Comprehensive Search for Genes Involved in Thalidomide Teratogenicity Using Early Differentiation Models of Human Induced Pluripotent Stem Cells: Potential Applications in Reproductive and Developmental Toxicity Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Verification of Used iPS Cells
2.2. Differentiation Medium, Exposure Substances, and Schedule
2.3. Gene Expression Analysis Using RNA-Sequencing (RNA-Seq)
2.4. Gene Expression Reanalysis Using Quantitative Real-Time Polymerase Chain Reaction (qPCR)
2.5. Statistical Analyses
3. Results
3.1. Validation of iPS Cells
3.2. Differentiation of iPS Cells into Early Trichoderm Using Differentiation Medium
3.3. Determination of Test Substance Concentration
3.4. Analysis of RNA-Seq Results and Refinement of Candidate Genes
3.5. Confirmatory Analysis of Gene Expression Levels by qPCR
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ICH S5(R3) Guideline on Detection of Reproductive and Developmental Toxicity for Human Pharmaceuticals—Scientific Guideline. Available online: https://www.ema.europa.eu/en/ich-s5-r3-guideline-detection-reproductive-developmental-toxicity-human-pharmaceuticals-scientific-guideline (accessed on 9 December 2024).
- Smithells, R.W.; Newman, C.G. Recognition of thalidomide defects. J. Med. Genet. 1992, 29, 716–723. [Google Scholar] [CrossRef]
- Locker, D.; Superstine, E.; Sulman, F.G. The mechanism of the push and pull principle. 8. Endocrine effects of thalidomide and its analogues. Arch. Int. Pharmacodyn. Ther. 1971, 194, 39–55. [Google Scholar]
- Genschow, E.; Spielmann, H.; Scholz, G.; Pohl, I.; Seiler, A.; Clemann, N.; Bremer, S.; Becker, K. Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern. Lab. Anim. 2004, 32, 209–244. [Google Scholar] [CrossRef]
- Kobayashi, K.; Suzuki, N.; Higashi, K.; Muroi, A.; Le Coz, F.; Nagahori, H.; Saito, K. Editor’s Highlight: Development of novel neural embryonic stem celltests for high-throughput screening of embryotoxic chemicals. Toxicol. Sci. 2017, 159, 238–250. [Google Scholar] [CrossRef]
- Nagahori, H.; Suzuki, N.; Le Coz, F.; Omori, T.; Saito, K. Prediction of in vivo developmental toxicity by combination of Hand1-Luc embryonic stem cell test and metabolic stability test with clarification of metabolically inapplicable candidates. Toxicol. Lett. 2016, 259, 44–51. [Google Scholar] [CrossRef]
- Le Coz, F.; Suzuki, N.; Nagahori, H.; Omori, T.; Saito, K. Hand1-Luc embryonic stem cell test (Hand1-Luc EST): A novel rapid and highly reproducible in vitro test for embryotoxicity by measuring cytotoxicity and differentiation toxicity using engineered mouse ES cells. J. Toxicol. Sci. 2015, 40, 251–261. [Google Scholar] [CrossRef]
- Suzuki, N.; Ando, S.; Yamashita, N.; Horie, N.; Saito, K. Evaluation of novel high-throughput embryonic stem cell tests with new molecular markers for screening embryotoxic chemicals in vitro. Toxicol. Sci. 2011, 124, 460–471. [Google Scholar] [CrossRef]
- Suzuki, N.; Yamashita, N.; Koseki, N.; Yamada, T.; Kimura, Y.; Aiba, S.; Toyoizumi, T.; Watanabe, M.; Ohta, R.; Tanaka, N.; et al. Assessment of technical protocols for novel embryonic stem cell tests with molecular markers (Hand1- and Cmya1-ESTs): A preliminary cross-laboratory performance analysis. J. Toxicol. Sci. 2012, 37, 845–851. [Google Scholar] [CrossRef]
- Grunert, M.; Dorn, C.; Rickert-Sperling, S. Cardiac transcription factors and regulatory networks. Adv. Exp. Med. Biol. 2024, 1441, 295–311. [Google Scholar] [CrossRef]
- Yamamoto, N.; Hiramatsu, N.; Ohkuma, M.; Hatsusaka, N.; Takeda, S.; Nagai, N.; Miyachi, E.I.; Kondo, M.; Imaizumi, K.; Horiguchi, M.; et al. Novel technique for retinal nerve cell regeneration with electrophysiological functions using human iris-derived iPS cells. Cells 2021, 10, 743. [Google Scholar] [CrossRef]
- Isogai, S.; Yamamoto, N.; Hiramatsu, N.; Goto, Y.; Hayashi, M.; Kondo, M.; Imaizumi, K. Preparation of induced pluripotent stem cells using human peripheral blood monocytes. Cell. Reprogram. 2018, 20, 347–355. [Google Scholar] [CrossRef]
- Kim, K.; Doi, A.; Wen, B.; Ng, K.; Zhao, R.; Cahan, P.; Kim, J.; Aryee, M.J.; Ji, H.; Ehrlich, L.I.; et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010, 467, 285–290. [Google Scholar] [CrossRef]
- Banhidy, F.; Lowry, R.B.; Czeizel, A.E. Risk and benefit of drug use during pregnancy. Int. J. Med. Sci. 2005, 2, 100–106. [Google Scholar] [CrossRef]
- Piersma, A.H.; Baker, N.C.; Daston, G.P.; Flick, B.; Fujiwara, M.; Knudsen, T.B.; Spielmann, H.; Suzuki, N.; Tsaioun, K.; Kojima, H. Pluripotent stem cell assays: Modalities and applications for predictive developmental toxicity. Curr. Res. Toxicol. 2022, 13, 100074. [Google Scholar] [CrossRef]
- Ouzounian, J.G.; Elkayam, U. Physiologic changes during normal pregnancy and delivery. Cardiol. Clin. 2012, 30, 317–329. [Google Scholar] [CrossRef]
- Heikkinen, E.M.; Kokki, H.; Heikkinen, A.; Ranta, V.P.; Rasanen, J.; Voipio, H.M.; Kokki, M. Foetal fentanyl exposure and ion trapping after intravenous and transdermal administration to the ewe. Basic Clin. Pharmacol. Toxicol. 2017, 120, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Isoherranen, N.; Thummel, K.E. Drug metabolism and transport during pregnancy: How does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab. Dispos. 2013, 41, 256–262. [Google Scholar] [CrossRef]
- Stodgell, C.J.; Ingram, J.L.; O’Bara, M.; Tisdale, B.K.; Nau, H.; Rodier, P.M. Induction of the homeotic gene Hoxa1 through valproic acid’s teratogenic mechanism of action. Neurotoxicol. Teratol. 2006, 28, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Gilboa, S.M.; Broussard, C.S.; Devine, O.J.; Duwe, K.N.; Flak, A.L.; Boulet, S.L.; Moore, C.A.; Werler, M.M.; Honein, M.A. Influencing clinical practice regarding the use of antiepileptic medications during pregnancy: Modeling the potential impact on the prevalences of spina bifida and cleft palate in the United States. Am. J. Med. Genet. Part C Semin. Med. Genet. 2011, 157, 234–246. [Google Scholar] [CrossRef]
- Christensen, J.; Gronborg, T.K.; Sorensen, M.J.; Schendel, D.; Parner, E.T.; Pedersen, L.H.; Vestergaard, M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 2013, 309, 1696–1703. [Google Scholar] [CrossRef]
- Lin, Y.L.; Bialer, M.; Cabrera, R.M.; Finnell, R.H.; Wlodarczyk, B.J. Teratogenicity of valproic acid and its constitutional isomer, amide derivative valnoctamide in mice. Birth Defects Res. 2019, 111, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, K.; Mitsuhashi, T.; Shibata, S.; Shimozato, S.; Takahashi, T. In utero exposure to valproic acid induces neocortical dysgenesis via dysregulation of neural progenitor cell proliferation/differentiation. J. Neurosci. 2016, 36, 10908–10919. [Google Scholar] [CrossRef]
- Samrani, L.M.M.; Dumont, F.; Hallmark, N.; Bars, R.; Tinwell, H.; Pallardy, M.; Piersma, A.H. Nervous system development related gene expression regulation in the zebrafish embryo after exposure to valproic acid and retinoic acid: A genome wide approach. Toxicol. Lett. 2023, 384, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a primary target of thalidomide teratogenicity. Science 2010, 327, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Asatsuma-Okumura, T.; Ando, H.; De Simone, M.; Yamamoto, J.; Sato, T.; Shimizu, N.; Asakawa, K.; Yamaguchi, Y.; Ito, T.; Guerrini, L.; et al. p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat. Chem. Biol. 2019, 15, 1077–1084. [Google Scholar] [CrossRef]
- Yang, A.; Kaghad, M.; Wang, Y.; Gillett, E.; Fleming, M.D.; Dotsch, V.; Andrews, N.C.; Caput, D.; McKeon, F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 1998, 2, 305–316. [Google Scholar] [CrossRef]
- Osada, M.; Ohba, M.; Kawahara, C.; Ishioka, C.; Kanamaru, R.; Katoh, I.; Ikawa, Y.; Nimura, Y.; Nakagawara, A.; Obinata, M.; et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat. Med. 1998, 4, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhu, Y.; Lu, H. NBP is the p53 homolog p63. Carcinogenesis 2001, 22, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Bian, J.; Guan, K.; Sun, Y. p53CP is p51/p63, the third member of the p53 gene family: Partial purification and characterization. Carcinogenesis 2001, 22, 295–300. [Google Scholar] [CrossRef]
- Crum, C.P.; McKeon, F.D. p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu. Rev. Pathol. 2010, 5, 349–371. [Google Scholar] [CrossRef]
- Rinne, T.; Hamel, B.; van Bokhoven, H.; Brunner, H.G. Pattern of p63 mutations and their phenotypes—Update. Am. J. Med. Genet. Part A 2006, 140, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- GeneCards®. The Human Gene Databese. Available online: https://www.genecards.org/ (accessed on 28 December 2024).
- Stonadgem, A.; Genzor, A.V.; Russell, A.; Hamed, M.F.; Romero, N.; Evans, G.; Pownall, M.E.; Bekker-Jensen, S.; Blanco, G. Myofibrillar myopathy hallmarks associated with ZAK deficiency. Hum. Mol. Genet. 2023, 32, 2751–2770, Erratum in Hum. Mol. Genet. 2023, 32, 3390. [Google Scholar] [CrossRef] [PubMed]
- Bogomolovas, J.; Feng, W.; Yu, M.D.; Huang, S.; Zhang, L.; Trexler, C.; Gu, Y.; Spinozzi, S.; Chen, J. Atypical ALPK2 kinase is not essential for cardiac development and function. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1509–H1515. [Google Scholar] [CrossRef] [PubMed]
- Hofsteen, P.; Robitaille, A.M.; Strash, N.; Palpant, N.; Moon, R.T.; Pabon, L.; Murry, C.E. ALPK2 Promotes cardiogenesis in zebrafish and human pluripotent stem cells. iScience 2018, 2, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Branco, M.A.; Nunes, T.C.; Cabral, J.M.S.; Diogo, M.M. Developmental toxicity studies: The path towards humanized 3D stem cell-based models. Int. J. Mol. Sci. 2023, 24, 4857. [Google Scholar] [CrossRef]
- Li, M.; Gong, J.; Gao, L.; Zou, T.; Kang, J.; Xu, H. Advanced human developmental toxicity and teratogenicity assessment using human organoid models. Ecotoxicol. Environ. Saf. 2022, 235, 113429. [Google Scholar] [CrossRef]
|
|
|
|
|
Gene Name | Gene Symbol | Assay ID |
---|---|---|
Synaptopodin 2 | SYNPO2 | Hs00326493_m1 |
Periostin | POSTIN | Hs01566750_m1 |
Rhophilin Associated Tail Protein 1 | ROPN1 | Hs00375051_m1 |
Tumor Protein p63 | TP63 | Hs00978340_m1 |
Hydroxyprostaglandin Dehydrogenase | HPGD | Hs00960590_m1 |
Alpha Kinase 2 | ALPK2 | Hs01085415_g1 |
Lymphotoxin alpha | LTA | Hs06633590_s1 |
Actin Beta | ACTB | Hs99999903_m1 |
Test Substance | CAS RN® | ICH S5(R3) 1 (Cmax, AUC) | Interview Form (Cmax) | Package Insert (Maximum Dissolved Concentration 2) | Final Applicable Concentration | |
---|---|---|---|---|---|---|
Negative at ICH S5(R3) | Saxa | 361442-04-8 | 0.024 µg/mL, 0.078 µg·h/mL | 0.05 µg/mL | 34 mg/mL | 60 µg/mL |
Vilda | 274901-16-5 | N/A, 2.06 µg·h/mL | 0.6 µg/mL | 45 mg/mL | 80 µg/mL | |
Positive at ICH S5(R3) | VPA | 99-66-1 | 205 µg/mL, 4180 µg·h/mL | 120 µg/mL | 100 mg/mL | 90 µg/mL |
Thalido | 50-35-1 | 0.62 µg/mL, 4.9 µg·h/mL | 3 µg/mL | 20 mg/mL | 40 µg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, Y.; Inaba, T.; Shinke, K.; Hiramatsu, N.; Horie, T.; Sakamoto, T.; Hata, Y.; Sugihara, E.; Takimoto, T.; Nagai, N.; et al. Comprehensive Search for Genes Involved in Thalidomide Teratogenicity Using Early Differentiation Models of Human Induced Pluripotent Stem Cells: Potential Applications in Reproductive and Developmental Toxicity Testing. Cells 2025, 14, 215. https://doi.org/10.3390/cells14030215
Kato Y, Inaba T, Shinke K, Hiramatsu N, Horie T, Sakamoto T, Hata Y, Sugihara E, Takimoto T, Nagai N, et al. Comprehensive Search for Genes Involved in Thalidomide Teratogenicity Using Early Differentiation Models of Human Induced Pluripotent Stem Cells: Potential Applications in Reproductive and Developmental Toxicity Testing. Cells. 2025; 14(3):215. https://doi.org/10.3390/cells14030215
Chicago/Turabian StyleKato, Yu, Takeshi Inaba, Koudai Shinke, Noriko Hiramatsu, Tetsuhiro Horie, Takuya Sakamoto, Yuko Hata, Eiji Sugihara, Tetsuya Takimoto, Noriaki Nagai, and et al. 2025. "Comprehensive Search for Genes Involved in Thalidomide Teratogenicity Using Early Differentiation Models of Human Induced Pluripotent Stem Cells: Potential Applications in Reproductive and Developmental Toxicity Testing" Cells 14, no. 3: 215. https://doi.org/10.3390/cells14030215
APA StyleKato, Y., Inaba, T., Shinke, K., Hiramatsu, N., Horie, T., Sakamoto, T., Hata, Y., Sugihara, E., Takimoto, T., Nagai, N., Ishigaki, Y., Kojima, H., Nagano, O., Yamamoto, N., & Saya, H. (2025). Comprehensive Search for Genes Involved in Thalidomide Teratogenicity Using Early Differentiation Models of Human Induced Pluripotent Stem Cells: Potential Applications in Reproductive and Developmental Toxicity Testing. Cells, 14(3), 215. https://doi.org/10.3390/cells14030215