MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks—A Review
Abstract
:1. Introduction
2. Platelet Storage Lesions
3. Platelet MicroRNAs
4. MicroRNAs as a Blood Bank Platelet Quality Measurement Tool
4.1. Downregulated miRNAs on Stored PC Bags
4.2. Increased miRNA Expression during Storage
4.3. Analytical Methods for Quality Assessment of Platelet Concentrates Stored in Blood Banks
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADP | Adenosine diphosphate |
AGO | Agonaute |
ATP | Adenosine triphosphate |
ATP5L | ATP synthase subunit g |
BAX | BCL2 associated X |
BCL-2 | B-cell lymphoma 2 |
Bcl-xL | B-cell lymphoma-extra-large |
CASP3 | Caspase 3 |
Caspase-8 | Is a caspase protein, encoded by the CASP8 gene |
Caspase-9 | Is an enzyme that in humans is encoded by the CASP9 gene |
CORT | Cortistatin |
Dicer1 | A member of the ribonuclease III (RNaseIII) family |
DNA | Deoxyribonucleic acid |
F11R | PLT F11 receptor |
GC-content | Guanine-cytosine content |
miRbase | The microRNA database |
miRNA | microRNA |
MiRNome | Complete set of all microRNAs |
MOMP | Mitochondrial outer membrane permeabilization |
MPs | miRNA-rich microparticles |
NGS | Next-generation sequencing |
OMICS | Global analysis of biological systems integrating the components of the functional genome |
PC | Platelet concentrate |
PR | Pathogen reduction |
PSL | Platelet storage lesion |
PtdSer | Phosphatidylserine |
qPCR | Real-time polymerase chain reaction |
RBM3 | RNA binding motif protein 3 |
RISC | RNA-induced silencing complex |
SHS | Suboptimal health status |
TNFRSF10B | Tumor necrosis factor receptor superfamily member 10B precursor TNF related |
TRBP | Transactivation responsive RNA binding protein |
Xkr8 | Xk-related protein 8 |
αIIbβ3 | Itga2b (αIIb) and Itgb3(β3) integrins |
References
- Handigund, M.; Bae, T.W.; Lee, J.; Cho, Y.G. Evaluation of in vitro storage characteristics of cold stored platelet concentrates with N acetylcysteine (NAC). Transfus. Apher. Sci. 2016, 54, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Kim, H.; Song, J.; Cheong, J.-W.; Shin, J.W.; Yang, W.I.; Kim, H.O. Platelet storage induces accelerated desialylation of platelets and increases hepatic thrombopoietin production. J. Transl. Med. 2018, 16, 199. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, N.; Sarachana, T.; Vu, L.; Becker, K.G.; Wood, W.H.; Zhang, Y.; Atreya, C.D. Platelet MicroRNAs: An Overview. Transfus. Med. Rev. 2015, 29, 215–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Ministério da saúde Summary for Policymakers. In Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 1–30. ISBN 9788533407428. [Google Scholar]
- Pope, C.A.; Hansen, M.L.; Long, R.W.; Nielsen, K.R.; Eatough, N.L.; Wilson, W.E.; Eatough, D.J. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ. Health Perspect. 2004, 112, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Leytin, V. Apoptosis in the anucleate platelet. Blood Rev. 2012, 26, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Pontes, T.B.; Moreira-Nunes, C.D.F.A.; Maués, J.H.D.S.; Lamarão, L.M.; de Lemos, J.A.R.; Montenegro, R.C.; Burbano, R.M.R. The miRNA Profile of Platelets Stored in a Blood Bank and Its Relation to Cellular Damage from Storage. PLoS ONE 2015, 10, e0129399. [Google Scholar] [CrossRef]
- Laffont, B.; Corduan, A.; Ple, H.; Duchez, A.-C.; Cloutier, N.; Boilard, E.; Provost, P. Activated platelets can deliver mRNA regulatory Ago2.microRNA complexes to endothelial cells via microparticles. Blood 2013, 122, 253–261. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Schubert, P.; Devine, D.V. Towards targeting platelet storage lesion-related signaling pathways. Blood Transfus. 2010, 8, 69–72. [Google Scholar] [CrossRef]
- Murphy, S.; Gardner, F.H. Platelet storage at 22 degrees C; metabolic, morphologic, and functional studies. J. Clin. Invest. 1971, 50, 370–377. [Google Scholar] [CrossRef]
- Mittal, K.; Kaur, R. Platelet storage lesion: An update. Asian J. Transfus. Sci. 2015, 9, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.K.; Argaiz, E.R.; Mercado, J.E.C.; Maul, H.O.E.; Garza, J.; Enriquez, A.B.; Abdel-Monem, H.; Prakasam, A.; Andreeff, M.; Thiagarajan, P. Platelet senescence and phosphatidylserine exposure. Transfusion 2010, 50, 2167–2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delobel, J.; Rubin, O.; Prudent, M.; Crettaz, D.; Tissot, J.-D.; Lion, N. Biomarker analysis of stored blood products: Emphasis on pre-analytical issues. Int. J. Mol. Sci. 2010, 11, 4601–4617. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, M. The platelet storage lesion. Transfus. Apher. Sci. 2009, 41, 105–113. [Google Scholar] [CrossRef]
- Van der Meer, P.F. Platelet concentrates, from whole blood or collected by apheresis? Transfus. Apher. Sci. 2013, 48, 129–131. [Google Scholar] [CrossRef]
- Saunders, C.; Rowe, G.; Wilkins, K.; Collins, P. Impact of glucose and acetate on the characteristics of the platelet storage lesion in platelets suspended in additive solutions with minimal plasma. Vox Sang. 2013, 1–10. [Google Scholar] [CrossRef]
- Jackson, S.P.; Schoenwaelder, S.M. Procoagulant platelets: Are they necrotic? Blood 2010, 116, 2011–2018. [Google Scholar] [CrossRef]
- Maués, J.H.d.S.; Moreira-Nunes, C.d.F.A.; Pontes, T.B.; Vieira, P.C.M.; Montenegro, R.C.; Lamarão, L.M.; Lima, E.M.; Burbano, R.M.R. Differential Expression Profile of MicroRNAs During Prolonged Storage of Platelet Concentrates as a Quality Measurement Tool in Blood Banks. Omi. A J. Integr. Biol. 2018, 22, 653–664. [Google Scholar] [CrossRef]
- Mukai, N.; Nakayama, Y.; Ishi, S.; Murakami, T.; Ogawa, S.; Kageyama, K.; Murakami, S.; Sasada, Y.; Yoshioka, J.; Nakajima, Y. Cold storage conditions modify microRNA expressions for platelet transfusion. PLoS ONE 2019, 14, e0218797. [Google Scholar] [CrossRef]
- Denis, M.M.; Tolley, N.D.; Bunting, M.; Schwertz, H.; Jiang, H.; Lindemann, S.; Yost, C.C.; Rubner, F.J.; Albertine, K.H.; Swoboda, K.J.; et al. Escaping the nuclear confines: Signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005, 122, 379–391. [Google Scholar] [CrossRef]
- Schwertz, H.; Tolley, N.D.; Foulks, J.M.; Denis, M.M.; Risenmay, B.W.; Buerke, M.; Tilley, R.E.; Rondina, M.T.; Harris, E.M.; Kraiss, L.W.; et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenecity of human platelets. J. Exp. Med. 2006, 203, 2433–2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garzon, R.; Pichiorri, F.; Palumbo, T.; Iuliano, R.; Cimmino, A.; Aqeilan, R.; Volinia, S.; Bhatt, D.; Alder, H.; Marcucci, G.; et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc. Natl. Acad. Sci. USA 2006, 103, 5078–5083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannan, M.; Mohan, K.V.K.; Kulkarni, S.; Atreya, C. Membrane array-based differential profiling of platelets during storage for 52 miRNAs associated with apoptosis. Transfusion 2009, 49, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Landry, P.; Plante, I.; Ouellet, D.L.; Perron, M.P.; Rousseau, G.; Provost, P. Existence of a microRNA pathway in anucleate platelets. Nat. Struct. Mol. Biol. 2009, 16, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.; Fälker, K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets 2011, 22, 433–441. [Google Scholar] [CrossRef]
- Nagalla, S.; Shaw, C.; Kong, X.; Kondkar, A.A.; Edelstein, L.C.; Ma, L.; Chen, J.; McKnight, G.S.; López, J.A.; Yang, L.; et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 2011, 117, 5189–5197. [Google Scholar] [CrossRef]
- Plé, H.; Landry, P.; Benham, A.; Coarfa, C.; Gunaratne, P.H.; Provost, P. The repertoire and features of human platelet microRNAs. PLoS ONE 2012, 7, e50746. [Google Scholar] [CrossRef]
- Dahiya, N.; Sarachana, T.; Kulkarni, S.; Wood Iii, W.H.; Zhang, Y.; Becker, K.G.; Wang, B.-D.; Atreya, C.D. miR-570 interacts with mitochondrial ATPase subunit g (ATP5L) encoding mRNA in stored platelets. Platelets 2016, 7104, 1–8. [Google Scholar] [CrossRef]
- Yu, S.; Deng, G.; Qian, D.; Xie, Z.; Sun, H.; Huang, D.; Li, Q. Detection of apoptosis-associated microRNA in human apheresis platelets during storage by quantitative real-time polymerase chain reaction analysis. Blood Transfus. 2014, 12, 541–547. [Google Scholar] [CrossRef]
- Yu, S.; Huang, H.; Deng, G.; Xie, Z.; Ye, Y.; Guo, R.; Cai, X.; Hong, J.; Qian, D.; Zhou, X.; et al. miR-326 Targets Antiapoptotic Bcl-xL and Mediates Apoptosis in Human Platelets. PLoS ONE 2015, 10, e0122784. [Google Scholar] [CrossRef]
- Rowley, J.W.; Chong, M.M.W.; Campbell, R.; Khoury, A.; Manne, B.K.; Wurtzel, J.G.T.; Michael, J.V.; Goldfinger, L.E.; Mumaw, M.M.; Nieman, M.T.; et al. Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood 2016, 127, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, N.; Kulkarni, S.; Atreya, C.D. Ingenuity Pathway Analysis of miRnas and mRNAs in Stored Platelets Identifies the Potential of miRNAs in Regulating Platelet Functions Relevant to Storage Lesions. Hematol. Blood Transfus. Disord. 2016, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, L.C.; McKenzie, S.E.; Shaw, C.; Holinstat, M.A.; Kunapuli, S.P.; Bray, P.F. MicroRNAs in platelet production and activation. J. Thromb. Haemost. 2013, 11, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Gidlof, O.; van der Brug, M.; Ohman, J.; Gilje, P.; Olde, B.; Wahlestedt, C.; Erlinge, D. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 2013, 121, 3908–3917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willeit, P.; Zampetaki, A.; Dudek, K.; Kaudewitz, D.; King, A.; Kirkby, N.S.; Crosby-Nwaobi, R.; Prokopi, M.; Drozdov, I.; Langley, S.R.; et al. Circulating MicroRNAs as Novel Biomarkers for Platelet Activation. Circ. Res. 2013, 112, 595–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, A.; Hitzler, W.E.; Meyer, C.U.; Landry, P.; Corduan, A.; Laffont, B.; Boilard, E.; Hellstern, P.; Vamvakas, E.C.; Provost, P. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function. Platelets 2015, 26, 154–163. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Gray, W.D.; Hayek, S.S.; Ko, Y.; Thomas, S.; Rooney, K.; Awad, M.; Roback, J.D.; Quyyumi, A.; Searles, C.D. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci. Rep. 2016, 6, 32651. [Google Scholar] [CrossRef]
- Yuan, Z.; Wu, Q.; Chen, X.; Wei, Y. Altered microRNA expression profiles are involved in Storage Lesions of Apheresis Platelet. BioRxiv 2018. [Google Scholar] [CrossRef]
- Zhang, Z.; Ran, Y.; Shaw, T.S.; Peng, Y. MicroRNAs 10a and 10b Regulate the Expression of Human Platelet Glycoprotein Ibα for Normal Megakaryopoiesis. Int. J. Mol. Sci. 2016, 17. [Google Scholar] [CrossRef]
- Bruchova, H.; Merkerova, M.; Prchal, J.T. Aberrant expression of microRNA in polycythemia vera. Haematologica 2008, 93, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Boilard, E.; Belleannée, C. (Dicer)phering roles of microRNA in platelets. Blood 2016, 127, 1733–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perales Villarroel, J.P.; Figueredo, R.; Guan, Y.; Tomaiuolo, M.; Karamercan, M.A.; Welsh, J.; Selak, M.A.; Becker, L.B.; Sims, C. Increased platelet storage time is associated with mitochondrial dysfunction and impaired platelet function. J. Surg. Res. 2013, 184, 422–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diehl, P.; Fricke, A.; Sander, L.; Stamm, J.; Bassler, N.; Htun, N.; Ziemann, M.; Helbing, T.; El-osta, A.; Jowett, J.B.M.; et al. Microparticles: Major transport vehicles for distinct microRNAs in circulation. Cardiovasc. Res. 2012, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Jansen, F.; Yang, X.; Proebsting, S.; Hoelscher, M.; Przybilla, D.; Baumann, K.; Schmitz, T.; Dolf, A.; Endl, E.; Franklin, B.S.; et al. MicroRNA Expression in Circulating Microvesicles Predicts Cardiovascular Events in Patients with Coronary Artery Disease. J. Am. Heart Assoc. 2014, 3, e001249. [Google Scholar] [CrossRef]
- Gibbings, D.J.; Ciaudo, C.; Erhardt, M.; Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell. Biol. 2009, 11. [Google Scholar] [CrossRef]
- Michael, J.V.; Wurtzel, J.G.T.; Mao, G.F.; Rao, A.K.; Kolpakov, M.A.; Sabri, A.; Hoffman, N.E.; Rajan, S.; Tomar, D.; Madesh, M.; et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 2017, 130, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Alexy, T.; Rooney, K.; Weber, M.; Gray, W.D.; Searles, C.D. TNF-α alters the release and transfer of microparticle-encapsulated miRNAs from endothelial cells. Physiol. Genom. 2014, 46, 833–840. [Google Scholar] [CrossRef]
- Stępień, E.Ł.; Durak-Kozica, M.; Kamińska, A.; Targosz-Korecka, M.; Libera, M.; Tylko, G.; Opalińska, A.; Kapusta, M.; Solnica, B.; Georgescu, A.; et al. Circulating ectosomes: Determination of angiogenic microRNAs in type 2 diabetes. Theranostics 2018, 8, 3874–3890. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Zha, C.; Liu, Y. Platelets activated by the anti-β2GPI/β2GPI complex release microRNAs to inhibit migration and tube formation of human umbilical vein endothelial cells. Cell. Mol. Biol. Lett. 2018, 23, 24. [Google Scholar] [CrossRef]
- Sut, C.; Tariket, S.; Aubron, C.; Aloui, C.; Hamzeh-Cognasse, H.; Berthelot, P.; Laradi, S.; Greinacher, A.; Garraud, O.; Cognasse, F. The Non-Hemostatic Aspects of Transfused Platelets. Front. Med. 2018, 5. [Google Scholar] [CrossRef]
- Bail, S.; Swerdel, M.; Liu, H.; Jiao, X.; Goff, L.A.; Hart, R.P.; Kiledjian, M. Differential regulation of microRNA stability. RNA 2010, 16, 1032–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volk, N.; Shomron, N. Versatility of MicroRNA Biogenesis. PLoS ONE 2011, 6, e19391. [Google Scholar] [CrossRef] [PubMed]
- Bauersachs, J.; Thum, T. Biogenesis and Regulation of Cardiovascular MicroRNAs. Circ. Res. 2011, 109, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Nassa, G.; Giurato, G.; Cimmino, G.; Rizzo, F.; Ravo, M.; Salvati, A.; Nyman, T.A.; Zhu, Y.; Vesterlund, M.; Lehtiö, J.; et al. Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications. Sci. Rep. 2018, 8, 498. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, G.; Tarallo, R.; Nassa, G.; Filippo, M.R.D.; Giurato, G.; Ravo, M.; Rizzo, F.; Conte, S.; Pellegrino, G.; Cirillo, P.; et al. Activating stimuli induce platelet microRNA modulation and proteome reorganisation. Thromb. Haemost. 2015, 114, 96–108. [Google Scholar] [CrossRef] [PubMed]
- McRedmond, J.P.; Park, S.D.; Reilly, D.F.; Coppinger, J.A.; Maguire, P.B.; Shields, D.C.; Fitzgerald, D.J. Integration of Proteomics and Genomics in Platelets. Mol. Cell. Proteomics 2004, 3, 133–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnatenko, D.V.; Perrotta, P.L.; Bahou, W.F. Proteomic approaches to dissect platelet function: Half the story. Blood 2006, 108, 3983–3991. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, L.C.; Simon, L.M.; Montoya, R.T.; Holinstat, M.; Chen, E.S.; Bergeron, A.; Kong, X.; Nagalla, S.; Mohandas, N.; Cohen, D.E.; et al. Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat. Med. 2013, 19, 1609–1616. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yan, Y. Suboptimal health: A new health dimension for translational medicine. Clin. Transl. Med. 2012, 1, 28. [Google Scholar] [CrossRef]
- Alzain, M.A.; Asweto, C.O.; Zhang, J.; Fang, H.; Zhao, Z.; Guo, X.; Song, M.; Zhou, Y.; Chang, N.; Wang, Y.; et al. Telomere Length and Accelerated Biological Aging in the China Suboptimal Health Cohort: A Case–Control Study. Omi. A J. Integr. Biol. 2017, 21, 333–339. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Srikantan, S.; Kang, M.-J.; Gorospe, M. Regulation of senescence by microRNA biogenesis factors. Ageing Res. Rev. 2012, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Slack, F.J. Ageing and the small, non-coding RNA world. Ageing Res. Rev. 2013, 12, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Pilotte, J.; Dupont-Versteegden, E.E.; Vanderklish, P.W. Widespread Regulation of miRNA Biogenesis at the Dicer Step by the Cold-Inducible RNA-Binding Protein, RBM3. PLoS ONE 2011, 6, e28446. [Google Scholar] [CrossRef] [PubMed]
- Krol, J.; Busskamp, V.; Markiewicz, I.; Stadler, M.B.; Ribi, S.; Richter, J.; Duebel, J.; Bicker, S.; Fehling, H.J.; Schübeler, D.; et al. Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover as a Common Property of Neuronal MicroRNAs. Cell 2010, 141, 618–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukai, N.; Nakayama, Y.; Ishi, S.; Ogawa, S.; Maeda, S.; Anada, N.; Murakami, S.; Mizobe, T.; Sawa, T.; Nakajima, Y. Changes in MicroRNA Expression Level of Circulating Platelets Contribute to Platelet Defect After Cardiopulmonary Bypass. Crit. Care Med. 2018, 46, e761–e767. [Google Scholar] [CrossRef] [PubMed]
- Ravi, S.; Chacko, B.; Kramer, P.A.; Sawada, H.; Johnson, M.S.; Zhi, D.; Marques, M.B.; Darley-Usmar, V.M. Defining the effects of storage on platelet bioenergetics: The role of increased proton leak. Biochim. Biophys. Acta Mol. Basis Dis. 2015, 1852, 2525–2534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, G.; Yu, S.; He, Y.; Sun, T.; Liang, W.; Yu, L.; Xu, D.; Li, Q.; Zhang, R. MicroRNA profiling of platelets from immune thrombocytopenia and target gene prediction. Mol. Med. Rep. 2017, 16, 2835–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebois, M.; Josefsson, E.C. Regulation of platelet lifespan by apoptosis. Platelets 2016, 27, 497–504. [Google Scholar] [CrossRef]
- Blondal, T.; Jensby Nielsen, S.; Baker, A.; Andreasen, D.; Mouritzen, P.; Wrang Teilum, M.; Dahlsveen, I.K. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 2013, 59, S1–S6. [Google Scholar] [CrossRef]
MicroRNAs * | Study Approach | Functions | References |
---|---|---|---|
miR-127, miR-320a. | Differential Expression Analysis. Platelet Storage. | Platelet activation. | [7] a. |
miR-145, miR-150, miR-183, miR-26a, miR-331, miR-338, miR-451a, miR-501, and miR-99b, miR-1304, miR-411, miR-432, miR-668, miR-939. | Differential Expression Analysis. Platelet Storage. | Platelet activation. Storage Lesion. Apoptosis. | [19] a. |
miR-20a, miR-10a, miR-16-2, miR-223. | Differential Expression Analysis. Platelet Storage. | Storage Lesion. | [20] a. |
miR-10a, miR-126, miR-10b, miR-17, miR-20 | Differential Expression Analysis. | Megakaryocyte Differentiation | [23] b |
Family let (-7a, -7b, -7c, 7e, -7f, -7g, -7i). mir-223, let-7c, miR-19a, miR-140, miR-15 miR-16, miR-339, miR-365, miR-495, miR-98, miR-361, miR-200b, miR-495, miR-107, miR-376. | Differential Expression Analysis. Platelet Storage. Platelet microparticles. | Platelet Reactivity. Platelet Regulatory Pathways Apoptosis. | [24] a. [25] b. [26] a. [27] b. [28] a. |
miR-570. | Differential Expression Analysis. Platelet Storage. | Storage Lesion. Apoptosis. | [29] b. |
miR-326, miR-96, miR-16, miR-155, miR-150, miR-7, miR-145, miR-24, miR-25, miR-15a. | Differential Expression Analysis. Platelet Storage. | Platelet activation. Storage Lesion. Apoptosis. | [30] c. |
miR-326. | Differential Expression Analysis. Platelet Storage. | Storage Lesion. Apoptosis. | [31] c. |
miR-326, miR-128, miR-331, miR-500. | Differential Expression Analysis. Platelet Storage. | Platelet Reactivity. | [32] a,b. |
miR-320b, miR-1, miR-214, miR-197, miR-129, miR-193, miR-292. | Differential Expression Analysis. Platelet Storage. | Storage Lesion. | [33] b. |
miR-200b, miR-495, miR-107, miR-376. | Differential Expression Analysis. | Platelet Reactivity. | [34] a. |
miR-16, miR-22, miR-185, miR-320b, miR-423. | Differential Expression Analysis. Platelet microparticles. | Platelet activation. | [35] a. |
miR-223, miR-191, miR-197, miR-24, miR-21, miR-126, miR-150. | Support Vector Machines (SVM). Platelets, microparticles, platelet-rich. plasma, platelet-poor plasma and serum. | Platelet activation. | [36] c |
miR-126, miR-17, miR-191, miR-484, miR-106a, miR-146a, miR-223, let-7e. | Differential Expression Analysis. Platelet Storage. | Platelet activation. Apoptosis. | [37] b. |
miR-27b, miR-126, miR-21, miR-451. | Differential Expression Analysis. Platelet Storage. Platelet microparticles. | Platelet activation. | [38] c. |
miR-21, miR-155, miR-223, miR-3126, let-7b. | Differential Expression Analysis. Platelet Storage. | Platelet Aggregation. Storage Lesion. Apoptosis. | [39] b. |
miR-10a, miR-10b. | Differential Expression Analysis. | Megakaryocyte Differentiation | [40] c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maués, J.H.d.S.; Aquino Moreira-Nunes, C.d.F.; Rodriguez Burbano, R.M. MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks—A Review. Cells 2019, 8, 1256. https://doi.org/10.3390/cells8101256
Maués JHdS, Aquino Moreira-Nunes CdF, Rodriguez Burbano RM. MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks—A Review. Cells. 2019; 8(10):1256. https://doi.org/10.3390/cells8101256
Chicago/Turabian StyleMaués, Jersey Heitor da Silva, Caroline de Fátima Aquino Moreira-Nunes, and Rommel Mário Rodriguez Burbano. 2019. "MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks—A Review" Cells 8, no. 10: 1256. https://doi.org/10.3390/cells8101256
APA StyleMaués, J. H. d. S., Aquino Moreira-Nunes, C. d. F., & Rodriguez Burbano, R. M. (2019). MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks—A Review. Cells, 8(10), 1256. https://doi.org/10.3390/cells8101256