Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation
Abstract
:1. Introduction
2. miRNAs in Acute Inflammation
3. Mechanisms of Extracellular miRNA Actions
4. Extracellular miRNAs as Diagnostic and Prognostic Markers
miRNA | Expression (Increased or Decreased) | Outcome | Reference |
---|---|---|---|
miR-15a | Decreased | Shock, vascular permeability | Goodwin et al. (2015), Wang et al. (2012A) [24,63] |
miR-16 | Decreased | Increased mortality | Wang et al. (2012A) [63] |
miR-27a | Decreased | Shock, vascular permeability | Goodwin et al. (2015) [24] |
mir-34a | Increased | Shock, endothelial dysfunction | Goodwin et al. (2015) [24] |
miR-122 | Increased | Increased mortality | Wang et al. (2012A) [63] |
miR-133 | Increased | Presence of sepsis and severity | Benz et al. (2016), Tacke et al. (2014) [20,65] |
miR-146 | Decreased | Differentiates sepsis from SIRS | Formosa et al. (2022), Xu et al. (2018), Wang et al. (2013) [12,49,66] |
miR-150 | Decreased | Presence of sepsis | Vasilescu et al. (2009) [67] |
miR-193 | Increased | Increased mortality | Wang et al. (2012A) [63] |
miR-223 | Decreased | Differentiates sepsis from SIRS and severe sepsis from mild sepsis | Wang et al. (2012A) [63] |
miR-297 | Decreased | Increased mortality | Benz et al. (2016), Wang et al. (2012B) [20,68] |
miR-483-5p | Increased | Differentiates mild and severe sepsis | Wang et al. (2012A) [63] |
miR-574-5p | Increased | Increased mortality | Benz et al. (2016), Wang et al. (2012B) [20,68] |
5. Extracellular miRNA as Therapeutic Targets
miRNA | Pathology | Mechanism of Action | Model | References |
---|---|---|---|---|
Extracellular, Intra-Vesicular | ||||
miR-17 | Sepsis | BMSC-EVs transport miRNAs to decrease expression of BDR4, reducing macrophage apoptosis and cytokine release | LPS intraperitoneal injection | Su et al. (2021) [31] |
miR-30b-3p | Sepsis-induced ALI | MSC-EVs transport miRNAs to decrease expression of SAA3, increasing KGF and reducing cytokine expression and apoptosis of AECs | LPS intratracheal injection | Lee et al. (2009) [76] |
miR-34a-5p miR-122 miR-146a | Sepsis | Inhibitors of miR-34a, miR-122, reduce signaling through TLR7/MyD88 pathway, reducing cytokine expression and neutrophil migration | CLP | Xu et al. (2018) [49] |
miR-93-5p | Sepsis-induced AKI | EPC-secreted EVs silence KDM6B expression, reducing apoptosis and TNF-α via KDM6B/H3K27 pathway | CLP | He et al. (2020) [75] |
miR-126 | Sepsis-induced ALI | EPC-derived vesicles transport miRNAs to ECs and downregulate SPRED1, promoting RAF/ERK induced proliferation and angiogenesis | LPS intratracheal injection | Wu et al. (2018) [47] |
miR-127-5p | Sepsis-induced ALI | BMSC vesicles transport miRNAs that bind to CD64, reducing its expression and NET formation | LPS intratracheal injection | Zheng et al. (2023) [34] |
miR-142-5p | Sepsis | EVs with miRNA inhibit PTEN expression, activating the PI3K/AKT signaling pathway, reducing IL-6 and TNF-α production | LPS tail vein injection | Zhu et al. (2022) [50] |
miR-146a | Sepsis | EVs with miRNAs induce inflammation through TLR7 signaling, which can be blocked by replacing all uridine with adenosine in miR-146a-5p | CLP | Huang et al. (2021), Wang et al. (2021), [33,79] |
miR-146a, miR-155, miR-223 | Sepsis | EVs with all three miRNAs induced variable expressions of cytokines | LPS intraperitoneal injection | Pottash et al. (2022) [77] |
Extracellular, Extra-vesicular | ||||
miR 27b | Sterile inflammation | miRNA mimic binds to eCIRP, inhibiting its interaction with TLR4 | CIRP-induced inflammation (in vitro) | Gurien et al. (2020) [10] |
miR 130-3p | Sepsis | miRNA mimic binds to eCIRP, inhibiting its interaction with TLR4 | CLP | Gurien et al. (2020) [10] |
miR 140 | Sterile inflammation | miRNA mimic binds to eCIRP, inhibiting its interaction with TLR4 | CIRP-induced inflammation (in vitro) | Gurien et al. (2020) [10] |
PS-Ome miR 130 | Sepsis, hepatic I/R, AKI | Modified/engineered miRNA mimic binds to eCIRP, inhibiting its interaction with TLR4 | CLP, portal vein and hepatic artery occlusion for 60 min, bilateral renal artery and vein occlusion for 30 min | Borjas et al. (2023A), Borjas et al. (2023B), Vazquez et al. (2023) [80,81,82] |
A12 | Sepsis | Modified poly(A) tail binds to eCIRP, inhibiting its interaction with TLR4 | CLP | Murao et al. (2023) [83] |
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGO | Argonaute |
AKI | Acute kidney injury |
ALI | Acute lung injury |
ARDS | Acute respiratory distress syndrome |
AP-1 | Activator protein-1 |
ATP | Adenosine Triphosphate |
BDR4 | Bromodomain-containing protein 4 |
BMSC | Bone marrow mesenchymal stem cell |
CD64 | Cluster differentiation 64 |
DAMP | Damage-associated molecular pattern |
DGCR8 | DiGeorge Syndrome Critical Region 8 |
DNA | Deoxyribonucleic acid |
eCIRP | Extracellular cold-inducible RNA-binding protein |
ERK | Extracellular signal-regulated kinase |
ESCRT | Endosomal sorting complexes required for transport |
EV | Extracellular vesicle |
H3K27me4 | Histone 3 with trimethylation at lysine 27 |
hEXO | Human exoribonuclease |
hnRNPA2B1 | Heterogenous nuclear ribonucleoprotein |
I/R | Ischemia/reperfusion |
IL | Interleukin |
KDM6B | Lysine-specific demethylase 6B |
KGF | Keratinocyte growth factor |
KRAS-MEK | Kirsten rat sarcoma viral oncogene homolog-mitogen-activated protein kinase kinase |
LPS | Lipopolysaccharide |
mRNA | Messenger ribonucleic acid |
miRNA | Micro-ribonucleic acid |
MyD88 | Myeloid differentiation primary response 88 |
MSC | Mesenchymal stem cell |
NET | Neutrophil extracellular trap |
NF-κB | Nuclear factor κB |
nm | Nanometers |
NPM1 | Nucleophosmin 1 |
nsMase2 | Neutral sphingomyelinase 2 |
PARP-1 | Poly-adenosine diphosphate ribose polymerase 1 |
PEIs | Polyethylenimines |
pre-miRNA | Precursor miRNA |
pri-miRNA | Primary miRNA |
PI3K/AKT | Phosphoinositide 3-kinase/protein kinase B |
Poly(A) | Polyadenosine |
PS-Ome | Phosphorothioate O-methyl |
PTEN | Phosphatase and tensin homolog |
RAF | Rapidly accelerated fibrosarcoma |
RISC | RNA-silencing complex |
rmCIRP | Recombinant CIRP |
RNA | Ribonucleic acid |
RNP | Ribonucleoprotein |
SAA3 | Serum amyloid A-3 |
SOFA | Sequential organ failure assessment |
SPRED1 | Sprouty-related EVH1 domain-containing 1 |
SV40 | Simian virus 40 |
SYNCRIP | Synaptogamin-binding cytoplasmic RNA-interacting protein |
TLR | Toll-like receptor |
TNF-α | Tumor Necrosis Factor-Alpha |
US | United States |
YBX1 | Y-box protein 1 |
References
- Lee, R.C.; Feinbaum, R.L.; Ambrost, V. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Wightman, B.; Ha, L.; Ruvkun, G. Posttranscriptional Regulation of the Heterochronic Gene Lin-14 by W-4 Mediates Temporal Pattern Formation in C. elegans. Cell 1993, 75, 855–862. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of MiRNAs and SiRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef]
- Das, K.; Rao, L.V.M. The Role of MicroRNAs in Inflammation. Int. J. Mol. Sci. 2022, 23, 15479. [Google Scholar] [CrossRef]
- Ciebiera, M.; Włodarczyk, M.; Zgliczyński, S.; Łoziński, T.; Walczak, K.; Czekierdowski, A. The Role of MiRNA and Related Pathways in Pathophysiology of Uterine Fibroids—From Bench to Bedside. Int. J. Mol. Sci. 2020, 21, 3016. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of MRNAs and MicroRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of Extracellular Circulating MicroRNA. Nucleic Acids Res. 2011, 39, 7223–7233. [Google Scholar] [CrossRef]
- Gurien, S.D.; Aziz, M.; Jin, H.; Wang, H.; He, M.; Al-Abed, Y.; Nicastro, J.M.; Coppa, G.F.; Wang, P. Extracellular Micro RNA 130b-3p Inhibits ECIRP-induced Inflammation. EMBO Rep. 2020, 21, e48075. [Google Scholar] [CrossRef]
- Williams, B.; Kozar, R.; Chao, W. Emerging Role of Extracellular RNA in Innate Immunity, Sepsis, and Trauma. Shock 2023, 59, 190–199. [Google Scholar] [CrossRef]
- Formosa, A.; Turgeon, P.; dos Santos, C.C. Role of MiRNA Dysregulation in Sepsis. Mol. Med. 2022, 28, 99. [Google Scholar] [CrossRef]
- Real, J.M.; Ferreira, L.R.P.; Esteves, G.H.; Koyama, F.C.; Dias, M.V.S.; Bezerra-Neto, J.E.; Cunha-Neto, E.; Machado, F.R.; Salomão, R.; Azevedo, L.C.P. Exosomes from Patients with Septic Shock Convey MiRNAs Related to Inflammation and Cell Cycle Regulation: New Signaling Pathways in Sepsis? Crit. Care 2018, 22, 68. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.; French, C.; Machado, F.; McIntyre, L.; Ostermann, M.; Prescott, H.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Oldenburg, W.A.; Lau, L.L.; Rodenberg, T.J.; Edmonds, H.J.; Burger, C.D. Acute Mesenteric Ischemia A Clinical Review. Arch. Intern. Med. 2004, 164, 1054–1062. [Google Scholar] [CrossRef]
- MacKenzie, E.J.; Rivara, F.P.; Jurkovich, G.J.; Nathens, A.B.; Frey, K.P.; Egleston, B.L.; Salkever, D.S.; Weir, S.; Scharfstein, D.O. The National Study on Costs and Outcomes of Trauma. J. Trauma 2007, 63, S54–S67. [Google Scholar] [CrossRef]
- Terrasini, N.; Lionetti, V. Exosomes in Critical Illness. Crit. Care Med. 2017, 45, 1054–1060. [Google Scholar] [CrossRef]
- Benz, F.; Roy, S.; Trautwein, C.; Roderburg, C.; Luedde, T. Circulating MicroRNAs as Biomarkers for Sepsis. Int. J. Mol. Sci. 2016, 17, 78. [Google Scholar] [CrossRef]
- Turchinovich, A.; Tonevitsky, A.G.; Burwinkel, B. Extracellular MiRNA: A Collision of Two Paradigms. Trends Biochem. Sci. 2016, 41, 883–892. [Google Scholar] [CrossRef]
- Aucher, A.; Rudnicka, D.; Davis, D.M. MicroRNAs Transfer from Human Macrophages to Hepato-Carcinoma Cells and Inhibit Proliferation. J. Immunol. 2013, 191, 6250–6260. [Google Scholar] [CrossRef]
- Rossi-Herring, G.; Belmonte, T.; Rivas-Urbina, A.; Benítez, S.; Rotllan, N.; Crespo, J.; Llorente-Cortés, V.; Sánchez-Quesada, J.L.; de Gonzalo-Calvo, D. Circulating Lipoprotein-Carried MiRNome Analysis Reveals Novel VLDL-Enriched MicroRNAs That Strongly Correlate with the HDL-MicroRNA Profile. Biomed. Pharmacother. 2023, 162, 114623. [Google Scholar] [CrossRef]
- Goodwin, A.J.; Guo, C.; Cook, J.A.; Wolf, B.; Halushka, P.V.; Fan, H. Plasma Levels of MicroRNA Are Altered with the Development of Shock in Human Sepsis: An Observational Study. Crit. Care 2015, 19, 440. [Google Scholar] [CrossRef]
- Bartel, D.P. Review MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Macfarlane, L.-A.; Murphy, P.R. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genom. 2010, 11, 537–561. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Shi, Y.; Wang, S.; Xu, Y.; Li, H.; Liu, D. MiR-143-3p Impacts on Pulmonary Inflammatory Factors and Cell Apoptosis in Mice with Mycoplasmal Pneumonia by Regulating TLR4/MyD88/NF-ΚB Pathway. Biosci. Rep. 2020, 40, BSR20193419. [Google Scholar] [CrossRef]
- Ma, S.; Liu, M.; Xu, Z.; Li, Y.; Guo, H.; Ge, Y.; Liu, Y.; Zheng, D.; Shi, J. A Double Feedback Loop Mediated by MicroRNA-23a/27a/24-2 Regulates M1 versus M2 Macrophage Polarization and Thus Regulates Cancer Progression. Oncotarget 2015, 7, 13502–13519. [Google Scholar] [CrossRef]
- Zhang, D.; Lee, H.; Wang, X.; Groot, M.; Sharma, L.; Dela Cruz, C.S.; Jin, Y. A Potential Role of Microvesicle-Containing MiR-223/142 in Lung Inflammation. Thorax 2019, 74, 865–874. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, T.; Zhang, C.; Ji, H.; Tong, X.; Xia, R.; Wang, W.; Ma, Z.; Shi, X. Exosomal MiR-30d-5p of Neutrophils Induces M1 Macrophage Polarization and Primes Macrophage Pyroptosis in Sepsis-Related Acute Lung Injury. Crit. Care 2021, 25, 356. [Google Scholar] [CrossRef]
- Su, Y.; Song, X.; Teng, J.; Zhou, X.; Dong, Z.; Li, P.; Sun, Y. Mesenchymal Stem Cells-Derived Extracellular Vesicles Carrying MicroRNA-17 Inhibits Macrophage Apoptosis in Lipopolysaccharide-Induced Sepsis. Int. Immunopharmacol. 2021, 95, 107408. [Google Scholar] [CrossRef]
- Suen, A.O.; Chen, F.; Wang, S.; Li, Z.; Zhu, J.; Yang, Y.; Conn, O.; Lopez, K.; Cui, P.; Wechsler, L.; et al. Extracellular RNA Sensing Mediates Inflammation and Organ Injury in a Murine Model of Polytrauma. J. Immunol. 2023, 210, 1990–2000. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, J.; Gu, L.; Hu, J.; Feng, X.; Huang, W.; Wang, S.; Yang, Y.; Cui, P.; Lin, S.H.; et al. TLR7 Mediates Acute Respiratory Distress Syndrome in Sepsis by Sensing Extracellular MiR-146a. Am. J. Respir. Cell Mol. Biol. 2022, 67, 375–388. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, F.; Zhao, F.; Li, L.; Huang, H.; Li, L.; Yi, Y.; Yin, H.; Xu, J. Exosomal MiR-127-5p from BMSCs Alleviated Sepsis-Related Acute Lung Injury by Inhibiting Neutrophil Extracellular Trap Formation. Int. Immunopharmacol. 2023, 123, 110759. [Google Scholar] [CrossRef]
- Neudecker, V.; Brodsky, K.S.; Clambey, E.T.; Schmidt, E.P.; Packard, T.A.; Davenport, B.; Standiford, T.J.; Weng, T.; Fletcher, A.A.; Barthel, L.; et al. Neutrophil Transfer of MiR-223 to Lung Epithelial Cells Dampens Acute Lung Injury in Mice. Sci. Transl. Med. 2017, 9, eaah5360. [Google Scholar] [CrossRef]
- Ba, X.; Garg, N.J. Signaling Mechanism of Poly(ADP-Ribose) Polymerase-1 (PARP-1) in Inflammatory Diseases. Am. J. Pathol. 2011, 178, 946–955. [Google Scholar] [CrossRef]
- Labbaye, C.; Testa, U. The Emerging Role of MIR-146A in the Control of Hematopoiesis, Immune Function and Cancer. J. Hematol. Oncol. 2012, 5, 13. [Google Scholar] [CrossRef]
- Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. MiR-146 and MiR-155: Two Key Modulators of Immune Response and Tumor Development. Noncoding RNA 2017, 3, 22. [Google Scholar] [CrossRef]
- Möhnle, P.; Hirschberger, S.; Hinske, L.C.; Briegel, J.; Hübner, M.; Weis, S.; Dimopoulos, G.; Bauer, M.; Giamarellos-Bourboulis, E.J.; Kreth, S. MicroRNAs 143 and 150 in Whole Blood Enable Detection of T-Cell Immunoparalysis in Sepsis. Mol. Med. 2018, 24, 54. [Google Scholar] [CrossRef]
- Roderburg, C.; Luedde, M.; Vargas Cardenas, D.; Vucur, M.; Scholten, D.; Frey, N.; Koch, A.; Trautwein, C.; Tacke, F.; Luedde, T. Circulating MicroRNA-150 Serum Levels Predict Survival in Patients with Critical Illness and Sepsis. PLoS ONE 2013, 8, e54612. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, D.; Gong, W.; Zhao, G.; Liu, L.; Yang, L.; Hou, Y. The Toll-like Receptor 3 Ligand, Poly(I:C), Improves Immunosuppressive Function and Therapeutic Effect of Mesenchymal Stem Cells on Sepsis via Inhibiting MiR-143. Stem Cells 2014, 32, 521–533. [Google Scholar] [CrossRef]
- Vincent, J.L.; De Mendonca, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA Score to Assess the Incidence of Organ Dysfunction/Failure in Intensive Care Units: Results of a Multicenter, Prospective Study. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef]
- de Grooth, H.J.; Geenen, I.L.; Girbes, A.R.; Vincent, J.L.; Parienti, J.J.; Oudemans-van Straaten, H.M. SOFA and Mortality Endpoints in Randomized Controlled Trials: A Systematic Review and Meta-Regression Analysis. Crit. Care 2017, 21, 38. [Google Scholar] [CrossRef]
- Bersten, A.D.; Edibam, C.; Hunt, T.; Moran, J.; Australian, T.; Zealand, N. Incidence and Mortality of Acute Lung Injury and the Acute Respiratory Distress Syndrome in Three Australian States. Am. J. Respir. Crit. Care Med. 2002, 165, 443–448. [Google Scholar] [CrossRef]
- Wang, J.; Huang, R.; Xu, Q.; Zheng, G.; Qiu, G.; Ge, M.; Shu, Q.; Xu, J. Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Acute Lung Injury Via Transfer of MiR-27a-3p. Crit. Care Med. 2020, 48, E599–E610. [Google Scholar] [CrossRef]
- Yi, X.; Wei, X.; Lv, H.; An, Y.; Li, L.; Lu, P.; Yang, Y.; Zhang, Q.; Yi, H.; Chen, G. Exosomes Derived from MicroRNA-30b-3p-Overexpressing Mesenchymal Stem Cells Protect against Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting SAA3. Exp. Cell Res. 2019, 383, 111454. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; Hu, L.; Gu, W.; Zhu, L. Exosomes Derived from Endothelial Progenitor Cells Ameliorate Acute Lung Injury by Transferring MiR-126. Exp. Cell Res. 2018, 370, 13–23. [Google Scholar] [CrossRef]
- Reithmair, M.; Buschmann, D.; Märte, M.; Kirchner, B.; Hagl, D.; Kaufmann, I.; Pfob, M.; Chouker, A.; Steinlein, O.K.; Pfaffl, M.W.; et al. Cellular and Extracellular MiRNAs Are Blood-Compartment-Specific Diagnostic Targets in Sepsis. J. Cell. Mol. Med. 2017, 21, 2403–2411. [Google Scholar] [CrossRef]
- Xu, J.; Feng, Y.; Jeyaram, A.; Jay, S.M.; Zou, L.; Chao, W. Circulating Plasma Extracellular Vesicles from Septic Mice Induce Inflammation via MicroRNA- and TLR7-Dependent Mechanisms. J. Immunol. 2018, 201, 3392–3400. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, X.; Qiu, S.; Feng, L.; Wu, Y.; Shao, H. MiR-142-5p Encapsulated by Serum-Derived Extracellular Vesicles Protects against Acute Lung Injury in Septic Rats Following Remote Ischemic Preconditioning via the PTEN/PI3K/Akt Axis. J. Innate Immun. 2022, 14, 532–542. [Google Scholar] [CrossRef]
- Mittelbrunn, M.; Gutiérrez-Vázquez, C.; Villarroya-Beltri, C.; González, S.; Sánchez-Cabo, F.; González, M.Á.; Bernad, A.; Sánchez-Madrid, F. Unidirectional Transfer of MicroRNA-Loaded Exosomes from T Cells to Antigen-Presenting Cells. Nat. Commun. 2011, 2, 282. [Google Scholar] [CrossRef]
- Villarroya-Beltri, C.; Gutiérrez-Vázquez, C.; Sánchez-Cabo, F.; Pérez-Hernández, D.; Vázquez, J.; Martin-Cofreces, N.; Martinez-Herrera, D.J.; Pascual-Montano, A.; Mittelbrunn, M.; Sánchez-Madrid, F. Sumoylated HnRNPA2B1 Controls the Sorting of MiRNAs into Exosomes through Binding to Specific Motifs. Nat. Commun. 2013, 4, 2980. [Google Scholar] [CrossRef]
- McKenzie, A.J.; Hoshino, D.; Hong, N.H.; Cha, D.J.; Franklin, J.L.; Coffey, R.J.; Patton, J.G.; Weaver, A.M. KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep. 2016, 15, 978–987. [Google Scholar] [CrossRef]
- Cha, D.J.; Franklin, J.L.; Dou, Y.; Liu, Q.; Higginbotham, J.N.; Demory Beckler, M.; Weaver, A.M.; Vickers, K.; Prasad, N.; Levy, S.; et al. KRAS-Dependent Sorting of MiRNA to Exosomes. eLife 2015, 4, e07197. [Google Scholar] [CrossRef]
- Santangelo, L.; Giurato, G.; Cicchini, C.; Montaldo, C.; Mancone, C.; Tarallo, R.; Battistelli, C.; Alonzi, T.; Weisz, A.; Tripodi, M. The RNA-Binding Protein SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting. Cell Rep. 2016, 17, 799–808. [Google Scholar] [CrossRef]
- Shurtleff, M.J.; Temoche-Diaz, M.M.; Karfilis, K.V.; Ri, S.; Schekman, R. Y-Box Protein 1 Is Required to Sort into Exosomes in Cells and in a Cell-Free Reaction. eLife 2016, 5, e19276. [Google Scholar] [CrossRef]
- Squadrito, M.L.; Baer, C.; Burdet, F.; Maderna, C.; Gilfillan, G.D.; Lyle, R.; Ibberson, M.; De Palma, M. Endogenous RNAs Modulate MicroRNA Sorting to Exosomes and Transfer to Acceptor Cells. Cell Rep. 2014, 8, 1432–1446. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of MicroRNAs and MicroRNA-Protective Protein by Mammalian Cells. Nucleic Acids Res. 2010, 38, 7248–7259. [Google Scholar] [CrossRef]
- Kosaka, N.; Iguchi, H.; Yoshioka, Y.; Takeshita, F.; Matsuki, Y.; Ochiya, T. Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells. J. Biol. Chem. 2010, 285, 17442–17452. [Google Scholar] [CrossRef]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 Complexes Carry a Population of Circulating MicroRNAs Independent of Vesicles in Human Plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef]
- Murao, A.; Aziz, M.; Wang, H.; Brenner, M.; Wang, P. Release Mechanisms of Major DAMPs. Apoptosis 2021, 26, 152–162. [Google Scholar] [CrossRef]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and Septic Shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, P.; Chen, W.; Feng, D.; Jia, Y.; Xie, L. Serum MicroRNA Signatures Identified by Solexa Sequencing Predict Sepsis Patients’ Mortality: A Prospective Observational Study. PLoS ONE 2012, 7, e38885. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.C.; Chen, C.; Zeng, J.; Wang, Q.; Zheng, L.; Yu, H.D. Differential Expression of Plasma MiR-146a in Sepsis Patients Compared with Non-Sepsis-SIRS Patients. Exp. Ther. Med. 2013, 5, 1101–1104. [Google Scholar] [CrossRef]
- Tacke, F.; Roderburg, C.; Benz, F.; Cardenas, D.V.; Luedde, M.; Hippe, H.J.; Frey, N.; Vucur, M.; Gautheron, J.; Koch, A.; et al. Levels of Circulating Mir-133a Are Elevated in Sepsis and Predict Mortality in Critically Ill Patients. Crit. Care Med. 2014, 42, 1096–1104. [Google Scholar] [CrossRef]
- Wang, H.-J.; Zhang, P.-J.; Chen, W.-J.; Jie, D.; Dan, F.; Jia, Y.-H.; Xie, L.-X. Characterization and Identification of Novel Serum MicroRNAs in Sepsis Patients with Different Outcomes. Shock 2013, 39, 480–487. [Google Scholar] [CrossRef]
- Vasilescu, C.; Rossi, S.; Shimizu, M.; Tudor, S.; Veronese, A.; Ferracin, M.; Nicoloso, M.S.; Barbarotto, E.; Popa, M.; Stanciulea, O.; et al. MicroRNA Fingerprints Identify MiR-150 as a Plasma Prognostic Marker in Patients with Sepsis. PLoS ONE 2009, 4, e7405. [Google Scholar] [CrossRef]
- Wang, H.; Meng, K.; Chen, W.J.; Feng, D.; Jia, Y.; Xie, L. Serum MiR-574-5p: A Prognostic Predictor of Sepsis Patients. Shock 2012, 37, 263–267. [Google Scholar] [CrossRef]
- Ma, Y.; Vilanova, D.; Atalar, K.; Delfour, O.; Edgeworth, J.; Ostermann, M.; Hernandez-Fuentes, M.; Razafimahatratra, S.; Michot, B.; Persing, D.H.; et al. Genome-Wide Sequencing of Cellular MicroRNAs Identifies a Combinatorial Expression Signature Diagnostic of Sepsis. PLoS ONE 2013, 8, e75918. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Z.; Yan, W.; Zhu, Y.; Lin, Y.; Chen, J.; Shen, B.; Wang, J. Identification of MicroRNA as Sepsis Biomarker Based on MiRNAs Regulatory Network Analysis. BioMed Res. Int. 2014, 2014, 594350. [Google Scholar] [CrossRef]
- Makarova, J.A.; Shkurnikov, M.U.; Wicklein, D.; Lange, T.; Samatov, T.R.; Turchinovich, A.A.; Tonevitsky, A.G. Intracellular and Extracellular MicroRNA: An Update on Localization and Biological Role. Prog. Histochem. Cytochem. 2016, 51, 33–49. [Google Scholar] [CrossRef]
- Fabbri, M.; Paone, A.; Calore, F.; Galli, R.; Gaudio, E.; Santhanam, R.; Lovat, F.; Fadda, P.; Mao, C.; Nuovo, G.J.; et al. MicroRNAs Bind to Toll-like Receptors to Induce Prometastatic Inflammatory Response. Proc. Natl. Acad. Sci. USA 2012, 109, E2110–E2116. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Goodwin, A.J.; Cook, J.A.; Halushka, P.V.; Chang, E.; Fan, H. Exosomes from Endothelial Progenitor Cells Improve the Outcome of a Murine Model of Sepsis. Mol. Ther. 2018, 26, 1375–1384. [Google Scholar] [CrossRef]
- Zou, L.; Feng, Y.; Xu, G.; Jian, W.; Chao, W. Splenic RNA and MicroRNA Mimics Promote Complement Factor B Production and Alternative Pathway Activation via Innate Immune Signaling. J. Immunol. 2016, 196, 2788–2798. [Google Scholar] [CrossRef]
- He, Z.; Wang, H.; Yue, L. Endothelial Progenitor Cells-Secreted Extracellular Vesicles Containing MicroRNA-93-5p Confer Protection against Sepsis-Induced Acute Kidney Injury via the KDM6B/H3K27me3/TNF-α Axis. Exp. Cell Res. 2020, 395, 112173. [Google Scholar] [CrossRef]
- Lee, J.W.; Fang, X.; Gupta, N.; Serikov, V.; Matthay, M.A. Allogeneic Human Mesenchymal Stem Cells for Treatment of E. Coli Endotoxin-Induced Acute Lung Injury in the Ex Vivo Perfused Human Lung. Proc. Natl. Acad. Sci. USA 2009, 106, 16357–16362. [Google Scholar] [CrossRef]
- Pottash, A.E.; Levy, D.; Jeyaram, A.; Kuo, L.; Kronstadt, S.M.; Chao, W.; Jay, S.M. Combinatorial MicroRNA Loading into Extracellular Vesicles for Increased Anti-Inflammatory Efficacy. Noncoding RNA 2022, 8, 71. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Z.; Su, J.; Chen, W.-S.; Wang, X.-W.; Bai, S.-X.; Zhang, J.-Z.; Yu, S.-Q. Macrophage Micro-RNA-155 Promotes Lipopolysaccharide-Induced Acute Lung Injury in Mice and Rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, 494–506. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Suen, A.; Zhu, J.; Williams, B.; Hu, J.; Chen, F.; Kozar, R.; Shen, S.; Li, Z.; et al. Role of Extracellular MicroRNA-146a-5p in Host Innate Immunity and Bacterial Sepsis. iScience 2021, 24, 103441. [Google Scholar] [CrossRef]
- Borjas, T.; Jacob, A.; Kobritz, M.; Ma, G.; Tan, C.; Patel, V.; Coppa, G.F.; Aziz, M.; Wang, P. An Engineered MiRNA PS-OMe MiR130 Inhibits Acute Lung Injury by Targeting eCIRP in Sepsis. Mol. Med. 2023, 29, 21. [Google Scholar] [CrossRef]
- Borjas, T.; Jacob, A.; Kobritz, M.; Patel, V.; Coppa, G.F.; Aziz, M.; Wang, P. A Novel MiRNA Mimic Attenuates Organ Injury after Hepatic Ischemia/Reperfusion. J. Trauma Acute Care Surg. 2023, 94, 702–709. [Google Scholar] [CrossRef]
- Vazquez, G.; Sfakianos, M.; Coppa, G.; Jacob, A.; Wang, P. Novel PS-OMe MiRNA 130b-3p Reduces Inflammation and Injury and Improves Survival after Renal Ischemia-Reperfusion Injury. Shock 2023, 60, 613–620. [Google Scholar] [CrossRef]
- Murao, A.; Jha, A.; Ma, G.; Chaung, W.; Aziz, M.; Wang, P. A Synthetic Poly(A) Tail Targeting Extracellular CIRP Inhibits Sepsis. J. Immunol. 2023, 211, 1144–1153. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, J.; Huang, Z. Recent Progress in Microrna-Based Delivery Systems for the Treatment of Human Disease. ExRNA 2019, 1, 24. [Google Scholar] [CrossRef]
- Ha, D.; Yang, N.; Nadithe, V. Exosomes as Therapeutic Drug Carriers and Delivery Vehicles across Biological Membranes: Current Perspectives and Future Challenges. Acta Pharm. Sin. B 2016, 6, 287–296. [Google Scholar] [CrossRef]
- Dasgupta, I.; Chatterjee, A. Recent Advances in MiRNA Delivery Systems. Methods Protoc. 2021, 4, 10. [Google Scholar] [CrossRef]
- Douglas, J.T. Adenoviral Vectors for Gene Therapy. Mol. Biotechnol. 2007, 36, 71–80. [Google Scholar] [CrossRef]
- Höbel, S.; Aigner, A. Polyethylenimines for SiRNA and MiRNA Delivery in Vivo. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 484–501. [Google Scholar] [CrossRef]
- Jia, H.; Chen, H.; Wei, M.; Chen, X.; Zhang, Y.; Cao, L.; Yuan, P.; Wang, F.; Yang, G.; Ma, J. Gold Nanoparticle-Based MiR155 Antagonist Macrophage Delivery Restores the Cardiac Function in Ovariectomized Diabetic Mouse Model. Int. J. Nanomed. 2017, 12, 4963–4979. [Google Scholar] [CrossRef]
- Pedroso De Lima, M.C.; Simoes, S.; Pires, P.; Faneca, H.; Nejat, D. Cationic Lipid-DNA Complexes in Gene Delivery: From Biophysics to Biological Applications. Adv. Drug Deliv. Rev. 2001, 47, 277–294. [Google Scholar] [CrossRef]
- Tabet, F.; Vickers, K.C.; Cuesta Torres, L.F.; Wiese, C.B.; Shoucri, B.M.; Lambert, G.; Catherinet, C.; Prado-Lourenco, L.; Levin, M.G.; Thacker, S.; et al. HDL-Transferred MicroRNA-223 Regulates ICAM-1 Expression in Endothelial Cells. Nat. Commun. 2014, 5, 3292. [Google Scholar] [CrossRef] [PubMed]
- Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y.K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I Study of MRX34, a Liposomal MiR-34a Mimic, Administered Twice Weekly in Patients with Advanced Solid Tumors. Investig. New Drugs 2017, 35, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, A.A. Trials and Tribulations of MicroRNA Therapeutics. Int. J. Mol. Sci. 2024, 25, 1469. [Google Scholar] [CrossRef] [PubMed]
- Behlke, M.A. Chemical Modification of SiRNAs for in Vivo Use. Oligonucleotides 2008, 18, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Khvorova, A.; Watts, J.K. The Chemical Evolution of Oligonucleotide Therapies of Clinical Utility. Nat. Biotechnol. 2017, 35, 238–248. [Google Scholar] [CrossRef]
- Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; et al. Phase 1 Study of MRX34, a Liposomal MiR-34a Mimic, in Patients with Advanced Solid Tumours. Br. J. Cancer 2020, 122, 1630–1637. [Google Scholar] [CrossRef]
- Kim, T.; Croce, C.M. MicroRNA: Trends in Clinical Trials of Cancer Diagnosis and Therapy Strategies. Exp. Mol. Med. 2023, 55, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Hermann, S.; Brandes, F.; Kirchner, B.; Buschmann, D.; Borrmann, M.; Klein, M.; Kotschote, S.; Bonin, M.; Reithmair, M.; Kaufmann, I.; et al. Diagnostic Potential of Circulating Cell-Free MicroRNAs for Community-Acquired Pneumonia and Pneumonia-Related Sepsis. J. Cell Mol. Med. 2020, 24, 12054–12064. [Google Scholar] [CrossRef]
- Essandoh, K.; Fan, G.C. Role of Extracellular and Intracellular MicroRNAs in Sepsis. Biochim. Biophys. Acta 2014, 1842, 2155–2162. [Google Scholar] [CrossRef]
- Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of MicroRNAs in Vivo with “Antagomirs”. Nature 2005, 438, 685–689. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollis, R.; Aziz, M.; Jacob, A.; Wang, P. Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation. Cells 2024, 13, 545. https://doi.org/10.3390/cells13060545
Hollis R, Aziz M, Jacob A, Wang P. Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation. Cells. 2024; 13(6):545. https://doi.org/10.3390/cells13060545
Chicago/Turabian StyleHollis, Russell, Monowar Aziz, Asha Jacob, and Ping Wang. 2024. "Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation" Cells 13, no. 6: 545. https://doi.org/10.3390/cells13060545
APA StyleHollis, R., Aziz, M., Jacob, A., & Wang, P. (2024). Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation. Cells, 13(6), 545. https://doi.org/10.3390/cells13060545