich Ataxia. Ann. Neurol. 2014, 76, 489–508. [Google Scholar] [CrossRef]
- Lee, A. Omaveloxolone: First Approval. Drugs 2023, 83, 725–729. [Google Scholar] [CrossRef]
- Lynch, D.R.; Chin, M.P.; Delatycki, M.B.; Subramony, S.H.; Corti, M.; Hoyle, J.C.; Boesch, S.; Nachbauer, W.; Mariotti, C.; Mathews, K.D.; et al. Safety and Efficacy of Omaveloxolone in Friedreich Ataxia (MOXIe Study). Ann. Neurol. 2021, 89, 212–225. [Google Scholar] [CrossRef]
- Jauslin, M.L.; Meier, T.; Smith, R.A.J.; Murphy, M.P. Mitochondria-Targeted Antioxidants Protect Friedreich Ataxia Fibroblasts from Endogenous Oxidative Stress More Effectively than Untargeted Antioxidants. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 1972–1974. [Google Scholar] [CrossRef] [PubMed]
- Nethisinghe, S.; Abeti, R.; Kesavan, M.; Wigley, W.C.; Giunti, P. Hsp90 Inhibition: A Promising Therapeutic Approach for ARSACS. Int. J. Mol. Sci. 2021, 22, 11722. [Google Scholar] [CrossRef] [PubMed]
- Márquez, B.T.; Leung, T.C.S.; Hui, J.; Charron, F.; McKinney, R.A.; Watt, A.J. A Mitochondrial-Targeted Antioxidant (MitoQ) Improves Motor Coordination and Reduces Purkinje Cell Death in a Mouse Model of ARSACS. Neurobiol. Dis. 2023, 183, 106157. [Google Scholar] [CrossRef] [PubMed]
- Maltecca, F.; Baseggio, E.; Consolato, F.; Mazza, D.; Podini, P.; Young, S.M.; Drago, I.; Bahr, B.A.; Puliti, A.; Codazzi, F.; et al. Purkinje Neuron Ca2+ Influx Reduction Rescues Ataxia in SCA28 Model. J. Clin. Investig. 2015, 125, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Dan, X.; Hou, Y.; Lee, J.-H.; Wechter, N.; Krishnamurthy, S.; Kimura, R.; Babbar, M.; Demarest, T.; McDevitt, R.; et al. NAD+ Supplementation Prevents STING-Induced Senescence in Ataxia Telangiectasia by Improving Mitophagy. Aging Cell 2021, 20, e13329. [Google Scholar] [CrossRef] [PubMed]
- Botez, M.I.; Botez-Marquard, T.; Elie, R.; Pedraza, O.L.; Goyette, K.; Lalonde, R. Amantadine Hydrochloride Treatment in Heredodegenerative Ataxias: A Double Blind Study. J. Neurol. Neurosurg. Psychiatry 1996, 61, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Schirinzi, T.; Favetta, M.; Romano, A.; Sancesario, A.; Summa, S.; Minosse, S.; Zanni, G.; Castelli, E.; Bertini, E.; Petrarca, M.; et al. One-Year Outcome of Coenzyme Q10 Supplementation in ADCK3 Ataxia (ARCA2). Cerebellum Ataxias 2019, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Ristori, G.; Romano, S.; Visconti, A.; Cannoni, S.; Spadaro, M.; Frontali, M.; Pontieri, F.E.; Vanacore, N.; Salvetti, M. Riluzole in Cerebellar Ataxia: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial. Neurology 2010, 74, 839–845. [Google Scholar] [CrossRef]
- Perlman, S.L. Update on the Treatment of Ataxia: Medication and Emerging Therapies. Neurother. J. Am. Soc. Exp. Neurother. 2020, 17, 1660–1664. [Google Scholar] [CrossRef]
- Duan, W.; Urani, E.; Mattson, M.P. The Potential of Gene Editing for Huntington’s Disease. Trends Neurosci. 2023, 46, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Gaj, T.; Ojala, D.S.; Ekman, F.K.; Byrne, L.C.; Limsirichai, P.; Schaffer, D.V. In Vivo Genome Editing Improves Motor Function and Extends Survival in a Mouse Model of ALS. Sci. Adv. 2017, 3, eaar3952. [Google Scholar] [CrossRef]
- Yang, S.; Chang, R.; Yang, H.; Zhao, T.; Hong, Y.; Kong, H.E.; Sun, X.; Qin, Z.; Jin, P.; Li, S.; et al. CRISPR/Cas9-Mediated Gene Editing Ameliorates Neurotoxicity in Mouse Model of Huntington’s Disease. J. Clin. Investig. 2017, 127, 2719–2724. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Ye, T.; Qu, Z.; Chen, Y.; Miranda, A.; Zhou, X.; Lok, K.-C.; Chen, Y.; Fu, A.K.Y.; Gradinaru, V.; et al. Brain-Wide Cas9-Mediated Cleavage of a Gene Causing Familial Alzheimer’s Disease Alleviates Amyloid-Related Pathologies in Mice. Nat. Biomed. Eng. 2022, 6, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.H.; Ye, S.; Lim, S.; Jo, A.; Lee, H.; Hong, F.; Lee, S.E.; Oh, S.-J.; Kim, N.-R.; Kim, K.; et al. CRISPR-Cas9 Gene Editing Protects from the A53T-SNCA Overexpression-Induced Pathology of Parkinson’s Disease In Vivo. CRISPR J. 2022, 5, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Lee, K.; Panda, S.; Gonzales-Rojas, R.; Chong, A.; Bugay, V.; Park, H.M.; Brenner, R.; Murthy, N.; Lee, H.Y. Nanoparticle Delivery of CRISPR into the Brain Rescues a Mouse Model of Fragile X Syndrome from Exaggerated Repetitive Behaviours. Nat. Biomed. Eng. 2018, 2, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-Replace Genome Editing without Double-Strand Breaks or Donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, H.S.; Gundry, K.; Rainwater, O.; Schuster, K.H.; Wellik, I.G.; Zalon, A.J.; Benneyworth, M.A.; Eberly, L.E.; Öz, G. Antisense Oligonucleotide Silencing Reverses Abnormal Neurochemistry in Spinocerebellar Ataxia 3 Mice. Ann. Neurol. 2023, 94, 658–671. [Google Scholar] [CrossRef]
- Keiser, M.S.; Monteys, A.M.; Corbau, R.; Gonzalez-Alegre, P.; Davidson, B.L. RNAi Prevents and Reverses Phenotypes Induced by Mutant Human Ataxin-1. Ann. Neurol. 2016, 80, 754–765. [Google Scholar] [CrossRef]
- Rinaldi, C.; Wood, M.J.A. Antisense Oligonucleotides: The next Frontier for Treatment of Neurological Disorders. Nat. Rev. Neurol. 2018, 14, 9–21. [Google Scholar] [CrossRef]
- Smith, R.A.; Miller, T.M.; Yamanaka, K.; Monia, B.P.; Condon, T.P.; Hung, G.; Lobsiger, C.S.; Ward, C.M.; McAlonis-Downes, M.; Wei, H.; et al. Antisense Oligonucleotide Therapy for Neurodegenerative Disease. J. Clin. Investig. 2006, 116, 2290–2296. [Google Scholar] [CrossRef]
- Miller, T.M.; Pestronk, A.; David, W.; Rothstein, J.; Simpson, E.; Appel, S.H.; Andres, P.L.; Mahoney, K.; Allred, P.; Alexander, K.; et al. An Antisense Oligonucleotide against SOD1 Delivered Intrathecally for Patients with SOD1 Familial Amyotrophic Lateral Sclerosis: A Phase 1, Randomised, First-in-Man Study. Lancet Neurol. 2013, 12, 435–442. [Google Scholar] [CrossRef]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef]
- van Roon-Mom, W.M.C.; Roos, R.A.C.; de Bot, S.T. Dose-Dependent Lowering of Mutant Huntingtin Using Antisense Oligonucleotides in Huntington Disease Patients. Nucleic Acid Ther. 2018, 28, 59–62. [Google Scholar] [CrossRef]
- Rook, M.E.; Southwell, A.L. Antisense Oligonucleotide Therapy: From Design to the Huntington Disease Clinic. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 2022, 36, 105–119. [Google Scholar] [CrossRef]
- Park, J.; Al-Ramahi, I.; Tan, Q.; Mollema, N.; Diaz-Garcia, J.R.; Gallego-Flores, T.; Lu, H.-C.; Lagalwar, S.; Duvick, L.; Kang, H.; et al. RAS-MAPK-MSK1 Pathway Modulates Ataxin 1 Protein Levels and Toxicity in SCA1. Nature 2013, 498, 325–331. [Google Scholar] [CrossRef]
- Bondarev, A.D.; Attwood, M.M.; Jonsson, J.; Chubarev, V.N.; Tarasov, V.V.; Schiöth, H.B. Recent Developments of HDAC Inhibitors: Emerging Indications and Novel Molecules. Br. J. Clin. Pharmacol. 2021, 87, 4577–4597. [Google Scholar] [CrossRef]
- Williams, A.J.; Knutson, T.M.; Colomer Gould, V.F.; Paulson, H.L. In Vivo Suppression of Polyglutamine Neurotoxicity by C-Terminus of Hsp70-Interacting Protein (CHIP) Supports an Aggregation Model of Pathogenesis. Neurobiol. Dis. 2009, 33, 342–353. [Google Scholar] [CrossRef]
- Tsou, W.-L.; Hosking, R.R.; Burr, A.A.; Sutton, J.R.; Ouyang, M.; Du, X.; Gomez, C.M.; Todi, S.V. DnaJ-1 and Karyopherin A3 Suppress Degeneration in a New Drosophila Model of Spinocerebellar Ataxia Type 6. Hum. Mol. Genet. 2015, 24, 4385–4396. [Google Scholar] [CrossRef]
- Alves, S.; Cormier-Dequaire, F.; Marinello, M.; Marais, T.; Muriel, M.-P.; Beaumatin, F.; Charbonnier-Beaupel, F.; Tahiri, K.; Seilhean, D.; El Hachimi, K.; et al. The Autophagy/Lysosome Pathway Is Impaired in SCA7 Patients and SCA7 Knock-in Mice. Acta Neuropathol. 2014, 128, 705–722. [Google Scholar] [CrossRef]
- Pilotto, F.; Chellapandi, D.M.; Puccio, H. Omaveloxolone: A groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia. Trends Mol. Med. 2024, Epub ahead of print. [CrossRef]
- Parkinson, M.H.; Schulz, J.B.; Giunti, P. Co-Enzyme Q10 and Idebenone Use in Friedreich’s Ataxia. J. Neurochem. 2013, 126 (Suppl. 1), 125–141. [Google Scholar] [CrossRef]
- Coarelli, G.; Heinzmann, A.; Ewenczyk, C.; Fischer, C.; Chupin, M.; Monin, M.-L.; Hurmic, H.; Calvas, F.; Calvas, P.; Goizet, C.; et al. Safety and Efficacy of Riluzole in Spinocerebellar Ataxia Type 2 in France (ATRIL): A Multicentre, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Neurol. 2022, 21, 225–233. [Google Scholar] [CrossRef]
- Ghanekar, S.D.; Kuo, S.-H.; Staffetti, J.S.; Zesiewicz, T.A. Current and Emerging Treatment Modalities for Spinocerebellar Ataxias. Expert Rev. Neurother. 2022, 22, 101–114. [Google Scholar] [CrossRef]
- Nissenkorn, A.; Hassin-Baer, S.; Lerman, S.F.; Levi, Y.B.; Tzadok, M.; Ben-Zeev, B. Movement Disorder in Ataxia-Telangiectasia: Treatment with Amantadine Sulfate. J. Child Neurol. 2013, 28, 155–160. [Google Scholar] [CrossRef]
- Yiu, E.M.; Tai, G.; Peverill, R.E.; Lee, K.J.; Croft, K.D.; Mori, T.A.; Scheiber-Mojdehkar, B.; Sturm, B.; Praschberger, M.; Vogel, A.P.; et al. An Open-Label Trial in Friedreich Ataxia Suggests Clinical Benefit with High-Dose Resveratrol, without Effect on Frataxin Levels. J. Neurol. 2015, 262, 1344–1353. [Google Scholar] [CrossRef]
- Leuzzi, V.; Micheli, R.; D’Agnano, D.; Molinaro, A.; Venturi, T.; Plebani, A.; Soresina, A.; Marini, M.; Ferremi Leali, P.; Quinti, I.; et al. Positive Effect of Erythrocyte-Delivered Dexamethasone in Ataxia-Telangiectasia. Neurol.—Neuroimmunol. Neuroinflamm. 2015, 2, e98. [Google Scholar] [CrossRef]
- Saberi-Karimian, M.; Beyraghi-Tousi, M.; Jamialahmadi, T.; Sahebkar, A. The Positive Short-Term Effect of Dexamethasone on Ataxia Symptoms in a Patient with Ataxia-Telangiectasia: A Case Report. Clin. Case Rep. 2022, 10, e05895. [Google Scholar] [CrossRef]
- Sarkar, S.; Floto, R.A.; Berger, Z.; Imarisio, S.; Cordenier, A.; Pasco, M.; Cook, L.J.; Rubinsztein, D.C. Lithium Induces Autophagy by Inhibiting Inositol Monophosphatase. J. Cell Biol. 2005, 170, 1101–1111. [Google Scholar] [CrossRef]
- Kieling, C.; Rieder, C.R.M.; Silva, A.C.F.; Saute, J.A.M.; Cecchin, C.R.; Monte, T.L.; Jardim, L.B. A Neurological Examination Score for the Assessment of Spinocerebellar Ataxia 3 (SCA3). Eur. J. Neurol. 2008, 15, 371–376. [Google Scholar] [CrossRef]
- Saccà, F.; Puorro, G.; Brunetti, A.; Capasso, G.; Cervo, A.; Cocozza, S.; de Leva, M.; Marsili, A.; Pane, C.; Quarantelli, M.; et al. A Randomized Controlled Pilot Trial of Lithium in Spinocerebellar Ataxia Type 2. J. Neurol. 2015, 262, 149–153. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L. Mitochondrial Enhancement for Neurodegenerative Movement Disorders: A Systematic Review of Trials Involving Creatine, Coenzyme Q10, Idebenone and Mitoquinone. CNS Drugs 2014, 28, 63–68. [Google Scholar] [CrossRef]
- Grimaldi, G.; Argyropoulos, G.P.; Boehringer, A.; Celnik, P.; Edwards, M.J.; Ferrucci, R.; Galea, J.M.; Groiss, S.J.; Hiraoka, K.; Kassavetis, P.; et al. Non-Invasive Cerebellar Stimulation—A Consensus Paper. Cerebellum Lond. Engl. 2014, 13, 121–138. [Google Scholar] [CrossRef]
- Hartley, H.; Cassidy, E.; Bunn, L.; Kumar, R.; Pizer, B.; Lane, S.; Carter, B. Exercise and Physical Therapy Interventions for Children with Ataxia: A Systematic Review. Cerebellum Lond. Engl. 2019, 18, 951–968. [Google Scholar] [CrossRef]
- Strawser, C.; Schadt, K.; Hauser, L.; McCormick, A.; Wells, M.; Larkindale, J.; Lin, H.; Lynch, D.R. Pharmacological Therapeutics in Friedreich Ataxia: The Present State. Expert Rev. Neurother. 2017, 17, 895–907. [Google Scholar] [CrossRef]
- Ashizawa, T.; Öz, G.; Paulson, H.L. Spinocerebellar Ataxias: Prospects and Challenges for Therapy Development. Nat. Rev. Neurol. 2018, 14, 590–605. [Google Scholar] [CrossRef]
- Shakkottai, V.; Paulson, H. Expanding the Genetic Basis of Ataxia. Nat. Genet. 2019, 51, 580–581. [Google Scholar] [CrossRef]
- Wong, M.M.K.; Watson, L.M.; Becker, E.B.E. Recent Advances in Modelling of Cerebellar Ataxia Using Induced Pluripotent Stem Cells. J. Neurol. Neuromed. 2017, 2, 11–15. [Google Scholar] [CrossRef]
- Georges, P.; Boza-Moran, M.-G.; Gide, J.; Pêche, G.A.; Forêt, B.; Bayot, A.; Rustin, P.; Peschanski, M.; Martinat, C.; Aubry, L. Induced Pluripotent Stem Cells-Derived Neurons from Patients with Friedreich Ataxia Exhibit Differential Sensitivity to Resveratrol and Nicotinamide. Sci. Rep. 2019, 9, 14568. [Google Scholar] [CrossRef]
- Hansen, S.K.; Stummann, T.C.; Borland, H.; Hasholt, L.F.; Tümer, Z.; Nielsen, J.E.; Rasmussen, M.A.; Nielsen, T.T.; Daechsel, J.C.A.; Fog, K.; et al. Induced Pluripotent Stem Cell—Derived Neurons for the Study of Spinocerebellar Ataxia Type 3. Stem Cell Res. 2016, 17, 306–317. [Google Scholar] [CrossRef]
- Buijsen, R.A.M.; Hu, M.; Sáez-González, M.; Notopoulou, S.; Mina, E.; Koning, W.; Gardiner, S.L.; van der Graaf, L.M.; Daoutsali, E.; Pepers, B.A.; et al. Spinocerebellar Ataxia Type 1 Characteristics in Patient-Derived Fibroblast and IPSC-Derived Neuronal Cultures. Mov. Disord. Off. J. Mov. Disord. Soc. 2023, 1428–1442. [Google Scholar] [CrossRef]
- He, L.; Wang, S.; Peng, L.; Zhao, H.; Li, S.; Han, X.; Habimana, J.d.D.; Chen, Z.; Wang, C.; Peng, Y.; et al. CRISPR/Cas9 Mediated Gene Correction Ameliorates Abnormal Phenotypes in Spinocerebellar Ataxia Type 3 Patient-Derived Induced Pluripotent Stem Cells. Transl. Psychiatry 2021, 11, 479. [Google Scholar] [CrossRef]
- Chen, Y.; Bury, L.; Chen, F.; Aldinger, K.A.; Miranda, H.C.; Wynshaw-Boris, A. Generation of Advanced Cerebellar Organoids for Neurogenesis and Neuronal Network Development. Hum. Mol. Genet. 2023, 32, 2832–2841. [Google Scholar] [CrossRef]
- Silva, T.P.; Fernandes, T.G.; Nogueira, D.E.S.; Rodrigues, C.A.V.; Bekman, E.P.; Hashimura, Y.; Jung, S.; Lee, B.; Carmo-Fonseca, M.; Cabral, J.M.S. Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by Immunostaining. J. Vis. Exp. JoVE 2020, 160, e61143. [Google Scholar] [CrossRef]
- Watson, L.M.; Wong, M.M.K.; Vowles, J.; Cowley, S.A.; Becker, E.B.E. A Simplified Method for Generating Purkinje Cells from Human-Induced Pluripotent Stem Cells. Cerebellum Lond. Engl. 2018, 17, 419–427. [Google Scholar] [CrossRef]
- Buchholz, D.E.; Carroll, T.S.; Kocabas, A.; Zhu, X.; Behesti, H.; Faust, P.L.; Stalbow, L.; Fang, Y.; Hatten, M.E. Novel Genetic Features of Human and Mouse Purkinje Cell Differentiation Defined by Comparative Transcriptomics. Proc. Natl. Acad. Sci. USA 2020, 117, 15085–15095. [Google Scholar] [CrossRef]
- Hommersom, M.P.; Buijsen, R.A.M.; van Roon-Mom, W.M.C.; van de Warrenburg, B.P.C.; van Bokhoven, H. Human Induced Pluripotent Stem Cell-Based Modelling of Spinocerebellar Ataxias. Stem Cell Rev. Rep. 2022, 18, 441–456. [Google Scholar] [CrossRef]
- Chow, S.-C.; Huang, Z. Innovative Design and Analysis for Rare Disease Drug Development. J. Biopharm. Stat. 2020, 30, 537–549. [Google Scholar] [CrossRef]
Disease | OMIM ID | Location | Gene/Locus | Inheritance | Clinical Features and Phenotype |
---|---|---|---|---|---|
Spinocerebellar ataxia type 1 (SCA1) | #164400 | 6p22.3 | ATXN1 | Autosomal-dominant | Cerebellar ataxia (characterized by Purkinje neuron and dentate nucleus neuron loss) with variable involvement of the brainstem and spinal cord. Cognitive decline has been also observed |
Spinocerebellar ataxia type 2 (SCA2) | #183090 | 12q24.12 | ATXN2 | Autosomal-dominant | Cerebellar ataxia (characterized by olivopontocerebellar degeneration) associated with oculomotor defects, parkinsonism, cognitive impairment, and peripheral neuropathy |
Spinocerebellar ataxia type 3 or Machado–Joseph Disease (SCA3 or MJD) | #109150 | 14q32.12 | ATXN3 | Autosomal-dominant | Cerebellar ataxia (characterized by the degeneration of deep cerebellar nuclei neurons) with pyramidal and extrapyramidal signs. In some cases, peripheral neuropathy and parkinsonism have been also detected |
Spinocerebellar ataxia type 6 (SCA6) | #183086 | 19q13.13 | CACNA1A | Autosomal-dominant | Pure cerebellar ataxia characterized by Purkinje neuron degeneration. In a few cases, basal ganglia dysfunction has been reported |
Spinocerebellar ataxia type 7 (SCA7) | #164500 | 3p14.1 | ATXN7 | Autosomal-dominant | Cerebellar ataxia, dysarthria, spasticity, and peculiarly retinal degeneration |
Spinocerebellar ataxia type 17 (SCA17) | #607136 | 6q27 | TBP | Autosomal-dominant | Cerebellar ataxia (characterized by Purkinje neuron loss) associated with the degeneration of different other brain region (cerebral cortex, basal ganglia, and cingulate and hippocampal gyri) resulting in pyramidal signs, psychiatric dysfunction, and dementia |
Spinocerebellar ataxia type 27B or GAA-FGF17 ataxia (SCA27B) | #620174 | 13q33.1 | FGF14 | Autosomal-dominant | Cerebellar ataxia (characterized by Purkinje neuron loss, in particular in the vermis) in combination with nystagmus, dysarthria, vertigo, spasticity, or peripheral axonal neuropathy |
Friedreich’s ataxia (FA) | #229300 | 9q21.11 | FXN | Autosomal-recessive | Progressive gait and limb ataxia, dysarthria, polyneuropathy, and sensory loss due to the dysfunction of the spinocerebellar and pyramidal tracts and the dorsal column. Cerebellum is barely affected, with only dentate nucleus neuron loss |
Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) | #614575 | 4p14 | RFC1 | Autosomal-recessive | Cerebellar ataxia (characterized by imbalance) associated with bilateral vestibulopathy, sensory neuropathy, and, occasionally, autonomic dysfunction and chronic cough |
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) | #270550 | 13q12.12 | SACS | Autosomal-recessive | Cerebellar ataxia (characterized by Purkinje neuron degeneration) later associated with pyramidal tract signs, spasticity, and peripheral neuropathy |
Ataxia–telangiectasia (AT) | #208900 | 11q22.3 | ATM | Autosomal-recessive | Cerebellar ataxia and progressive degeneration of different neuronal populations associated with oculomotor apraxia, extrapyramidal movements, and immunodeficiency |
Autosomal-recessive ataxia type 2 (ARCA2) | #612016 | 1q42.13 | ADCK3 | Autosomal-recessive | Cerebellar ataxia combined with exercise intolerance, dystonia, epilepsy, and intellectual disability |
Episodic ataxia 1 (EA1) | #160120 | 12p13.32 | KCNA1 | Autosomal-dominant | Periodic short ataxia and myokymia attacks |
Episodic ataxia 2 (EA2) | #108500 | 19qp13.13 | CACNA1A | Autosomal-dominant | Long intermittent ataxic events |
Fragile X-associated tremor/ataxia syndrome (FXTAS) | #300623 | Xq27.3 | FMR1 | X-linked dominant | Cerebellar ataxia accompanied by tremor, peripheral neuropathy, cognitive decline, and psychiatric signs |
Joubert syndrome | #213300 | 9q34.3 | INPP5E | Autosomal-recessive | Ataxia (caused by cerebellum and brainstem malformations), ocular motor apraxia, and non-neurological signs such as breathing impairment, kidney, and liver alterations |
Strategy | Stage | Model | Outcomes | References | |
---|---|---|---|---|---|
Spinocerebellar ataxia type 1 (SCA1) | |||||
Small RNA structures | shRNA and miRNA | Pre-clinical | SCA1 mouse models | Improvement in motor coordination, restoration of cerebellar morphology, and absence of ataxin-1 inclusions | [176,177,178] |
Small RNA structures | miRNA | Pre-clinical | SCA1 non-human primate | Reduction in endogenous ATXN1 mRNA | [179] |
Proteostasis | HSP inhibitor (BIIB021) | Pre-clinical | Human SCA1 cell lines | Reduction in ataxin-1 aggregates | [180] |
Pharmacological treatment | MitoQ | Pre-clinical | SCA1 mouse models | Restoration of mitochondrial function, attenuation of PN degeneration, and improvement in motor coordination | [19] |
Pharmacological treatment | 4-animopyridine | Pre-clinical | SCA1 mouse model | Restoration of PN firing, improvement in motor coordination, and partial protection against cell atrophy | [181] |
Pharmacological treatment | Lithium | Pre-clinical | SCA1 mouse model | Improvement in motor coordination | [182] |
Spinocerebellar ataxia type 2 (SCA2) | |||||
Genome editing | CRISPR | Pre-clinical | SCA2 mouse models | CAG repeat size and rearrangements and frequency of integration | [183] |
Small RNA structure | ASO | Pre-clinical | SCA2 mouse models | Improvement in motor performance and restoration of physiological properties and deregulated genes and proteins | [184] |
Pharmacological treatment | Chlorzoxazone | Pre-clinical | SCA2 mouse model | Normalization of PN firing and alleviation of ataxic phenotype | [185] |
Pharmacological treatment | NS13001 | Pre-clinical | SCA2 mouse model | Improvement in motor ability and reduced PN degeneration | [186] |
Spinocerebellar ataxia type 3 (SCA3) | |||||
Genome editing | CRISPR | Pre-clinical | Human iPSCs | Restoration of ataxin-3 functionality without the formation of toxic aggregates | [187] |
Small RNA structure | shRNA | Pre-clinical | SCA3 rat model | Reduced ataxin-3 inclusions and prevention of neurodegeneration | [188] |
Small RNA structure | siRNA | Pre-clinical | SCA3 mouse model | ATXN3 downregulation and prevention of its aggregation | [189,190] |
Small RNA structure | ASO | Pre-clinical | SCA3 mouse model | Improvement in motor ability, restoration of PN dysfunction, and rescue of altered neurometabolites | [191] |
Gene activation | HDAC inhibitor, valproic acid | Clinical phase ½ | SCA3 patients | Patients treated with valproic acid improved their locomotor function (SARA scale) | [192] |
Pharmacological treatment | Coenzyme Q10 | Pre-clinical | SCA3 mouse model | Recovery of motor coordination, reduced PN degeneration, and muscle atrophy | [193] |
Pharmacological treatment | Varenicline | Clinical | SCA3 patients | Improvement in SARA scale score | [194] |
Pharmacological treatment | Resveratrol | Clinical | SCA3 mouse model | Reduced motor incoordination | [195] |
Spinocerebellar ataxia type 6 (SCA6) | |||||
Small RNA structure | miRNA | Pre-clinical | SCA6 mouse model | Reduced ataxic phenotype and PN degeneration | [196,197] |
Pharmacological treatment | 4-aminopyridine | Pre-clinical | SCA6 mouse model | Improvement in motor ability and restoration of PN firing | [198] |
Spinocerebellar ataxia type 7 (SCA7) | |||||
Small RNA structure | miRNA | Pre-clinical | SCA7 mouse model | Improvement in motor deficit, increased PN survival, and ATXN7 downregulation | [199,200] |
Spinocerebellar ataxia type 28 (SCA28) | |||||
Pharmacological treatment | Ceftriaxone | Pre-clinical | SCA28 mouse model | Reduced PN degeneration and improvement in motor performance | [143] |
Friedreich’s Ataxia (FA) | |||||
Genome editing | CRISPR | Pre-clinical | Human iPSCs | Deletion of the expanded CAG tract is not always sufficient to revert the phenotype | [201,202] |
Genome editing | ZFN | Pre-clinical | Human iPSC-derived neurons and cardiomyocytes | Decreased aconitase activity and ATP levels in iPSC-derived neurons and corrected cardiomyopathy in cardiomyocytes | [203] |
Small RNA structure | ASO | Pre-clinical | Human FA cell lines | Activation of FXN expression and consequent restoration of frataxin levels | [204] |
Small RNA structure | Gapmer | Pre-clinical | Human FA cell lines | Activation of FXN expression | [205] |
Gene therapy | AAVrh10-CAG-hFXN | Pre-clinical | FA mouse model | Complete and rapid recovery of cardiac functionality | [206,207,208] |
Gene therapy | AAV9-CAG-hFXN-HA, AAVrh.10-CAG-hFXN-HA | Pre-clinical | FA mouse model | Complete and rapid rescue of sensory neuropathy and ganglionopathy | [209] |
Gene therapy | LX2006 (AAVrh.10hFXN) | Clinical phase 1/2 | Patients with FA | Ongoing, sponsored by Lexeo Therapeutics, New York, NY, USA (NCT05445323) | |
Protein replacement | TAT peptides | Pre-clinical | FA mouse model | Decreased neurite degeneration and apoptotic markers resulting in increased cell survival and restoration of mitochondrial features | [210] |
Protein replacement | TAT peptides | Clinical phase 2 | Patients with FA | Ongoing, sponsored by Larimar Therapeutics, Bala Cynwyd, PA, USA (NCT05579691) | |
Gene activation | Syn-TEF1 | Pre-clinical | Human iPSC-derived neurons and cardiomyocytes | Activation of FXN expression | [211] |
Gene activation | Syn-TEF1 | Clinical phase 1a | Patients with FA | Ongoing, sponsored by Design Therapeutics, Carlsbad, CA, USA (NCT05285540) | |
Gene activation | HDAC inhibitors, 2-aminobenzamide | Pre-clinical | Human cell lines and FA mouse models | Activation of FXN expression | [212] |
Gene activation | HDAC inhibitors, nicotinamide | Pre-clinical | FA mouse model | FXN upregulation | [213] |
Gene activation | HDAC inhibitors, RG2833 | Clinical phase 1 | Patients with FA | Increased FXN levels, but a toxic metabolite was detected | [214] |
Pharmacological treatment | Omaveloxolone | Clinical phase 2 | Patients with FA | Approved, sponsored by Biogen, Cambridge, MA, USA (NCT02255435) | [215,216] |
Pharmacological treatment | Vatiquinone | Clinical phase 2/3 | Patients with FA | Ongoing, sponsored by PTC Therapeutics, South Plainfield, NJ, USA (NCT04577352) | |
Pharmacological treatment | MitoQ | Pre-clinical | FA cell lines | Reduced cell death | [217] |
Autosomal-Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) | |||||
Proteostasis | HSP inhibitor (KU-32) | Pre-clinical | Human ARSACS cell lines | Reduction in vimentin bundles and restoration of mitochondrial membrane potential | [218] |
Pharmacological treatment | MitoQ | Pre-clinical | ARSACS mouse model | Decreased PN degeneration, increased DCN innervation, and prevention of motor decline | [219] |
Pharmacological treatment | Ceftriaxone | Pre-clinical | ARSACS mouse model | Restoration of calcium homeostasis, reduced neuroinflammation, and improvement in motor ability | [220] |
Ataxia–telangiectasia (AT) | |||||
Pharmacological treatment | Nicotinamide riboside | Pre-clinical | AT mouse model | Prevention of neuroinflammation, reduced mitochondrial dysfunction and PN death, and improvement in motor ability | [221] |
Pharmacological treatment | Amantadine | Clinical phase 4 | Patients with AT | Improvement in ataxic phenotype, involuntary movements, and parkinsonism symptoms | [222] |
Pharmacological treatment | Dexamethasone | Clinical phase 3 | Patients with AT | Sponsored by Erydel, South San Francisco, CA, USA(NCT02770807) | |
Autosomal-Recessive Ataxia tye-2 (ARCA2) | |||||
Pharmacological treatment | Coenzyme Q10 | Clinical | Patients with ARCA2 | Mild improvement in motor features | [223] |
Multi-disease trials | |||||
Pharmacological treatment | Riluzole | Clinical phase 2 | Patients with SCA1, SCA2, SCA17, SCA28 and FA | Improvement in ICARS scale score | [224] |
Pharmacological treatment | Riluzole | Clinical phase 3 | Patients with SCA1, SCA2, SCA3, SCA6, SCA7, SCA8 and SCA10 | Ongoing, sponsored by Biohaven Pharmaceutical, Inc., New Haven, CT, USA (NCT03701399) | [225] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilotto, F.; Del Bondio, A.; Puccio, H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024, 13, 319. https://doi.org/10.3390/cells13040319
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells. 2024; 13(4):319. https://doi.org/10.3390/cells13040319
Chicago/Turabian StylePilotto, Federica, Andrea Del Bondio, and Hélène Puccio. 2024. "Hereditary Ataxias: From Bench to Clinic, Where Do We Stand?" Cells 13, no. 4: 319. https://doi.org/10.3390/cells13040319
APA StylePilotto, F., Del Bondio, A., & Puccio, H. (2024). Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells, 13(4), 319. https://doi.org/10.3390/cells13040319