Low Density Lipoprotein Cholesterol Decreases the Expression of Adenosine A2A Receptor and Lipid Rafts-Protein Flotillin-1: Insights on Cardiovascular Risk of Hypercholesterolemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Peripheral Blood Mononuclear Cell (PBMC) Isolation
2.3. PBMCs Treatment with LDL-C Enriched Medium
2.4. SDS-PAGE and Western Blot Analysis
2.5. Statistical Analysis
3. Results
3.1. Hypercholesterolemic Patient and Healthy Subject Characteristics
3.2. Analysis of A2A Receptor Expression in Hypercholesterolemic Patients and Healthy Participants
3.3. Analysis of Flotillin-1 Expression in Hypercholesterolemic Patients and Healthy Participants
3.4. Effect of LDL-C Supplementation on A2AR and Flotillin-1 Expression
4. Discussion
- (1)
- A2AR is activated in response to hypoxia and ischemia and has a protective function, by attenuating the production of pro-inflammatory cytokines such as interleukins IL-2 and IL-4, TNF-α and INF-γ, and by promoting the synthesis of anti-inflammatory molecules such as interleukin IL-10 [50,51,52,53,54]. Analysis of A2AR expression and function in PBMCs are also similar to expression in the myocardium [55], coronary arteries, aorta [22] and iliac arteries [23], these tissue sites being the preferred location for cholesterol deposits. A2AR activation induces relaxation of vascular smooth muscle cells, resulting in coronary and peripheral vasodilation [16,20,56,57,58]. Therefore, decreased expression of A2AR in PBMCs could potentially decrease adenosine-induced vasodilation in response to ischemia and therefore prevent the compensatory mechanisms that are activated in response to obstruction of blood flow due to lesion formation.
- (2)
- Because Flotillin-1 is a ubiquitous component of cholesterol-enriched membrane domains [59,60] (REF, alteration in its expression might indicate a destabilization of these membrane domains, which might have a larger impact on the localization and function of other plasma membrane-associated proteins in PBMCs, as well as in other cell types exposed to high LDL levels). Lipid rafts are already known as crucial modulators of receptor-mediated signaling processes [61,62]. The results of this report highlight the relevance to broadly investigate the effect of LDL-C excess on lipid rafts organization and function and to screen on all signaling pathways that might be modified. This knowledge might contribute to understanding the molecular mechanisms underlining LDL-C toxicity and to find novel targets and therapeutic approaches against hypercholesterolemia, as for patients resistant to current hypolipidemic treatments.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TC | total cholesterol |
LDL | low-density lipoprotein |
LDL-C | low-density lipoprotein cholesterol |
HDL-C | high-density lipoprotein-cholesterol |
TG | triglycerides |
HC | hypercholesterolemia |
HP | healthy participants |
FH | familial hypercholesterolemia |
PCSK9 | Proprotein Convertase Subtilisin/Kexin Type 9 |
PBMCs | peripheral blood mononuclear cells |
A2AR | adenosine A2A receptor |
CAD | coronary artery disease |
A.U. | arbitrary units |
References
- Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef] [PubMed]
- Bersot, T.P. Drug Therapy for Hypercholesterolemia and Dyslipidemia. In Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L.L., Chabner, B.A., Knollmann, B.C., Eds.; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Brandts, J.; Ray, K.K. Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2021, 78, 1831–1843. [Google Scholar] [CrossRef] [PubMed]
- Di Taranto, M.D.; Fortunato, G. Genetic Heterogeneity of Familial Hypercholesterolemia: Repercussions for Molecular Diagnosis. Int. J. Mol. Sci. 2023, 24, 3224. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yang, H.; Song, B.L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Grouleff, J.; Irudayam, S.J.; Skeby, K.K.; Schiøtt, B. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim. Biophys. Acta 2015, 1848, 1783–1795. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, J.; Zhao, K.; Gao, L.; Zhao, J. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell Metab. 2021, 33, 1911–1925. [Google Scholar] [CrossRef]
- Lingwood, D.; Simons, K. Lipid rafts as a membrane-organizing principle. Science 2010, 327, 46–50. [Google Scholar] [CrossRef]
- Meister, M.; Tikkanen, R. Endocytic Trafficking of Membrane-Bound Cargo: A Flotillin Point of View. Membranes 2014, 4, 356–371. [Google Scholar] [CrossRef]
- Ouweneel, A.B.; Thomas, M.J.; Sorci-Thomas, M.G. The ins and outs of lipid rafts: Functions in intracellular cholesterol homeostasis, microparticles, and cell membranes: Thematic Review Series: Biology of Lipid Rafts. J. Lipid Res. 2020, 61, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol. Rev. 2018, 98, 1591–1625. [Google Scholar] [CrossRef]
- Ralevic, V.; Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 1998, 50, 413–492. [Google Scholar]
- Fredholm, B.B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Wasserman, W. Structure and function of adenosine receptors and their genes. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2000, 362, 364–374. [Google Scholar] [CrossRef]
- Palmer, T.M.; Stiles, G.L. Structure-function analysis of inhibitory adenosine receptor regulation. Neuropharmacology 1997, 36, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Shryock, J.C.; Belardinelli, L. Adenosine and Adenosine Receptors in the Cardiovascular System: Biochemistry, Physiology, and Pharmacology. Am. J. Cardiol. 1997, 79, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Fatteh, N.; El-Sherbiny, N.M.; Naime, M.; Ibrahim, A.S.; El-Sherbini, A.M.; El-Shafey, S.A.; Khan, S.; Fulzele, S.; Gonzales, J.; et al. Potential role of A2A adenosine receptor in traumatic optic neuropathy. J. Neuroimmunol. 2013, 264, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Vinapamula, K.S.; Pemmaraju, S.V.; Bhattaram, S.K.; Bitla, A.R.; Manohar, S.M. Serum Adenosine Deaminase as Inflammatory Marker in Rheumatoid Arthritis. J. Clin. Diagn. Res. 2015, 9, BC08–BC10. [Google Scholar] [CrossRef] [PubMed]
- Kutryb-Zajac, B.; Mateuszuk, L.; Zukowska, P.; Jasztal, A.; Zabielska, M.A.; Toczek, M.; Jablonska, P.; Zakrzewska, A.; Sitek, B.; Rogowski, J.; et al. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition. Cardiovasc. Res. 2016, 112, 590–605. [Google Scholar] [CrossRef] [PubMed]
- Belardinelli, L.; Shryock, J.C.; Snowdy, S.; Zhang, Y.; Monopoli, A.; Lozza, G.; Ongini, E.; Olsson, R.A.; Dennis, D.M. The A2A adenosine receptor mediates coronary vasodilation. J. Pharmacol. Exp. Ther. 1998, 284, 1066–1073. [Google Scholar] [PubMed]
- Sobey, C.G. Potassium channel function in vascular disease. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 28–38. [Google Scholar] [CrossRef]
- Gariboldi, V.; Vairo, D.; Guieu, R.; Marlingue, M.; Ravis, E.; Lagier, D.; Mari, A.; Thery, E.; Collart, F.; Gaudry, M. Expressions of adenosine A2A receptors in coronary arteries and peripheral blood mononuclear cells are correlated in coronary artery disease patients. Int. J. Cardiol. 2017, 230, 427–431. [Google Scholar] [CrossRef]
- Gaudry, M.; Marlinge, M.; Deharo, P.; Vairo, D.; Bottone, S.; Mottola, G.; Kipson, N.; Criado, C.; Mace, P.; Chefrour, M.; et al. Pharmacological profile of adenosine A2A receptors in patients with lower extremity peripheral artery disease and associated coronary artery disease: A pilot study. Int. J. Cardiol. 2019, 285, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lyman, E. Predictions for cholesterol interaction sites on the A2A adenosine receptor. J. Am. Chem. Soc. 2012, 134, 16512–16515. [Google Scholar] [CrossRef]
- McGraw, C.; Yang, L.; Levental, I.; Lyman, E.; Robinson, A.S. Membrane cholesterol depletion reduces downstream signaling activity of the adenosine A2A receptor. Biochim. Biophys. Acta Biomembr. 2019, 1861, 760–767. [Google Scholar] [CrossRef]
- Lovera, S.; Cuzzolin, A.; Kelm, S.; De Fabritiis, G.; Sands, Z.A. Reconstruction of apo A2A receptor activation pathways reveal ligand-competent intermediates and state-dependent cholesterol hotspots. Sci. Rep. 2019, 9, 14199. [Google Scholar] [CrossRef]
- Guixà-González, R.; Albasanz, J.L.; Rodriguez-Espigares, I.; Pastor, M.; Sanz, F.; Martí-Solano, M.; Manna, M.; Martinez-Seara, H.; Hildebrand, P.W.; Martín, M.; et al. Membrane cholesterol access into a G-protein-coupled receptor. Nat. Commun. 2017, 8, 14505. [Google Scholar] [CrossRef]
- Reiss, A.B.; Rahman, M.M.; Chan, E.S.; Montesinos, M.C.; Awadallah, N.W.; Cronstein, B.N. Adenosine A2A receptor occupancy stimulates expression of proteins involved in reverse cholesterol transport and inhibits foam cell formation in macrophages. J. Leukoc. Biol. 2004, 76, 727–734. [Google Scholar] [CrossRef]
- Voloshyna, I.; Carsons, S.; Littlefield, M.J.; Rieger, J.M.; Figler, R.; Reiss, A.B. Adenosine A2A receptor activation supports an atheroprotective cholesterol balance in human macrophages and endothelial cells. Biochim. Biophys. Acta 2013, 1831, 407–416. [Google Scholar] [CrossRef]
- De Nuccio, C.; Bernardo, A.; Ferrante, A.; Pepponi, R.; Martire, A.; Falchi, M.; Visentin, S.; Popoli, P.; Minghetti, L. Adenosine A2A receptor stimulation restores cell functions and differentiation in Niemann-Pick type C-like oligodendrocytes. Sci. Rep. 2019, 9, 9782. [Google Scholar] [CrossRef]
- Visentin, S.; De Nuccio, C.; Bernardo, A.; Pepponi, R.; Ferrante, A.; Minghetti, L.; Popoli, P. The Stimulation of Adenosine A 2A Receptors Ameliorates the Pathological Phenotype of Fibroblasts from Niemann-Pick Type C Patients. J. Neurosci. 2013, 33, 15388–15393. [Google Scholar] [CrossRef]
- Ferrante, A.; De Nuccio, C.; Pepponi, R.; Visentin, S.; Martire, A.; Bernardo, A.; Minghetti, L.; Popoli, P. Stimulation of adenosine A2A receptors reduces intracellular cholesterol accumulation and rescues mitochondrial abnormalities in human neural cell models of Niemann-Pick C1. Neuropharmacology 2016, 103, 155–162. [Google Scholar] [CrossRef]
- Lasley, R.D. Adenosine receptors and membrane microdomains. Biochim. Biophys. Acta 2011, 1808, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Vairo, D.; Giacobbe, C.; Guiol, C.; Chaptal, M.C.; Di Taranto, M.D.; Bruzzese, L.; Ruf, J.; Guieu, R.; Fortunato, G.; Fenouillet, E.; et al. Correlation between low adenosine A2A receptor expression and hypercholesterolemia: A new component of the cardiovascular risk? Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158850. [Google Scholar] [CrossRef] [PubMed]
- Jamialahmadi, T.; Abbasifard, M.; Reiner, Ž.; Rizzo, M.; Eid, A.H.; Sahebkar, A. The Effects of Statin Treatment on Serum Ferritin Levels: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 5251. [Google Scholar] [CrossRef]
- Vahedian-Azimi, A.; Beni, F.H.; Fras, Z.; Banach, M.; Mohammadi, S.M.; Jamialahmadi, T.; Sahebkar, A. Effects of statins on the incidence and outcomes of acute kidney injury in critically ill patients: A systematic review and meta-analysis. Arch. Med. Sci. 2023, 19, 952–964. [Google Scholar] [CrossRef]
- By, Y.; Durand-Gorde, J.M.; Condo, J.; Lejeune, P.J.; Mallet, B.; Carayon, P.; Guieu, R.; Ruf, J. Production of an agonist-like monoclonal antibody to the human A2A receptor of adenosine for clinical use. Mol. Immunol. 2009, 46, 400–405. [Google Scholar] [CrossRef]
- Tomic Naglic, D.; Manojlovic, M.; Pejakovic, S.; Stepanovic, K.; Prodanovic Simeunovic, J. Lipoprotein(a): Role in atherosclerosis and new treatment options. Biomol. Biomed. 2023, 23, 575–583. [Google Scholar] [CrossRef]
- Liu, J.; Deyoung, S.M.; Zhang, M.; Dold, L.H.; Saltiel, A.R. The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. J. Biol. Chem. 2005, 280, 16125–16134. [Google Scholar] [CrossRef]
- Ge, L.; Qi, W.; Wang, L.J.; Miao, H.H.; Qu, Y.X.; Li, B.L.; Song, B.L. Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc. Natl. Acad. Sci. USA 2011, 108, 551–556. [Google Scholar] [CrossRef]
- Kwan, B.C.; Kronenberg, F.; Beddhu, S.; Cheung, A.K. Lipoprotein Metabolism and Lipid Management in Chronic Kidney Disease. J. Am. Soc. Nephrol. 2007, 18, 1246–1261. [Google Scholar] [CrossRef]
- Hussain, M.M.; Strickland, D.K.; Bakillah, A. The mammalian low-density lipoprotein receptor family. Annu. Rev. Nutr. 1999, 19, 141–172. [Google Scholar] [CrossRef]
- Charalambous, C.; Gsandtner, I.; Keuerleber, S.; Milan-Lobo, L.; Kudlacek, O.; Freissmuth, M.; Zezula, J. Restricted Collision Coupling of the A2A Receptor Revisited. J. Biol. Chem. 2008, 283, 9276–9288. [Google Scholar] [CrossRef]
- O’Malley, M.A.; Helgeson, M.E.; Wagner, N.J.; Robinson, A.S. The Morphology and Composition of Cholesterol-Rich Micellar Nanostructures Determine Transmembrane Protein (GPCR) Activity. Biophys. J. 2011, 100, L11–L13. [Google Scholar] [CrossRef] [PubMed]
- Schlienger, J.L. L’édifiante histoire du cholestérol: De la pierre de fiel au récepteur aux LDL. Médecine Des Mal. Métaboliques 2012, 6, 97–103. [Google Scholar] [CrossRef]
- Benito-Vicente, A.; Uribe, K.B.; Jebari, S.; Galicia-Garcia, U.; Ostolaza, H.; Martin, C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int. J. Mol. Sci. 2018, 19, 3426. [Google Scholar] [CrossRef] [PubMed]
- Mojsilovic-Petrovic, J.; Jeong, G.B.; Crocker, A.; Arneja, A.; David, S.; Russell, D.S.; Kalb, R.G. Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J. Neurosci. 2006, 26, 9250–9263. [Google Scholar] [CrossRef]
- Alexanderson, E.; García-Rojas, L.; Jiménez, M.; Jácome, R.; Calleja, R.; Martínez, A.; Ochoa, J.M.; Meave, A.; Alexanderson, G. Effect of ezetimibe–simvastatine over endothelial dysfunction in dyslipidemic patients: Assessment by 13N-ammonia positron emission tomography. J. Nucl. Cardiol. 2010, 17, 1015–1022. [Google Scholar] [CrossRef]
- Pfisterer, S.G.; Brock, I.; Kanerva, K.; Hlushchenko, I.; Paavolainen, L.; Ripatti, P.; Islam, M.M.; Kyttälä, A.; Di Taranto, M.D.; Scotto di Frega, A.; et al. Multiparametric platform for profiling lipid trafficking in human leukocytes. Cell Rep. Methods 2022, 2, 100166. [Google Scholar] [CrossRef]
- Sitkovsky, M.V.; Lukashev, D.; Apasov, S.; Kojima, H.; Koshiba, M.; Caldwell, C.; Ohta, A.; Thiel, M. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 2004, 22, 657–682. [Google Scholar] [CrossRef]
- Naganuma, M.; Wiznerowicz, E.B.; Lappas, C.M.; Linden, J.; Worthington, M.T.; Ernst, P.B. Cutting edge: Critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J. Immunol. 2006, 177, 2765–2769. [Google Scholar] [CrossRef]
- Lappas, C.M.; Rieger, J.M.; Linden, J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J. Immunol. 2005, 174, 1073–1080. [Google Scholar] [CrossRef]
- Csóka, B.; Himer, L.; Selmeczy, Z.; Vizi, E.S.; Pacher, P.; Ledent, C.; Deitch, E.A.; Spolarics, Z.; Németh, Z.H.; Haskó, G. Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J. 2008, 22, 3491–3499. [Google Scholar] [CrossRef] [PubMed]
- Romio, M.; Reinbeck, B.; Bongardt, S.; Hüls, S.; Burghoff, S.; Schrader, J. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am. J. Physiol. Cell Physiol. 2011, 301, C530–C539. [Google Scholar] [CrossRef]
- Varani, K.; Laghi-Pasini, F.; Camurri, A.; Capecchi, P.L.; Maccherini, M.; Diciolla, F.; Ceccatelli, L.; Lazzerini, P.E.; Ulouglu, C.; Cattabeni, F.; et al. Changes of peripheral A2A adenosine receptors in chronic heart failure and cardiac transplantation. FASEB J. 2003, 17, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Monopoli, A.; Gamba, M.; Borea, P.A.; Ongini, E. Effects of selective A1 and A2 adenosine receptor agonists on cardiovascular tissues. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1993, 348, 108–112. [Google Scholar] [CrossRef]
- Iwamoto, T.; Umemura, S.; Toya, Y.; Uchibori, T.; Kogi, K.; Takagi, N.; Ishii, M. Identification of Adenosine A2 Receptor-cAMP System in Human Aortic Endothelial Cells. Biochem. Biophys. Res. Commun. 1994, 199, 905–910. [Google Scholar] [CrossRef]
- Monahan, T.S.; Sawmiller, D.R.; Fenton, R.A.; Dobson, J.G., Jr. Adenosine A2a-receptor activation increases contractility in isolated perfused hearts. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H1472–H1481. [Google Scholar] [CrossRef]
- Kwiatkowska, K.; Matveichuk, O.V.; Fronk, J.; Ciesielska, A. Flotillins: At the Intersection of Protein S-Palmitoylation and Lipid-Mediated Signaling. Int. J. Mol. Sci. 2020, 21, 2283. [Google Scholar] [CrossRef]
- Zhan, Z.; Ye, M.; Jin, X. The roles of FLOT1 in human diseases (Review). Mol. Med. Rep. 2023, 28, 212. [Google Scholar] [CrossRef]
- Capozzi, A.; Manganelli, V.; Riitano, G.; Caissutti, D.; Longo, A.; Garofalo, T.; Sorice, M.; Misasi, R. Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome: Molecular Mechanisms and Signaling through Lipid Rafts. J. Clin. Med. 2023, 12, 891. [Google Scholar] [CrossRef]
- Santos, A.L.; Preta, G. Lipids in the cell: Organisation regulates function. Cell. Mol. Life Sci. 2018, 75, 1909–1927. [Google Scholar] [CrossRef]
- Guieu, R.; Ruf, J.; Mottola, G. Hyperhomocysteinemia and cardiovascular diseases. Ann. Biol. Clin. 2022, 80, 7–14. [Google Scholar] [CrossRef]
- Paganelli, F.; Mottola, G.; Fromonot, J.; Marlinge, M.; Deharo, P.; Guieu, R.; Ruf, J. Hyperhomocysteinemia and Cardiovascular Disease: Is the Adenosinergic System the Missing Link? Int. J. Mol. Sci. 2021, 22, 1690. [Google Scholar] [CrossRef]
- Worwood, M.; May, A.M.; Bain, B.J. Iron Deficiency Anaemia and Iron Overload. In Dacie and Lewis Practical Haematology, 12th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017; pp. 165–186. [Google Scholar]
- Valenti, L.; Corradini, E.; Adams, L.A.; Aigner, E.; Alqahtani, S.; Arrese, M.; Bardou-Jacquet, E.; Bugianesi, E.; Fernandez-Real, J.M.; Girelli, D.; et al. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat. Rev. Endocrinol. 2023, 19, 299–310. [Google Scholar] [CrossRef]
- Naito, Y.; Tsujino, T.; Masuyama, T.; Ishihara, M.J. Crosstalk between Iron and Arteriosclerosis. J. Atheroscler. Thromb. 2022, 29, 308–314. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Jadhav, A.B.; Hassan, A.; Meng, Q.H. Acute phase reactants as novel predictors of cardiovascular disease. ISRN Inflamm. 2012, 2012, 953461. [Google Scholar] [CrossRef]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Han, C.; Liu, Y.; Dai, R.; Ismail, N.; Su, W.; Li, B. Ferroptosis and Its Potential Role in Human Diseases. Front. Pharmacol. 2020, 11, 239. [Google Scholar] [CrossRef]
- Oh, B.M.; Lee, S.J.; Park, G.L.; Hwang, Y.S.; Lim, J.; Park, E.S.; Lee, K.H.; Kim, B.Y.; Kwon, Y.T.; Cho, H.J.; et al. Erastin Inhibits Septic Shock and Inflammatory Gene Expression via Suppression of the NF-κB Pathway. J. Clin. Med. 2019, 8, 2210. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, W.; Hu, A.; Lin, J.; Xia, Z.; Yang, C.F.; Li, Y.; Zhang, Z. Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury. Mol. Med. Rep. 2020, 22, 175–184. [Google Scholar] [CrossRef]
- von Haehling, S.; Ebner, N.; Evertz, R.; Ponikowski, P.; Anker, S.D. Iron Deficiency in Heart Failure: An Overview. JACC Heart Fail. 2019, 7, 36–46. [Google Scholar] [CrossRef]
- Auriac, A.; Willemetz, A.; Canonne-Hergaux, F. Lipid raft-dependent endocytosis: A new route for hepcidin-mediated regulation of ferroportin in macrophages. Haematologica 2010, 95, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Chia, P.Y.; Teo, A.; Yeo, T.W. Overview of the Assessment of Endothelial Function in Humans. Front. Med. 2020, 7, 542567. [Google Scholar] [CrossRef]
- Varani, K.; Portaluppi, F.; Gessi, S.; Merighi, S.; Ongini, E.; Belardinelli, L.; Borea, P.A. Dose and time effects of caffeine intake on human platelet adenosine A(2A) receptors: Functional and biochemical aspects. Circulation 2000, 102, 285–289. [Google Scholar] [CrossRef]
- Freedman, N.D.; Park, Y.; Abnet, C.C.; Hollenbeck, A.R.; Sinha, R. Association of coffee drinking with total and cause-specific mortality. N. Engl. J. Med. 2012, 366, 1891–1904. [Google Scholar] [CrossRef]
- Mendoza, M.F.; Sulague, R.M.; Posas-Mendoza, T.; Lavie, C.J. Impact of Coffee Consumption on Cardiovascular Health. Ochsner J. 2023, 23, 152–158. [Google Scholar] [CrossRef]
Healthy Participants (31) | Patients (37) | p | |
---|---|---|---|
Gender | 22 women; 9 men | 25 women; 12 men | 0.762 |
Age | 40.71 ± 13.15 | 46.03 ± 15.43 | 0.135 |
BMI (kg/m2) | 23.00 ± 3.73 | 23.89 ± 3.80 | 0.345 |
TC (mM) | 4.75 ± 0.64 | 8.06 ± 1.40 | <0.0001 *** |
HDL-C (mM) | 1.62 ± 0.42 | 1.60 ± 0.35 | 0.807 |
LDL-C (mM) | 2.68 ± 0.56 | 5.90 ± 1.29 | <0.0001 *** |
TG (mM) | 1.02 ± 0.48 | 1.24 ± 0.55 | 0.095 |
apoB (mM) | 0.78 ± 0.14 | 1.51 ± 0.27 | <0.0001 *** |
Lp(a) (g/L) | 0.24 ± 0.22 | 0.29 ± 0.32 | 0.509 |
CRP (mg/L) | 1.37 ± 2.29 | 2.29 ± 3.87 | 0.251 |
Hcy (µM) | 11.28 ± 3.72 | 11.34 ± 3.64 | 0.953 |
Neutrophils (N) (109/L) | 3.87 ± 1.33 | 3.77 ± 1.82 | 0.803 |
Lymphocytes (L) (109/L) | 2.06 ± 0.36 | 1.86 ± 0.61 | 0.180 |
NLR (N/L) | 1.96 ± 0.71 | 2.22 ± 1.28 | 0.328 |
Albumin (g/L) | 42.59 ± 2.61 | 43.97 ± 3.15 | 0.069 |
Transferrin (g/L) | 2.62 ± 0.49 | 2.27 ± 0.32 | 0.001 ** |
Iron (µM) | 18.53 ± 9.88 | 15.60 ± 5.00 | 0.168 |
FCT (µM) | 65.48 ± 12.23 | 56.97 ± 8.09 | 0.002 * |
TSC (%) | 27.30 ± 13.44 | 28.61 ± 7.70 | 0.656 |
Ferritin (µg/L) | 57.81 ± 56.11 | 102.04 ± 110.45 | 0.045 * |
Haptoglobin (g/L) | 1.04 ± 0.35 | 1.16 ± 0.50 | 0.291 |
Orosomucoid (g/L) | 0.62 ± 0.17 | 0.67 ± 0.21 | 0.361 |
Prealbumin (g/L) | 0.28 ± 0.05 | 0.28 ± 0.05 | 0.920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaptal, M.-C.; Maraninchi, M.; Musto, G.; Mancini, J.; Chtioui, H.; Dupont-Roussel, J.; Marlinge, M.; Fromonot, J.; Lalevee, N.; Mourre, F.; et al. Low Density Lipoprotein Cholesterol Decreases the Expression of Adenosine A2A Receptor and Lipid Rafts-Protein Flotillin-1: Insights on Cardiovascular Risk of Hypercholesterolemia. Cells 2024, 13, 488. https://doi.org/10.3390/cells13060488
Chaptal M-C, Maraninchi M, Musto G, Mancini J, Chtioui H, Dupont-Roussel J, Marlinge M, Fromonot J, Lalevee N, Mourre F, et al. Low Density Lipoprotein Cholesterol Decreases the Expression of Adenosine A2A Receptor and Lipid Rafts-Protein Flotillin-1: Insights on Cardiovascular Risk of Hypercholesterolemia. Cells. 2024; 13(6):488. https://doi.org/10.3390/cells13060488
Chicago/Turabian StyleChaptal, Marie-Charlotte, Marie Maraninchi, Giorgia Musto, Julien Mancini, Hedi Chtioui, Janine Dupont-Roussel, Marion Marlinge, Julien Fromonot, Nathalie Lalevee, Florian Mourre, and et al. 2024. "Low Density Lipoprotein Cholesterol Decreases the Expression of Adenosine A2A Receptor and Lipid Rafts-Protein Flotillin-1: Insights on Cardiovascular Risk of Hypercholesterolemia" Cells 13, no. 6: 488. https://doi.org/10.3390/cells13060488
APA StyleChaptal, M. -C., Maraninchi, M., Musto, G., Mancini, J., Chtioui, H., Dupont-Roussel, J., Marlinge, M., Fromonot, J., Lalevee, N., Mourre, F., Beliard, S., Guieu, R., Valero, R., & Mottola, G. (2024). Low Density Lipoprotein Cholesterol Decreases the Expression of Adenosine A2A Receptor and Lipid Rafts-Protein Flotillin-1: Insights on Cardiovascular Risk of Hypercholesterolemia. Cells, 13(6), 488. https://doi.org/10.3390/cells13060488